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Abstract: To develop solid lipid nanoparticles (SLNs) with a new lipid matrix for delivery of
hydrophobic bioactive molecules, high purity 1-laurin-3-palmitin (1,3-LP) was synthesized and
the prepared 1,3-LP SLNs were compared with those of two common SLN matrices in glyceryl
monostearate (GMS) and glyceryl tripalmitate (PPP). Conditions of preparing SLNs were first
optimized by evaluating the particle size, polydispersity index (PDI), zeta-potential, and stability.
Thereafter, the performance of SLN loading of a model compound in thymol was studied. The loading
capacity of thymol in 1,3-LP SLNs was 16% of lipids and higher than 4% and 12% for GMS- and
PPP-SLNs, respectively. The 1,3-LP SLNs also had the best efficiency to entrapment thymol during
the prolonged storage. X-ray diffraction (XRD) analyses confirmed the excellent crystalline stability
of 1,3-LP leading to the stable entrapment efficiency and better stability of thymol-loaded SLNs.
Conversely, the polymorphic transformation of GMS and PPP resulted in the declined entrapment
efficiency of thymol in the corresponding SLNs. This work indicated the 1,3-diacylglycerol (DAG)
SLNs could be used as a promising delivery system for the encapsulation of hydrophobic bioactive
molecules with high loading capacity and stability.
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1. Introduction

Colloidal delivery systems are frequently studied to encapsulate and control the release of
bioactive molecules relevant to drugs, agrochemicals, cosmetics, and food [1–3]. These systems
include microemulsions [4], nanoemulsions [5], solid lipid nanoparticles (SLNs) [6], nanogels [7],
and nanoliposomes [8]. Among them, SLNs were successfully developed in the early 1990s and have
shown desirable characteristics as a class of promising delivery systems [9–11], such as physical and
chemical storage stability, low toxicity, high loading capacity, scalability, and prolonged release of
encapsulated compounds [6].

Solid lipids used in SLN formulations include fatty acids [12], triacylglycerols (TAGs) [13–15],
monoacylglycerols (MAGs) [16,17], and waxes [18,19]. Lipids play an important role in determining
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the properties of SLNs for delivery of bioactive compounds, such as the loading capacity, entrapment
efficiency, stability, particle size, and bioavailability [6]. Lipids with different hydrocarbon chain
lengths usually form more lattice defects [6], which favor the loading of lipophilic bioactive molecules.
However, the commonly used TAGs, trimyristin and tristearin, and MAGs only have one kind of fatty
acid, which would not produce enough lattice defects to contain drugs. Even worse, the crystalline
lipid matrices of TAGs and MAGs tend to have the undesired polymorphic transformation from the
more disordered and less stable α-form to the more ordered and stable β-form, which reduces the
space for the loaded drugs and results in the expulsion of drugs from SLNs [6]. Novel lipid matrices
overcoming this disadvantage are significant to advance the science and technology of SLNs.

Diacylglycerols (DAGs), also called diglycerides, have been approved as generally recognized as
safe (GRAS) and gained great attention for their unique biological functions [20] such as reducing blood
lipids, lowing visceral fat, and preventing weight-related disorders [21]. More importantly, it has been
argued that 1,3-DAGs only form stable β-form polymorphic structures [20]. This property may be used
to prepare SLNs with a 1,3-DAG core to prevent polymorphic transformation and therefore expulsion
of drugs during storage. Additionally, 1,3-DAGs have a polarity between MAGs and TAGs, which
may favor the dissolving, loading, and retention of compounds with similar polarity. The molecular
structure of 1,3-DAGs can be conveniently tailored to tune the properties of SLNs as delivery systems.
However, there are currently no studies on 1,3-DAGs as a sole solid lipid matrix to prepare SLNs.

Thymol (2-isopropyl-5-methylphenol) is the main monoterpene phenol component of essential
oil that has been abundantly found in thyme (Thymus vulgaris) [22]. It is considered as interesting
substance in food industry, not only for its excellent antimicrobial activity against both Gram-positive
and Gram-negative bacteria, but also for its GRAS (generally recognized as safe) status [23]. However,
the relatively poor water solubility and dispersion homogeneity of thymol may strongly impact
the effectiveness against microbials. Nanoencapsulation can greatly improve the physicochemical
properties of thymol and improve the antimicrobial effectiveness to inhibit pathogens in food matrices.

