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Abstract: Hierarchical micro-mesoporous carbon (denoted as HPC-2 in this study) was synthesized
by pre-carbonization of biomass Sichuan pepper followed by KOH activation. It possessed
well-developed porosity with the specific surface area of 1823.1 m2 g−1 and pore volume of
0.906 cm3 g−1, and exhibited impressive supercapacitive behaviors. For example, the largest
specific capacitance of HPC-2 was tested to be ca. 171 F g−1 in a three-electrode setup with
outstanding rate capability and stable electrochemical property, whose capacitance retention was
near 100% after cycling at rather a high current density of 40 A g−1 for up to 10,000 cycles.
Furthermore, a two-electrode symmetric supercapacitor cell of HPC-2//HPC-2 was constructed,
which delivered the maximum specific capacitance and energy density of ca. 30 F g−1 and
4.2 Wh kg−1, respectively, had prominent rate performance and cycling stability with negligible
capacitance decay after repetitive charge/discharge at a high current density of 10 A g−1 for
over 10,000 cycles. Such electrochemical properties of HPC-2 in both three- and two-electrode
systems are superior or comparable to those of a great number of porous biomass carbon reported
previously, hence making it a promising candidate for the development of high-performance energy
storage devices.
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1. Introduction

Due to the increasing deterioration of environment and the urgent demand for clean and
renewable energy, advanced energy storage technologies have gained considerable attention [1–3].
Among diverse energy storage systems, electrochemical capacitor, so-called supercapacitor,
is recognized as one of the most promising next-generation candidates because of its ultrahigh
power density, short charge/discharge time, long cycle life, stable performance, and broad working
temperature, which has found many applications in consumer electronics, backup power supply,
hybrid electrical vehicle, and implantable medical devices [3–5]. Based on the charge storage
mechanism, supercapacitors can be classified as electrical double-layer capacitors (EDLCs) and
pseudocapacitors [6,7]. The former relies on the electrostatic accumulation of electrolyte ions
at the electrode/electrolyte interface to store energy, while the later achieves this point by the
reversible Faradaic redox reactions occurring near the electrode surface [6,7]. Overall, compared
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with pseudocapacitors, EDLCs offer higher power density but lower energy density, meanwhile,
they are more environmentally friendly and much safer [7].

Over the past two decades, a wide range of compounds have been developed as
electrode materials for supercapacitors, such as conductive polymers, metal oxides, sulfides,
and hydroxides [6–8]. Although these pseudocapacitor electrode materials exhibit high specific
capacitance, their low electrical conductivity, environmental harmfulness and poor cycling stability
still severely restrict their commercialization. As a consequence, more and more interest is focused
on carbonaceous materials owing to their good electrical conductivity, excellent stability, and low
cost. Various carbonaceous materials like carbon nanotubes, graphene, carbon aerogel and porous
carbon have been frequently reported for energy storage devices [9,10]. Especially, porous carbon
derived from natural substances stands out and becomes a hotspot in the field of supercapacitor,
since its renewable precursor, abundant resources and easy fabrication process make it quite suitable
for large-scale production and application [11–17]. For instance, some effective strategies, including
one-step activation, template method as well as combination of carbonization and activation, have been
proposed to synthesize porous carbon by adopting wheat straws, rice bran, almond shells, pig nails,
plant leaves, corn, silk and starch as raw materials [5,11–17]. These biomass-derived porous carbon
products feature substantial micropores (<2 nm), resulting in large specific surface area and presenting
high specific capacitance. Unfortunately, their rate performance and cycling stability are often far
from satisfaction due to lack of sufficient mesopores (2–50 nm) and macropores (>50 nm), which
favor fast transport, penetration, and diffusion of electrolyte ions within electrodes [4,7]. To upgrade
the capacitive performances of biomass carbon, construction of hierarchical porous architecture with
interconnected micro, meso, and macropores is regarded as an ideal design [4,7]. Nevertheless,
it remains a challenge to choose appropriate biomass and approach to synthesize hierarchical porous
carbon with outstanding electrochemical properties for high-performance supercapacitors.

