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Abstract: Pleurotus ostreatus is a well-known edible mushroom species which shows fast growth.
The fungus can be used for medical, nutritional, filter, or packaging purposes. In this study, cultivation
experiments were carried out with Pleurotus ostreatus growing on polyacrylonitrile (PAN) nanofiber
mats in the presence of saccharose and Lutrol F68. The aim of this study was to find out whether
modified PAN nanofiber mats are well suited for the growth of fungal mycelium, to increase growth
rates and to affect mycelium fiber morphologies. Our results show that Pleurotus ostreatus mycelium
grows on nanofiber mats in different morphologies, depending on the specific substrate, and can
be used to produce a composite from fungal mycelium and nanofiber mats for biomedical and
biotechnological applications.

Keywords: electrospinning; nanofiber mat; fungi; mycelium; Pleurotus ostreatus; composite;
morphology

1. Introduction

In recent years, electrospinning technology has become more and more popular for the production
of nanofiber mats. The possibility to produce textile fabrics out of nanofibers has attracted interest in
various areas of science, such as tissue engineering and regenerative medicine, with a rapid increase in
recent years [1–4]. This technology offers several advantages which enable the growth of eukaryotic
cells on nanofibrous textiles. Surface morphology is an important factor for the adhesion and spreading
of cells, offering numerous adhesion points for cells to grow [5–7].

Besides applications in tissue engineering, the large surface-to-volume ratio makes nanofiber
mats also suitable as filters. In addition, their high porosity and permeability combined with small
pore size allows for reliable filtering of the finest particles [8–10].

Other possible fields for application of nanofiber mats as filters include optical and chemical
sensors, nanocatalysis, energy storage, defense, aerospace, transportation, protective clothing, air,
and water filters for medical and biotechnological applications, as well as dye filters for the textile
finishing industry [11–16]. Despite their advantages, there is also one big problem which limits the
use of nanofiber mats as filters: the mechanical weakness of single nanofiber mat layers [9,17,18].
While this problem is usually addressed by forming composites with macroscopic textile fabrics to
create mechanically stable filters, connecting multiple nanofiber mats [19], or introducing nanofiber
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mats into sponge-like structures [20], another possibility could be combining nanofiber mats with
biological stabilizing structures.

Similar to the above-described cell growth on nanofiber mats for tissue engineering and other
biotechnological applications, other biological structures with higher intrinsic (i.e., not achieved by
an additional coating, embedding of nanofibers, etc.) stability could be suitable for increasing the
mechanical properties of nanofibrous filters in comparison with the pure nanofiber mat, such as
self-assembling plant cells, which are able to dry and to form a mechanically stable state. Another
biological material well-known for its good mechanical properties is the mycelium of different
fungi. Usually, reports about fungicide properties of diverse nanofiber mats can be found in the
scientific literature dealing with nanofiber mats and mentioning fungi [21–25]. Only very few studies
investigate interactions between fungi and nanofiber mats in which the fungi grow on polymeric
material. Ohkawa et al. found that different filamentous fungi were able to support biodegradation
of electrospun poly(epsilon-caprolactone) nanofiber mats, allowing the biodegradability of this
material to be tailored toward different environmental applications [26]. Even more interesting,
Spasova et al. managed to electrospin Trichoderma viride spores in a chitosan solution and showed
that these incorporated spores were still viable after this process, allowing them to grow and
reproduce normally [27]. In a recent publication, the effect of electrospun nanofibers from cellulose
acetate, cellulose, polyacrylonitrile (PAN), PAN with graphene, PAN–polymethyl methacrylate,
and PAN–polyethylene glycol on the growth behavior of yeast cells was described [28].

Nevertheless, no other reports on fungal growth on nanofiber mats can be found in the literature.
While there are several reports on the ideal growth conditions of, e.g., the edible oyster mushroom
Pleurotus ostreatus, the substrates used in these growth tests are typically sawdust [29,30], although one
study has shown the strong influence of substrate on Pleurotus ostreatus growth [31].