The first objective of the present study was to synthesize and characterize high purity
1-laurin-3-palmitin (1,3-LP). The second objective was to study the properties of 1,3-LP as the
matrix of SLNs using thymol as a model compound with a medium polarity, with comparison
to those prepared with glyceryl monostearate (GMS) and glyceryl tripalmitate (PPP). In addition
to loading capacity, entrapment efficiency and entrapment stability of thymol during storage,
the polymorphic structures of lipids were studied using X-ray diffraction spectroscopy (XRD) to
reveal the structure–function correlations.

2. Materials and Methods

2.1. Materials

Thymol (>98%), soybean lecithin (>98%), palmitic acid (97%), tetrabutylammonium bromide
(97%), Tween 80 (T80), GMS (Analytical Reagent), and PPP (>98%) were purchased from Aladdin Co.,
Ltd. (Shanghai, China). The 1,3-LP standard was purchased from Shanghai ZZBio. Co., Ltd. (Shanghai,
China). All materials were used without further purification.

2.2. Synthesis and Characterization of 1,3-LP

The synthesis of 1,3-LP was carried out using the ring opening reaction catalyzed by
tetrabutylammonium bromide (TBAB) in the presence of glycidyl laurate, synthesized according
to the existing method [24], and palmitic acid (Figure 1) by following the literature method with slight
modification [25]. A mixture of glycidyl laurate (10 mmol, 2.56 g), palmitic acid (12 mmol, 3.07 g),
and TBAB (0.5 mmol, 0.16 g) was reacted at 100 ◦C for 24 h. The reaction mixture was then dissolved
in n-hexane (40 mL) and washed with water (30 mL, 3 times). After being dried over by Na2SO4

overnight, the organic solvent was removed by evaporation, and the title compound was subsequently
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purified by crystallization from methanol and n-hexane (1:3, v/v), followed by heating in a 55 ◦C
vacuum oven to ensure all the isomer, 1,2-LP, was converted to 1,3-LP.
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The melting temperature (Tm) was measured on an X4 microscopic melting point apparatus
(Gongyi City Kerui Instrument Co., Ltd., Henan, China) and was uncorrected. Proton nuclear magnetic
resonance (1H NMR) spectra were recorded at 400 MHz in CDCl3 solution on a Varian Mercury Plus
400 spectrometer (Varian, Inc., Palo Alto, CA, USA) and chemical shifts were recorded in parts per
million (ppm). The spectra were analyzed using these parameters: δ 0.88 (t, 6H, J = 8.0 Hz, CH3), 1.26
(s, 40 H, CH2), 1.63 (s, 4H, CH2-CH2-CO), 2.33–2.37 (m, 4H, CH2-CO), 4.09–4.21 (m, 4H, CH2-O-CO).
The Fourier transform infrared (FTIR) spectrum of 1,3-LP was collected on a Thermo Nicolet NEXUS
670 FTIR Raman spectrometer (Thermo Nicolet Corp., Madison, WI, USA). The wavenumber range
recorded was from 4000 cm−1 to 500 cm−1 and 16 scans were collected for 1,3-LP. The mass spectrum
(MS) of 1,3-LP was obtained on an LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific,
San Jose, CA, USA). Double distilled water was used throughout the study.

2.3. High Performance Liquid Chromatography Coupled with Evaporative Light Scattering Detection
(HPLC-ELSD) Analysis of 1,3-LP

A Waters 1525 series HPLC system (Waters Corporation, Milford, MA, USA) and an Alltech 3300
ELSD detector (Alltech Associates, Inc., Deerfield, IL, USA) were used for the HPLC-ELSD analysis.
The chromatography separation was performed on an Agilent C18 column (4.6 × 150 mm, 5 µm).
An isocratic program was applied with acetonitrile and isopropanol (60:40, v/v) at a flow rate of
1.0 mL/min and a column temperature of 35 ◦C. The detection conditions of ELSD were as follows:
drift tube temperature of 45 ◦C, nebulizer gas (N2) flow rate of 2.0 L/min, and gain of 4. The injection
volume was 20 µL.