Sichuan pepper, widely known as Huajiao in China, denotes the fruits of Zanthoxylum in the
plant family Rutaceare, which is a popular spice for culinary purposes and can be used as drug in
traditional Chinese medicine for anti-microbial, anti-inflammation and analgesia [18,19]. Moreover,
plenty of extracts are able to be obtained from Sichuan pepper as well, and they are extensively
added as food ingredients in many savory goods and beverages [18,20]. Despite these merits and
efforts, it is of great significance to expand the application of Sichuan pepper into other important and
valuable aspects such as energy storage area. In the present work, this raw material was employed as a
sustainable and green precursor to prepare hierarchical porous carbon via pre-carbonization followed
by KOH activation under high temperature (Figure 1). Thanks to the interconnected micro-mesoporous
structure, high specific surface area, and well-developed porosity, the currently synthesized porous
biomass carbon displayed satisfactory capacitive performances with the maximum specific capacitance
of ca. 171 F g−1 in a three-electrode system, the highest energy density of 4.2 Wh kg−1 in a symmetric
supercapacitor cell, as well as outstanding rate capability and cycling stability. The current method to
fabricate hierarchical porous carbon is straightforward and suitable for mass production. Consequently,
a type of cost-effective and environmental friendly carbon electrode materials is developed for energy
storage, while providing a new promising application of Sichuan pepper.
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final products were denoted as HPC-0, HPC-1, HPC-2, and HPC-3 for convenience, respectively. 
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0.154156 nm) as the radiation source. Raman analysis was carried out on a Zolix Finder One Raman 
spectrometer, and its incident light is green laser with the wavelength of 532 nm. N2 
adsorption/desorption experiments were done on a Micromeritics ASAP 2020 analyzer at the 
temperature of liquid nitrogen (77 K). The specific surface area (SBET) of the samples was estimated 
according to the Brunauer‒Emmett‒Teller (BET) theory, their micropore surface area (Smic) was 
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Smic from SBET. The total pore volume (Vt) was calculated based on the amount adsorbed at the 

Pre-carbonization Grinding 
300 °C in air 

Washing, drying 
and grinding 

Assembly of 
supercapacitor 

Activation 
with KOH 

800 °C in N2 

Sichuan pepper 

Hierarchical 
porous carbon 

Charcoal 

Figure 1. Schematic representation of the preparation of hierarchical porous biomass carbon derived
from Sichuan pepper.

2. Experimental

2.1. Chemicals

Sichuan pepper was bought from local supermarket. Potassium hydroxide (KOH), hydrochloric
acid (HCl), polyvinylidene fluoride (PVDF), N-methyl-2-pyrrolidone (NMP), nickel foam and acetylene
black were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All the reagents
were used without further purification. Deionized water was employed throughout this study.

2.2. Fabrication of Sichuan Pepper-Derived Hierarchical Porous Carbon

6 g of Sichuan pepper was collected in a corundum boat and then put into a muffle furnace for
pre-carbonization at 300 ◦C (ramp rate: 4 ◦C min−1) for 2 h in air. Afterwards, a part of the resulting
charcoal (0.6 g) was ground to powder, infiltrated with 1 mL of ethanol, and mixed with 1 mL of
aqueous solution of KOH to form a slurry, which was sufficiently dried at 110 ◦C for 12 h in an electric
oven. For further activation and carbonization, the resulting mixture was transferred into another
corundum boat and heated in a quartz tube furnace at 800 ◦C (ramp rate: 2 ◦C min−1) for 2 h in N2

atmosphere. At last, the rude product was successively washed with 1 M HCl and abundant deionized
water, followed by drying and grinding, thus yielding hierarchical porous carbon. To optimize the
porosity of hierarchical porous carbon, the mass ratio of KOH to the intermediate charcoal during the
above synthetic process was set as 0:1, 1:1, 2:1, and 3:1, and the corresponding final products were
denoted as HPC-0, HPC-1, HPC-2, and HPC-3 for convenience, respectively.