The chitin in the cell walls of Pleurotus ostreatus mycelium [32] makes it a promising candidate
for the mechanical stabilization of nanofiber mats for filters and other applications, including
tissue engineering and in batteries. Typical electrospun filters are produced from water-stable
polymers, such as polyacrylonitrile (PAN) [9,33–35] or other different polymers. PAN, however,
does not offer any nutrients for fungal growth. This is why, similar to [27], sugar was added as a
possible nutrient. In addition, tests were performed by adding the poloxamer Lutrol F68 to PAN,
which has been shown to be useful in typical biomedical applications, such as drug delivery [36],
skin tissue engineering [37], or wound healing [38], and was also shown to strongly vary the nanofiber
morphology [39]. Additionally, it may be regarded as sacrificial material which is washed out of the
nanofiber mat when in contact with water and, in this way, enlarging the porosity of the nanofiber
mat. Finally, stabilized PAN nanofiber mats were investigated as substrates, offering a possibility to
functionalize the composite filters by carbonization. In addition, stabilized nanofibers are known to
change their morphology by connecting fibers at crossing points [40], which may have an influence on
the morphology of the mycelium.

This article provides first impressions of the growth of Pleurotus ostreatus mycelium on nanofiber
mats, examining the possibility of using electrospun substrates and to create bio-based composites
in this way. The study focuses on investigations of the general effect of nanofiber mats as substrates,
especially with respect to morphology, while tests of the mechanical properties of the composites in
dry and wet conditions will be carried out in a future study.

While this first investigation concentrates on the influence of the substrate on the mycelium
morphology, serving as basic research for tests of growth rates and mechanical properties, the final
technical applications can be expected to be filter materials with increased mechanical properties due
to naturally built composites from nanofiber mats and the mechanically more-stable mycelium fibers.
However, to reach this goal, basic tests of mycelium growth morphology—including investigating
whether the mycelium grows through nanofiber mats and can thus be expected to automatically form
a composite—are necessary, and are reported in this paper.
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2. Materials and Methods

Nanofiber mats were produced on a polypropylene nonwoven as substrate using the needleless
electrospinning machine Nanospider Lab (Elmarco Ltd., Liberec, Czech Republic). The following
spinning parameters were used for production: high voltage, 70 to 80 kV; nozzle diameter, 0.8 mm;
carriage speed, 100 mm/s; bottom electrode/substrate distance, 240 mm; ground electrode/substrate
distance, 50 mm; temperature in the chamber, 22 ◦C; relative humidity in the chamber, 32%.
Spinning was carried out for 30 min. These spinning parameters were found to be ideal in former
electrospinning experiments with PAN [41,42]. High voltages in the range of 70–80 kV would be
unusual for needle-based electrospinning, where voltages typically in the range of 20 kV are used.
For the wire-based technique applied here, PAN can be spun at voltages higher than approximately
50 kV, but even higher voltages result in thicker nanofiber mats and are thus advantageous in most
cases [19,33,40–42].

The spinning solution for the production of nanofibers contained polyacrylonitrile (PAN)
(Woolworth, Unna, Germany) dissolved in DMSO (dimethyl sulfoxide, min 99.9%, purchased
from S3 Chemicals, Bad Oeynhausen, Germany). DMSO was chosen as the solvent because it is
non-toxic [43,44]. The following protocols were used to create three different nanofiber mats using
PAN solid contents that were found to be ideal in former experiments for pure PAN, or in combination
with poloxamer [41,42,45]:

(A) In a solution of 16% PAN in DMSO (18 g), 20 g saccharose (food grade, Pfeiffer & Langen GmbH
& Co. KG, Cologne, Germany) were dissolved prior to electrospinning.