2.4. Preparation of SLNs

GMS-, 1,3-LP-, and PPP-SLN dispersions were prepared using a microemulsion method [26].
To illustrate the effects of lipid matrix on the thymol-loading performance, all formulations were
prepared under the same formulation and conditions. Briefly, 80 mg lipid was melted at 70 ◦C under
continuous stirring (500 rpm). The aqueous phase was prepared by adding soybean lecithin and T80
at a mass ratio of 1:3, 1:2, 1:1, 2:1, and 3:1 to double distilled water (2 g) which was also heated to
70 ◦C. The mass ratio of lipid to surfactant was fixed at 1:3. Then, the aqueous phase was added
rapidly to the lipid phase at 70 ◦C, after which ethanol, about 0.5 mL, was added dropwise to the
pre-emulsion and stirred for 5 min to form a transparent microemulsion. The hot microemulsion was
subsequently dispersed in 5 parts of (v/v) of cold water (2–5 ◦C). All samples were stored at 25 ◦C
before further analysis.
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2.5. Determination of Z-Average Mean Diameter, Polydispersity Index (PDI), and Zeta-Potential

The Z-average mean diameter, PDI, and zeta-potential measurements of the prepared SLN
dispersions were performed using a Malvern Zetasizer Nano ZS90 Particle Analyzer (Malvern
Instruments Ltd., Worcestershire, UK). The laser wavelength was 633 nm, and the material/dispersant
reflective index was 1.590/1.330. Samples were prepared by diluting the SLN dispersions eighty-fold
using double distilled water at pH 7. Each sample was repeated three times to obtain the mean value.

2.6. Comparison of the Loading Capacity and Entrapment Efficiency of SLNs

To verify the drug-loading performance of the three kinds of SLNs, thymol, a natural compound
with antimicrobial and antifungal activities [23], was chosen as a model compound. Different amounts
of thymol were used to prepare SLN dispersions based on the formula optimized in Section 2.4.
The mass ratios of thymol to lipid were set as 4%, 8%, 12%, 16%, 20%, and 24%. The entrapment
efficiency (EE) of samples was measured using a Waters 1525 series HPLC system (Waters Corporation,
Milford, MA, USA) equipped with a UV-vis detector operating at 230 nm and an Agilent C18 column
(4.5 × 250 mm, 5 µm) kept at 25 ◦C. After filtration of free thymol in SLN dispersions using an
ultrafiltration membrane with a molecular weight cut-off of 10,000 Da (Vivaspin®, Sartorius, Bagno
a Ripoli, Florence, Italy), 20 µL of the permeate was injected to the HPLC. The mobile phase was
composed of methanol and deionized water (75:27, v/v) and running at a flow rate of 1 mL/min
during isocratic separation. The amount of encapsulated thymol was calculated based on the total
thymol used in encapsulation (Wa) and the free thymol determined in the permeate (Ws). The EE of
the SLN dispersions was calculated using the following equation [27]:

EE (%) = [(Wa − Ws)/Wa] × 100 (1)

2.7. X-ray Powder Diffraction (XRD) Spectroscopy Analysis

XRD was performed by following the literature method with slight modification [28]. In this
study, only the spectra of bulk lipids were investigated to understand possible polymorphic structures
of lipid matrix in the SLNs during storage. The powders of 1,3-LP, GMS, and PPP were obtained
by melting the lipids at 70 ◦C and cooled immediately at 0–5 ◦C to simulate the thermal conditions
during SLN preparation. The experiments were conducted using a Philips MPD-X’Pert diffractometer
(Almelo, The Netherlands) equipped with Cu Kα radiation (λ = 1.54056 Å) and operating at a voltage
of 45 kV, a current of 40 mA, and a step width of 0.039◦/s over the 2θ range of 5–75◦.

2.8. Statistical Analysis

The data reported in this paper were presented as mean ± standard deviation (SD). Significance
of differences was evaluated using Student’s t-test with p < 0.05.

3. Results and Discussion

3.1. Synthesis of 1,3-LP

In HPLC-ELSD, 1,3-LP and 1,2-LP had a retention time of 4.6 min and 5.0 min, respectively
(Figure 2), and the ratio of 1,2-LP to 1,3-LP was 7:1 after the ring opening reaction (Figure 1). The purity
of 1,3-LP was improved to 97% after isomerization at 55 ◦C for 72 h, and the total yield was 70%.
The final 1,3-LP product appeared as a white solid and had a melting point of 60–62 ◦C. The present
method gives an efficient approach to prepare unsymmetrical 1,3-DAG with good yield and high
purity, which can be used as a lipid matrix for fabricating 1,3-DAG SLNs.