2.3. Characterizations

Field emission scanning electron microscopy (FESEM) inspections were performed on a Zeiss
GeminiSEM 300 scanning electron microscope working at an acceleration voltage of 3 kV. Transmission
electron microscopy (TEM) examinations were observed on a Tecnai G2 F20 transmission electron
microscope operating at an acceleration voltage of 200 kV. Powder X-ray diffraction (XRD) patterns
were measured on a Tongda TD-3500 diffractometer adopting Cu Kα (λ = 0.154156 nm) as the radiation
source. Raman analysis was carried out on a Zolix Finder One Raman spectrometer, and its incident
light is green laser with the wavelength of 532 nm. N2 adsorption/desorption experiments were done
on a Micromeritics ASAP 2020 analyzer at the temperature of liquid nitrogen (77 K). The specific
surface area (SBET) of the samples was estimated according to the Brunauer-Emmett-Teller (BET) theory,
their micropore surface area (Smic) was analyzed by the t-plot method, and their mesopore surface
area (Smeso) was obtained by subtracting Smic from SBET. The total pore volume (Vt) was calculated
based on the amount adsorbed at the relative pressure of P/P0 = 0.99, the micropore volume (Vmic)
was deduced utilizing Dubinin–Radushkevich analysis in the relative pressure range from 10−4 to
10−2, and the mesopore volume (Vmeso) was obtained by subtracting Vt from Vmic. The pore size
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distribution was determined by the original density functional theory, which was combined with
non-negative regularization and medium smoothing.

2.4. Electrochemical Tests

The fabrication of working electrodes was briefly described as follows. Firstly, the active material
(i.e., the currently synthesized carbon materials), acetylene black and PVDF binder were accurately
weighed with the mass ratio of 75:15:10 and mixed together in an agate mortar. Then, appropriate
amount of solvent NMP was introduced, and the resulting mixture was mildly ground to generate a
homogeneous slurry. Finally, the as-prepared black slurry was brushed onto one side of rectangular
nickel foam (1 cm × 3 cm in size, which was employed in three-electrode setup) or circular nickel
foam (1.1 cm in diameter, which was used for assembly of supercapacitor cells) with the coated area
~1 cm2, followed by pressing under the pressure of 2 MPa and drying in a vacuum oven to give several
electrodes. The amount of active material loaded on each working electrode was 2.1 ± 0.4 mg.

All the electrochemical measurements were taken on a CHI 760 E electrochemical workstation
(Shanghai Chenhua Instrument Co. Ltd., Shanghai, China). The electrochemical investigation of
three-electrode system was conducted in aqueous electrolyte of 2 M KOH, where the rectangular nickel
foam loaded with carbon materials, Hg/HgO electrode and platinum foil were used as the working,
reference and counter electrodes, respectively. Moreover, To build a symmetric supercapacitor cell,
two pieces of circular nickel foam coated with the same amount of hierarchical porous carbon (i.e.,
HPC-2) were wetted by aqueous solution of 2 M KOH, paired face to face with a polypropylene
separator sandwiched in between, and then sealed in a two-electrode device. The capacitive
performances of the resulting supercapacitor cell were systematically surveyed in such two-electrode
configuration. Cyclic voltammetry (CV) tests at varied scan rates were done from −0.9 to 0.1 V and
from 0 to 1 V in three-electrode and two-electrode systems, respectively. Likewise, galvanostatic
charge/discharge (GCD) curves at different current densities were recorded in the potential range
from −0.9 to 0.1 V and from 0 to 1 V in three-electrode and two-electrode systems, respectively.
Electrochemical impedance spectroscopy (EIS) was determined in the frequency range from 100 kHz
to 0.01 Hz at open circuit, and the signal amplitude of this measurement was 5 mV.

