Supplementary Materials

Preparation of Multicolor Photoluminescent Carbon Dots by Tuning Surface States

Kai Jiang ^{1,2}, Xiangyu Feng ², Xiaolu Gao ², Yuhui Wang ², Congzhong Cai ¹, Zhongjun Li ³ and Hengwei Lin ^{2,*}

- ¹ State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Applied Physics, Chongqing University, Chongqing 400044, China; jiangkai@nimte.ac.cn (K.J.); czcai@cqu.edu.cn (C.C.)
- ² Key Laboratory of Graphene Technologies and Applications of Zhejiang Province & Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, China; fengxiangyu@nimte.ac.cn (X.F.); gaoxiaolu@nimte.ac.cn (X.G.); wangyuhui@nimte.ac.cn (Y.W.)
- ³ College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 China; lizhongjun@zzu.edu.cn
- * Correspondence: linhengwei@nimte.ac.cn; Tel.: +86-574-8668-5130

Figure S1 a) PL emission spectra of the g-CDs ethanol dispersion under different excitation wavelengths and PL excitation spectrum at emission wavelength of 510 nm; b) PL emission spectra of the r-CDs ethanol dispersion under different excitation wavelengths and PL excitation spectra at emission wavelengths of 600, 653 and 720 nm.

Figure S2 a) UV-Vis absorption and PL excitation spectra of b-CDs and g-CDs (excitation wavelengths at 435 and 510 nm, respectively); b) UV-Vis absorption and PL excitation spectra of y-CDs and r-CDs (excitation wavelengths at 535 and 650 nm, respectively).

Figure S3 a) PL decay spectra of the g-CDs ethanol dispersion monitored at 510 nm under excitation of 457 nm; b) PL decay spectra of the r-CDs ethanol dispersion monitored at 602, 650 and 714 nm under excitation of 588 nm.

Figure S4 a) XPS survey of the b-CDs, g-CDs, y-CDs, and r-CDs; b) Relative contents of C, N, and O elements of these CDs based XPS data.

Figure S5 a-b) high resolution XPS N 1s spectra of g-CDs and r-CDs and their comparison to b-CDs and y-CDs, respectively; c-d) high resolution XPS O 1s spectra of g-CDs and r-CDs and their comparison to b-CDs and y-CDs, respectively.

Figure S6 Photographs of the b-CDs@PVP, g-CDs@PVP, y-CDs@PVP, and r-CDs@PVP powders (from left to right) under daylight and UV light (365 nm).

Figure S7 PL emission spectra under different wavelengths and excitation spectra at the corresponding emission maxima of b-CDs@PVP (a), g-CDs@PVP (b), y-CDs@PVP (c), and r-CDs@PVP (d) powders.

Figure S8 Corresponding emission spectra of the multicolour LEDs.

Sample	λ _{ex} (nm)	Φ ₁ (%)	\$\$ 2(%)	Ф ₃ (%)	Φ _4(%)	Φ ₅ (%)	Ф_{аvg}(%)	Φ _{corr} (%)
R-6G	488	93.45	94.33	93.18	94.02	94.27	93.85	95
g-CDs	440	28.21	28.02	27.91	27.75	27.50	27.88	28.22
r-CDs	540	21.09	23.74	21.47	21.14	21.30	21.75	22.01

Table S1. QYs of the g-CDs and r-CDs in ethanol.

Table S2. Fitted parameters of the PL decay spectra of the g-CDs and r-CDs.

					_
Sample	λ _{ex} (nm)	λ _{em} (nm)	τ₁(ns)	B₁(%)	φ
g-CDs	457	510	4.86	100	1.067
r-CDs	588	608	2.18	100	1.096
r-CDs	588	650	2.20	100	1.133
r-CDs	588	714	2.24	100	1.057

Table S3. PL QYs of the b-CDs@PVP, g-CDs@PVP, y-CDs@PVP and r-CDs@PVP powders.

Sample	λ_{ex} (nm)	$\boldsymbol{\Phi}_1$	$\boldsymbol{\phi}_2$	${oldsymbol{\phi}}_3$	$oldsymbol{\Phi}_4$	$oldsymbol{\phi}_{5}$	$oldsymbol{\phi}_{avg}$
b-CDs-PVP	360	9.42	8.86	9.01	8.04	8.77	8.82
g-CDs-PVP	450	15.36	14.93	14.74	14.03	13.50	14.44
y-CDs-PVP	430	16.19	16.06	16.25	15.97	16.18	16.13
r-CDs-PVP	540	15.74	14.94	14.78	14.39	14.20	14.81