The structure of 1,3-LP was further confirmed by 1H NMR (Figure 3), FTIR (Figure 4), and MS
(Figure 5). The 1H NMR spectrum of 1,3-LP was in accord with the reported literature [25], showing
a triplet for -CH3 protons at δ = 0.88, singlet for −CH2− protons at δ = 1.26 and 1.63, and multiplet
for −CH2CO− protons at δ = 2.33–2.37. The two −CH2−O−CO− protons also showed multiplets
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at δ = 4.09–4.21. The FTIR spectrum of 1,3-LP showed specific bands at 3495 cm−1 corresponding to
stretching of the OH group, 2916 cm−1 and 2850 cm−1 corresponding to stretching of the alkyl group
C−H, 1731 cm−1 corresponding to stretching of C=O, and 717 cm−1 corresponding to rocking of the
long C−H group. The mass spectrum of [M + Na]+ of 1,3-LP was observed at m/z 535.56.
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3.2. Optimization of Formulations for the Preparation of SLNs

To fabricate stable SLN dispersions, the formulation was optimized firstly using the GMS that
has the highest polarity among the three lipids. The surfactants soybean lecithin and T80 (widely
utilized to prepare nanoscale lipid structures [29–31]) were studied for their mass ratios to prepare
stable SLN dispersions. The Z-average mean diameter, PDI, zeta-potential, and visual stability of
GMS-SLN dispersions prepared using different mass ratios of lecithin to T80 are summarized in
Table 1. With the increase of mass ratio of lecithin/T80, the Z-average mean diameter increased
significantly, which agreed with increase in visual turbidity (Figure 6). As lecithin and T80 have an
hydrophilic-lipophilic balance (HLB) value of 8.0 and 15.0, respectively, a higher lecithin/T80 mass
ratio results in an overall more hydrophobic mixture that is closer to the HLB value of GMS (3.8) and
therefore is more effective in reducing the interfacial tension to result in smaller particles [32]. On the
contrary, the PDI decreased significantly from 0.39 ± 0.01 to 0.27 ± 0.01 as the lecithin/T80 mass ratio
increased from 1:3 to 3:1. This again can be explained by the reduced interfacial tension making it
easier to form more homogeneous droplets in microemulsions before quenching to form SLNs. PDI is
an important indicator for the homogeneity of particle size distribution, and PDI values below 0.3
indicate the particles are in a narrow size range [33]. Therefore, the lecithin/T80 mass ratios of 2:1 and
3:1 were preferred to obtain relatively uniform GMS SLNs and were used to prepare SLNs using the
other two lipids. Characteristics of the 1,3-LP and PPP SLNs are also shown in Table 1. Nanoscale
particles and PDI values smaller than 0.3 were observed for both groups of SLNs. It was also observed
that the particle dimension decreased with an increase in the number of fatty acid chains on lipids,
likely due to the decreased viscosity. For all SLNs prepared at lecithin/T80 mass ratios of 2:1 and 3:1,
dispersions were visually stable during two-month storage. These dispersions had a zeta-potential
magnitude greater than 20 mV, which is considered to be sufficient to prevent the aggregation of
colloidal particles by electrostatic repulsion [34]. The negative zeta-potential results from lecithin
and the lecithin/T80 mass ratio of 3:1 were chosen as the optimized formulation for the rest of this
study, so as to have a significantly higher magnitude of zeta-potential (Table 1) to stabilize the SLNs in
dispersions. For dispersions prepared with a lecithin/T80 mass ratio of 3:1, both the Z-average mean
diameter and PDI remained unchanged (p > 0.05) over 60-day storage at 25 ◦C (Figure 7).
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Table 1. The Z-average mean diameter (Z-average), PDI, zeta-potential (Zeta), and storage stability (at
25 ◦C for up to two months) of SLN dispersions prepared with three types of lipids using different
mass ratios of lecithin and T80. All samples were prepared with 80 mg lipid, 240 mg surfactants, 2 g
double distilled water, and 0.5 mL ethanol.

Lipid F 1 Lecithin/T80 Z-Average (nm) PDI Zeta (mV) 2 Visual Stability

GMS

F1 1:3 91 ± 4 0.39 ± 0.01 ND Precipitate
F2 1:2 178 ± 3 0.32 ± 0.03 ND Stable for 2 weeks
F3 1:1 290 ± 8 0.30 ± 0.01 ND Stable for 1 month
F4 2:1 425 ± 8 0.28 ± 0.01 −25.60 ± 2.50 Stable for 2 months
F5 3:1 473 ± 19 0.27 ± 0.01 −34.10 ± 2.00 Stable for 2 months

1,3-LP
F6 2:1 300 ± 5 0.26 ± 0.01 −24.50 ± 1.42 Stable for 2 months
F7 3:1 327 ± 4 0.28 ± 0.01 −29.50 ± 1.85 Stable for 2 months