3. Results and Discussion

3.1. Materials Characterization

Figure 2 displays the microscopic morphologies of the products synthesized in this work. As can
be clearly seen, HPC-0, which was prepared by direct carbonization in the absence of KOH, seems to be
solid, nonporous and relatively smooth (Figure 2a), and such structure is not beneficial for electrolyte
ion diffusion during charge/discharge processes. After activation with a certain amount of KOH,
a large number of pores are created, and honeycomb-like cellular framework with thin pore walls
can be found in the resulting carbon materials of HPC-1 and HPC-2 (Figure 2b,c). The porosity of
the HPC-2 is more developed than that of HPC-1 due to deeper etching arising from more dosage
of KOH. However, excessive KOH brings about the damage of interconnected porous nanostructure
in the material HPC-3 as presented in Figure 2d. Figure 3 is a group of TEM images of HPC-0 and
HPC-2. The former keeps the intrinsic noncrystalline structure and has no porous texture (Figure 3a–c),
while hierarchical porous architecture (Figure 3d–f) and numerous micropores (Figure 3f) are visible in
the later. Based on the FESEM and TEM examinations, it can be concluded that the feeding amount of
KOH plays an essential role in creating three-dimensional porous network, and the optimum weight
ratio of KOH to charcoal is 1:2, which gives rise to well-developed porosity of carbon material HPC-2.
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Figure 2. FESEM images of (a) HPC-0, (b) HPC-1, (c) HPC-2 and (d) HPC-3, which were synthesized
by adjusting the mass ratio of KOH to the intermediate charcoal as 0:1, 1:1, 2:1, and 3:1, respectively.
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Figure 4a exhibits the powder XRD patterns of HPC-0, HPC-1, HPC-2, and HPC-3. All of them
show two typical peaks at around 2θ = 25◦ and 44◦, which can be well indexed to the (002) and
(101) planes of hexagonal graphite (JCPDS no. 41-1487) [14,17,21], respectively, suggesting that the
diffractions should originate from graphitic carbon [14,17,21]. The intensity of the peak located at
2θ = 44◦ gradually fades out as elevating the dosage of KOH, demonstrating the increasing extent
of disorder [14,21]. The Raman spectra of the four specimens are given in Figure 4b, where a pair of
characteristic peaks can be noticed at ~1350 and ~1595 cm−1, corresponding to the D and G bands of
carbon matters, respectively [14,17,21,22]. The D band is related to the structural defects and disorders,
while the G band stands for the sp2-hybridized graphitic carbon structure [14,17,21]. The intensity
ratio of D to G band (ID/IG) is usually used to evaluate the graphitization level of carbon materials,
namely, the lower value of ID/IG, the higher degree of graphitization [14,17,21]. The value of ID/IG

is determined to be 1.0, 1.03, and 0.99 for HPC-1, HPC-2, and HPC-3, respectively, and all of which
is higher than that of HPC-0 (0.94). Such result suggests that KOH activation indeed causes textural
defects and disorders on carbon materials due to the generation of enormous nanopores, which also
coincides with the outcome of XRD characterizations [14,21,23].
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Figure 4. (a) Powder XRD patterns and (b) Raman spectra of HPC-0, HPC-1, HPC-2, and HPC-3.

The porous nature of the currently synthesized carbon materials were further characterized by
N2 adsorption/desorption measurements, and the corresponding isotherm curves are exhibited
in Figure 5a. As envisioned, HPC-0 gives an almost horizontal line, suggesting its nonporous
structure [14,21]. For HPC-1 and HPC-2, combined isotherm curves of type I and IV are obtained,
showing steep uptake of nitrogen at low relative pressure (P/P0 < 0.1) and typical hysteresis loops at
relative pressure of 0.5–1.0, which are indicative of the existence of plentiful micropores and mesopores
in the two samples [3,4,14]. Unlike HPC-1 and HPC-2, hysteresis loop is absent in the isotherm curve of
HPC-3, which can thus be classified into type I isotherm, that is, HPC-3 is rich in micropores but lack of
mesopores [4,21]. Such porous characteristics are also intuitively revealed by their pore size distribution
diagrams as depicted in Figure 5b and the inset. The porosity parameters of these specimens are
presented in Table 1. It is found that the specific surface area and total pore volume of HPC-0 are only
20.2 m2 g−1 and 0.021 cm3 g−1, respectively, while those of HPC-1, HPC-2, and HPC-3 are close to each
other, which reach up to ~1900 m2 g−1 and ~0.9 cm3 g−1, respectively. Even so, the mesopore surface
area (681.5 m2 g−1) and mesopore volume (0.459 cm3 g−1) of HPC-2 are far more than those of HPC-1
and HPC-3, once again testifying its superior hierarchical porous texture and well-developed porosity.
The high specific surface area, large total pore volume as well as hierarchical porous architecture
with reasonable distribution of micropores and mesopores would promote the contact area between
electrode material (i.e., HPC-2) and electrolyte, facilitate the diffusion of electrolyte ions, and offer
rich active sites as locations for charge accumulation, and hence, greatly contribute to the capacitive
performances of HPC-2 electrode and the corresponding supercapacitor device [4,14,21].
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Figure 5. (a) N2 adsorption/desorption isotherm curves and (b) Pore size distribution diagrams of
HPC-0, HPC-1, HPC-2 and HPC-3.

