Supporting Information

Sandwich-Structured Silver Nanowire Transparent Conductive Films with 3H Hardness and Robust Flexibility for Potential Applications in Curved Touch Screens

Xikun Chu^{1,2}, Jingqi Tao^{1,2}, Shuxin Li¹, Shulin Ji^{1,*} and Changhui Ye^{1,3,*}

- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China; xikunchu@163.com (X.C.); jqtao127@163.com (J.T.); lishuxin@issp.ac.cn (S.L.)
- ² Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- ³ College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- * Correspondence: slji@issp.ac.cn (S.J.), chye@zjut.edu.cn (C.Y.); Tel.: +86-551-65591923 (S.J.)

Figure S1. UV-Vis curves to characterize the transmittance and haze of TCFs fabricated by the (**a**) bare AgNW layer and (**b**) BHC/AgNW/THC layer, respectively. The sheet resistance statistic distribution of the (**c**) bare AgNW TCF and (**d**) BHC/AgNW/THC TCF, respectively. The optical transmittance, haze and sheet resistance of the bare AgNW TCF were 91.6%, 1.4% at 550 nm and 56 \pm 3.2 Ω /sq; while after hardening process, the values for BHC/AgNW/THC TCF were 90.6%, 1% at 550 nm and 72 \pm 4.0 Ω /sq, respectively.

Figure S2. Relative changes in the resistance after the 3M taping test, once for the bare AgNW TCF and 50 times for the BHC/AgNW/THC TCF.

Figure S3. (a) The picture of PET/BHC substrates with 10 μ m, 15 μ m and 20 μ m coating thickness. (b) Normal and (c) enlarged interface SEM image manifesting the intact AgNW film structure.

Figure S4. (a) Relative resistance changes of the bare AgNW TCF and the BHC/AgNW/THC TCF as a function of bending radius. (b) Relative resistance changes of the films under bending tests with 5000 bending cycles under bending radius of 1 cm. The relative change in resistance is expressed as $(R-R_0)/R_0$, where R is the resistance after bending tests and R_0 is the resistance before bending.