PPP
F8 2:1 38 ± 2 0.25 ± 0.02 −22.00 ± 2.91 Stable for 2 months
F9 3:1 38 ± 1 0.26 ± 0.01 −24.50 ± 1.51 Stable for 2 months

1 F, Formulation. 2 ND, not determined due to poor stability of dispersions.Nanomaterials 2019, 9, x 7 of 12 
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3.3. Properties of SLNs Loaded with Thymol

Different amounts of thymol were used to prepare SLN dispersions (based on the formulations
optimized previously) at a lecithin/T80 mass ratio of 3:1. As the goal was to achieve stable dispersions
with PDI smaller than 0.3 (Table 1), the loading capacity of SLNs was considered to be exceeded when
dispersions showed visual instability. The loading capacity of thymol in SLNs was 4%, 16%, and 12%
of the corresponding lipids when GMS, 1,3-LP, and PPP were studied (Table 2). Thymol is overall
hydrophobic but has a polar hydroxyl group. The intermediate polarity of 1,3-LP when compared to
GMS and PPP, as discussed previously, may have resulted in the best solubility for thymol to increase
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the loading capacity. For visually stable dispersions (fresh or after storage), the EE was mostly higher
than 95%, with the exception of 85% for the GMS SLNs after storage (Table 2). The data suggest most
of the thymol was entrapped in these stable SLNs.

Table 2. The Z-average mean diameter (Z-average), PDI, zeta-potential (Zeta), and encapsulation
efficiency (EE%) for the thymol loaded GMS-, 1,3-LP-, and PPP-SLN.

Lipid F 1 Thymol/Lipid (%) Z-Average (nm) PDI Zeta (mV)
EE (%) 2

Day 0 Day 60

GMS

F10 4 582 ± 5 0.24 ± 0.05 −14.30 ± 0.25 99 85
F11 8 591 ± 4 0.27 ± 0.01 −16.50 ± 1.15 99 ND
F12 12 620 ± 14 0.26 ± 0.02 −12.60 ± 0.45 99 ND
F13 16 675 ± 16 0.33 ± 0.03 −15.60 ± 0.55 ND ND

1,3-LP

F14 4 265 ± 1 0.28 ± 0.01 −14.20 ± 0.40 >99/ >99
F15 8 311 ± 3 0.22 ± 0.02 −17.80 ± 1.22 >99/ >99
F16 12 379 ± 5 0.26 ± 0.01 −14.60± 2.59 >99/ >99
F17 16 410 ± 6 0.15 ± 0.06 −16.00 ± 0.20 >99 >99
F18 20 476 ± 7 0.22 ± 0.01 −17.60 ± 0.50 99 ND
F19 24 510 ± 6 0.28 ± 0.03 −18.20 ± 1.17 98 ND

PPP

F20 4 31 ± 0 0.15 ± 0.01 −11.70 ± 0.95 >99 >99
F21 8 39 ± 2 0.25 ± 0.01 −13.30 ± 0.78 >99 98
F22 12 46 ± 2 0.26 ± 0.01 −13.00 ± 0.55 >99 95
F23 16 58 ± 4 0.32 ± 0.05 −15.90 ± 1.05 ND ND
F24 20 97 ± 1 0.41 ± 0.01 −18.50 ± 0.36 ND ND
F25 24 94 ± 1 0.79 ± 0.01 −26.60 ± 1.67 ND ND

1 F, Formulation. 2 ND, not determined as phase separation was observed.

The Z-average mean diameter, PDI, and zeta-potential of treatments are also presented in Table 2.
It is evident that the Z-average mean diameter of each group of SLN dispersions increased with the
amount of thymol used in the preparation. The HLB of thymol calculated according to Equation (2) is
2.3, which makes the lipid phase more hydrophobic (with a HLB value even smaller than the mixture
of lecithin and T80) and therefore results in bigger particles. The increase of the amount of thymol in
dispersions also resulted in reduced zeta-potential magnitude and overall poorer stability initially and
after storage (Table 2).

HLB = 20 × [MHydrophilic/(MHydrophilic + MLipophilic)] (2)

where MHydrophilic and MLipophilic are the molecular mass of hydrophilic and lipophilic portions of a
compound [35].