Table 1. Porosity parameters of the currently synthesized carbon materials.

Sample SBET (m2 g−1) Smic (m2 g−1) Smeso (m2 g−1) Vt (cm3 g−1) Vmic (cm3 g−1) Vmeso (cm3 g−1)

HPC-0 20.2 17.3 2.9 0.021 0.008 0.013
HPC-1 1880.8 1841.4 39.4 0.858 0.73 0.128
HPC-2 1823.1 1141.6 681.5 0.906 0.447 0.459
HPC-3 2065.1 2015.1 50 0.863 0.803 0.06

3.2. Electrochemical Evaluations

The electrochemical properties of the currently synthesized carbon materials were first studied in
2 M KOH electrolyte by using a three-electrode setup. Figure 6a depicts their CV curves at the scan rate
of 20 mV s−1. A seriously distorted rectangular CV curve is obtained for HPC-0. Unlike HPC-0, HPC-1,
HPC-2 and HPC-3 show typical quasi-rectangular shapes, demonstrating the EDLC characteristics as
supercapacitor electrode materials for charge storage [4,14,21]. Notably, the area enclosed by the CV
curve of HPC-2 is significantly larger than that of the others, manifesting the enhanced capacitance
of the sample [9,14]. Such result is further verified by their GCD tests at the same current density of
1 A g−1 (Figure 6b), since the discharge time of HPC-2 is the longest [9,14]. The better electrochemical
behaviors of HPC-2 possibly benefit from its larger mesopore surface area and mesopore volume to a
great extent, which could offer broad channels for shortening the electrolyte ion diffusion distance
during charge/discharge processes [14,21]. Figure 6c presents the CV curves of HPC-2 at different
scan rates, and the rectangular-like shape is maintained even swept at 200 mV s−1, reflecting its
excellent rate performances [21]. Figure 6d is a group of GCD curves of HPC-2 measured at current
densities from 1 to 50 A g−1. The discharge curves are almost linear and mirror-symmetric to the
charge counterparts with very small IR drop, indicating the good electrical conductivity, desirable
charge/discharge activity, and high reversibility of such electrode [4,8,14]. The specific capacitance of
this electrode can be deduced according to the following Equation (1),

Cm = It/∆Vm (1)

where Cm, I, t, ∆V, and m represent the specific capacitance of the tested working electrode (F g−1),
the discharge current (A), the discharge time (s), the potential change during a complete discharge
process (V), and the mass of active material coated on the working electrode (g), respectively [14–16].
As a result, the Cm value of HPC-2 is calculated to be 171 ± 12, 162 ± 11, 157 ± 9, 149 ± 10, 144 ± 8,
133 ± 7, 127 ± 8, 121 ± 6, and 113 ± 7 F g−1 at the current densities of 1, 2, 3, 5, 10, 20, 30, 40, and
50 A g−1, respectively. Its Cm alteration as a function of current density is profiled in Figure 6e as
well. Although the specific capacitance gradually decreases as the current density goes up, the Cm

value acquired at the current densities of 10 and 50 A g−1 remains as high as 84.2% and 66.1% of



Nanomaterials 2019, 9, 553 8 of 14

the initial one (i.e., the Cm value acquired at the current density of 1 A g−1), respectively, once again
demonstrating the prominent rate capability of HPC-2 electrode. To investigate its cyclic performance,
repetitive GCD measurement was performed at the current density of 40 A g−1 for up to 10,000
cycles. Surprisingly, there is almost no capacitance decay from beginning to end, and the capacitance
retention of HPC-2 electrode reaches up to 99.6% after the entire test (Figure 6f). In addition, the final
10-cycle charge/discharge curve still retains the quasi-isosceles triangular shape (inset of Figure 6f),
commendably illustrating the exceptional long-term cycling stability of the HPC-2 electrode.
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Figure 6. Electrochemical characterizations of the currently fabricated carbon electrodes measured in
a three-electrode system. (a) CV curves of HPC-0, HPC-1, HPC-2, and HPC-3 electrodes acquired at
the identical scan rate of 20 mV s−1; (b) GCD curves of HPC-0, HPC-1, HPC-2, and HPC-3 electrodes
obtained at the same current density of 1 A g−1; (c) CV curves of HPC-2 electrode tested at varied
sweep rates; (d) GCD curves of HPC-2 electrode tested at different current densities; (e) the relationship
of specific capacitance of HPC-2 electrode versus current density; and (f) the cyclic performance of
HPC-2 electrode for continuous charge/discharge at rather a high current density of 40 A g−1 for up to
10,000 cycles; the inset shows the charge/discharge curve of such cycling test for the final 10 cycles.
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Previously, a great number of porous biomass carbons have been synthesized and utilized
as electrode materials for supercapacitor applications [21–32]. On the whole, when evaluated
in three-electrode systems, lots of porous biomass carbon electrodes deliver the highest specific
capacitance lower than 160 F g−1 [24–31], and their rate capability is relatively poor as well, because,
compared with their maximum specific capacitance, more than 16% drop is usually inevitable at the
current densities not exceeding 10 A g−1 [11,14,16,21,23,32–35]. Also, an evident loss of capacitance
(often over 10% decay as compared to the initial capacitance) is observed for a variety of porous
biomass carbon electrodes after continuous charge/discharge (commonly less than 10,000 cycles) at
the current densities lower than 10 A g−1 [3,7,21,23,33]. By contrast, our currently developed HPC-2
electrode releases the highest specific capacitance of ca. 171 F g−1 at the current density of 1 A g−1,
features outstanding rate capability with the specific capacitance at the current density of 10 A g−1

still as high as 84.2% of the maximum one, and fulfills excellent cyclic performance with inappreciable
capacitance fading after cycling at rather a high current density of 40 A g−1 for up to 10,000 cycles.
It is assumed that the interconnected hierarchical micro-mesoporous architecture, unique morphology,
high specific surface area and large pore volume of HPC-2 should be responsible for its superior
capacitive properties, which provide extensive transport channels and abundant active sites for the
adsorption/desorption of electrolyte ions during charge/discharge processes [14,21,32].

To reveal the practical supercapacitive device behaviors, a symmetric supercapacitor cell (i.e.,
HPC-2//HPC-2) was built by using the currently developed HPC-2 as electrode material and 2 M
aqueous solution of KOH as electrolyte. Its detailed electrochemical characterizations were conducted
and the results are shown in Figure 7. Clearly, all of the CV curves, even the one scanned at a very
high speed of 500 mV s−1, are close to rectangular shapes with no redox peak and dramatic distortion
(Figure 7a), testifying to the expected EDLC charge storage mechanism, ideal capacitive behaviors,
as well as rapid charge/discharge property [9,14,21,36]. The GCD curves of such supercapacitor cell
at different current densities are presented in Figure 7b, showing isosceles triangular shape with
decent mirror-image symmetry and small potential drop, which are indicative of the low internal
resistance and non-Faradaic supercapacitive characteristic [9,14,21]. In terms of Equation (1) and
these GCD curves, the specific capacitance of the cell (Ccell) is deduced to be 30 ± 3, 29 ± 3, 28 ± 2,
27 ± 3, 26 ± 2, 24 ± 3, 21 ± 2, and 19 ± 2 F g−1 based on the total weight of active material (~4.2 mg)
within one supercapacitor device at the current densities of 0.5, 1, 2, 3, 5, 10, 20, and 30 A g−1,
respectively (Figure 7c). Noticeably, the Ccell value still retains 80% and 63.3% by boosting the
current density from 0.5 to 10 and 30 A g−1, respectively, implying the remarkable rate capability of
HPC-2//HPC-2 cell, which outperforms that of many existing porous biomass carbon-based aqueous
supercapacitors [4,5,12,16], whose output potential difference is also 1.0 V. The cycling stability of the
cell was examined by consecutive GCD test at a high current density of 10 A g−1 for over 10,000 cycles.
It is found that little capacitance degradation is observed during the continuous charge/discharge
process, and 99.5% of the initial capacitance is reserved after the whole measurement (Figure 7d).
Besides, its GCD curve for the last 10 cycles remains good enough (Figure 7e), and its Nyquist
plots before and after the cycling test give similar shape with inconspicuous difference (Figure 7f).
All these findings and results convincingly confirm the excellent cyclic performance of HPC-2//HPC-2
supercapacitor cell.
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Figure 7. Supercapacitive behaviors of single symmetric supercapacitor cell of HPC-2//HPC-2. (a) Its
CV curves measured at a set of sweep rates; (b) its GCD curves obtained at a series of current densities;
(c) its specific capacitance as a function of current density; (d) its cyclic performance for repetitive
charge/discharge at a high current density of 10 A g−1 for over 10,000 cycles; (e) its last 10-cycle
charge/discharge curve of such cycling stability test; and (f) its initial Nyquist plot (black curve) and
the one after such cycling stability test (blue curve); the inset is the zoom view of the Nyquist plots for
high frequencies.