In addition, the Z-average mean diameter at the same amount of thymol used in preparations
showed an identical trend to those of bare SLNs (GMS > 1,3-LP > PPP), which is expected due to the
minor portion of thymol in the lipid phase. Overall, dispersions with a good initial EE and a PDI
smaller than 0.3 maintained good visual stability, which is expected as big particles can phase separate
especially after storage. It is worth noting the insignificant changes of Z-average mean diameter
and PDI for the 1,3-LP SLN dispersion with thymol being 16% of lipid mass after storage at 25 ◦C
for 90 days (Figure 8B). The same results were found for both the GMS and PPP SLN dispersions
with thymol being 4% and 12% of lipid mass, respectively (Figure 8A,C). Considering most thymol
remained entrapped (Table 2), SLNs prepared with 1,3-LP showed great promise as delivery systems.
The release properties after applying the SLNs (e.g., after dilution with physiological fluid) are to be
characterized in the future.
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3.4. Polymorphic Structures of Lipids Studied with X-ray Powder Diffraction Spectroscopy

Polymorphic structures of the lipid phase play an important role in determining the stability of
SLNs and the encapsulated compounds [6]. The XRD spectra of bulk GMS, 1,3-LP, and PPP following
thermal treatments analogous to SLN preparation and storage at 25 ◦C were characterized, shown in
Figure 9. According to the XRD American Oil Chemists’ Society (AOCS) method [36], the α-form
polymorph displays as one peak at a d-spacing of 4.1 Å, while the β-form displays as two peaks
at a d-spacing of 4.6 Å and 3.8 Å. For the freshly prepared lipid crystals, the diffraction patterns in
Figure 9A showed GMS and PPP both had one single high intensity peak near the d-spacing of 4.15 Å,
which verified the dominant presence of α-form crystals in these two lipids. In contrast, the diffraction
peaks of 1,3-LP were mainly located at d-spacings of 4.65 Å, 4.52 Å and 3.82 Å, indicating the formation
of β-form polymorph crystals, and, a small peak at a d-spacing of 4.13 Å had a small portion of
α-form crystals.
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Due to the instability of the hexagonal (α-form polymorph) arrangement of lipid molecules,
the polymorphic structures of GMS and PPP crystals changed after 15- and 30-day storage at 25 ◦C
(Figure 9B), respectively. For GMS, almost one-half of the α-form polymorph transformed into
the β-form, which can explain the reduction of EE (expulsion of thymol) and phase separation of
dispersions (Table 2). For PPP, the newly formed diffraction peaks located at d-spacings of 4.59 Å,
3.86 Å, and 3.72 Å are in accordance with a previous report [37] and demonstrated the formation of
β-form crystals from the α-form. The extent of polymorphic transformation in PPP crystals is less
than that of GMS, which agrees with changes in thymol EE and visual stability after storage (Table 2).
The diffraction patterns of 1,3-LP did not display significant variations after 30-day storage at 25 ◦C,
which agrees with the excellent stability and maintained EE of dispersions prepared with thymol at
a level up to 16% of 1,3-LP (Table 2). Furthermore, as the d-spacing obtained from the XRD reflects
the subcell dimension within the crystal lattice [38], the high d-spacing of the triclinic arrangement of
the β-form polymorph can provide more space for the encapsulation of bioactive molecules. Thereby,
the 1,3-LP SLNs, with dominant existence in β-form polymorphic crystals, had a higher thymol loading
capacity than SLNs prepared with GMS and PPP (Table 2).

4. Conclusions

In this work, the synthesis of high purity 1,3-LP was achieved for use as a solid lipid matrix
to prepare SLNs. The stable SLN dispersions of 1,3-LP, GMS, and PPP were optimized at a higher
lecithin/T80 mass ratio (3:1), as a result of the closer matching of lipid HLB and surfactant mixture
HLB during the preparation of microemulsions. The intermediate polarity of 1,3-LP enabled a higher
thymol loading capacity in SLNs than the other two lipids and an EE of >99%. Contrasting with
GMS and PPP with thermodynamically unstable α-form crystals and transformation to β-form after
storage, the dominance of the β-form polymorph in initial 1,3-LP crystals suggested that the lipid
matrix of 1,3-LP not only enhanced the loading of thymol in SLNs but also prevented polymorphic
transformation to preserve the stability of SLNs and entrapment efficiency of thymol during storage.
The findings in this work suggest for the first time that 1,3-DAG can be used to fabricate a new class of
stable SLNs as a delivery system for lipophilic bioactive molecules to overcome challenges of SLNs
prepared with conventional MAGs and TAGs.
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