The energy and powder densities of the currently developed symmetric supercapacitor cell are
calculated based on the following two equations and its GCD curves shown in Figure 7b,

E = (Ccell∆V2)/7.2 (2)

P = 3600 E/t (3)
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where E, P, Ccell ∆V, and t stand for the energy density (Wh kg−1), power density (W kg−1), specific
capacitance of the supercapacitor cell (F g−1), its output potential difference (V), and discharge
time (s) [4,6,14]. Consequently, the HPC-2//HPC-2 supercapacitor cell offers energy densities
of 4.2, 4.0, 3.9, 3.8, 3.6, 3.3, 2.9, and 2.6 Wh kg−1 at power densities of 250, 500, 1000, 1500,
2500, 5000, 10,000, and 15,000 W kg−1, respectively. To intuitively visualize these data, they are
drawn in a Ragone plot (Figure 8a). Impressively, the maximum energy density (4.2 Wh kg−1)
realized by the HPC-2//HPC-2 cell is comparable to or even better than that of a variety of
existing porous biomass carbon-based symmetric supercapacitors and commercial carbon-based
supercapacitors [14,24,25,30,37–39], demonstrating that the synthesized HPC-2 is indeed a promising
carbon electrode material for development of high-performance supercapacitors. Finally, we connected
two HPC-2//HPC-2 supercapacitor cells to try to power some commercial electronic products.
For instance, a red light-emitting diode bulb with the rated voltage of 1.9 V and a portable timer
with the rated voltage of 1.5 V were successfully driven by such tandem device after it was fully
charged (Figure 8b,c), thus demonstrating its actual feasibility and usefulness as a power source.
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Figure 8. (a) Ragone plot of an as-assembled HPC-2//HPC-2 supercapacitor cell; (b,c) Digital
photographs of a red light-emitting diode bulb and a portable timer well powered by two
HPC-2//HPC-2 supercapacitor cells connected in series, respectively.

4. Conclusions

In summary, employing Sichuan pepper as raw material, hierarchical micro-mesoporous
biomass carbon (i.e., HPC-2) was fabricated by its pre-carbonization followed by KOH activation,
which possessed interconnected cellular network, well-developed porosity, high specific surface of
1823.1 m2 g−1 and large pore volume of 0.906 cm3 g−1. When used in a three-electrode system,
HPC-2 released the highest specific capacitance of ca. 171 F g−1 at the current density of 1 A g−1,
exhibited desirable rate capability with the specific capacitance still as large as ca. 113 F g−1 at
rather a high current density of 50 A g−1, and exhibited good cycling stability with negligible
capacitance decay after consecutive charge/discharge at a high current density of 40 A g−1 for
over 10,000 cycles. Such electrochemical properties of HPC-2 electrode are superior to those of many
reported porous biomass carbon-based electrodes. As a continuation of this research, a symmetric
supercapacitor cell of HPC-2//HPC-2 was further established, which delivered the maximum specific
capacitance of ca. 30 F g−1, had outstanding rate capability and stable electrochemical behavior
with capacitance retention near 100% after cycling at a high current density of 10 A g−1 for up
to 10,000 cycles, and gave the highest energy density of 4.2 Wh kg−1 at a power density of 250 W kg−1.
Such capacitive performances are comparable or preferable to those of lots of existing porous biomass
carbon-based supercapacitors as well. Accordingly, it is anticipated that the currently developed
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hierarchical porous carbon HPC-2 may be utilized as an advanced carbon material for energy storage
in practical applications.
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