(B) 11.6% PAN + 13% poloxamer “Lutrol F 68”, 7680-9510 Da, 2 × 40% hydrophilic parts, sol–gel
transition temperature approx. 45 ◦C [46] (BASF, Ludwigshafen am Rhein, Germany).

(C) 16% PAN in DMSO, stabilized at 280 ◦C for 1 h after electrospinning, heating rate 1 K/min, in a
B150 muffle furnace (Nabertherm, Lilienthal, Germany).

All solutions were prepared by stirring the polymer solution for 2 h on a magnetic stirrer at
room temperature.

Malt extract agar was used as nutrient medium for mushroom mycelium, which was produced
from 1 L deionized water, 24 g agar (Agar-agar Kobe I, Roth, Karlsruhe, Germany), 20 g barley malt
extract (Lindenmeyer GmbH & Co. KG, Weinsberg, Germany), and 1 g peptone (peptone water 77185,
Sigma-Aldrich GmbH, Steinheim, Germany). After production, the fluid solution was poured into
8 cm diameter glass petri dishes (MSG, Wuppertal, Germany) and autoclaved for 20 min at 121 ◦C in
an autoclave Systec-VX75 (Systec, Linden, Germany).

Saccharose serves as an additional nutrient only in recipe A, while in recipes B and C, malt agar
extract is used to supply nutrients to the mycelium [47].

In addition, pure malt agar—without nanofiber mat—was used as a reference for mycelium
growth.

The autoclaved petri dishes with malt agar mixture were then inoculated with a sterile liquid
mycelium syringe “oyster mushroom culture XXL, BIO” (purchased from Mushrooms & Equipment
Shop, Münster, Germany), each with a 1 mL liquid mycelium culture. The schematic of the
experimental setup of samples is shown in Figure 1.

After all petri dishes were provided with mycelium, they were sealed with Parafilm (Pechiney
Plastic Packaging, Chicago, IL, USA) and stored at room temperature or at different temperatures,
as described below, in the dark. Every two days, the hyphae were checked to see whether they had
started growing and spreading radially. Pleurotus ostreatus growth was terminated by inactivation in
the oven at 60 ◦C for 1 h.

To examine the general possibility of carbonizing nanofiber mats and mycelium together to create
carbon composites, some of the PAN/mycelium composites were chemically stabilized by heating to
280 ◦C for 1 h, at a heating rate of 1 K/min, and afterwards, carbonized at 500 ◦C for 1 h in an SR (A) tube
furnace (heating rate, 10 K/min; nitrogen flow, 150 mL/min; Carbolite Gero, Neuhausen, Germany).
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It must be mentioned that no optimization of the stabilization and carbonization temperatures and
heating rates was performed especially for the mycelium, but optimal values of PAN and PAN/gelatin
nanofiber mats were used [40].
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Figure 1. Growth of oyster mushroom mycelium on nanofiber mats: (a) schematic experimental setup; 

(b) example of inoculated specimen with fungal mycelium grown on a PAN/sugar nanofiber mat after 

its removal from the malt extract agar layer. 
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Figure 1. Growth of oyster mushroom mycelium on nanofiber mats: (a) schematic experimental setup;
(b) example of inoculated specimen with fungal mycelium grown on a PAN/sugar nanofiber mat after
its removal from the malt extract agar layer.

For the optical examination of samples, a confocal laser scanning microscope (CLSM) VK-9000
(Keyence, Neu-Isenburg, Germany) with a nominal magnification of 2000× was used. Scanning
electron microscopy (SEM) Zeiss 1450VPSE (Oberkochen, Germany) was applied for more detailed
examinations of the fiber surfaces and morphologies. Nanofiber diameters were investigated using
the software ImageJ 1.51j8 (from National Institutes of Health, Bethesda, MD, USA) on 50 fibers
per sample.

3. Results

Nanofiber mats prepared from PAN/saccharose, PAN/poloxamer, and pure PAN after
stabilization showed fiber diameter distributions of 345 ± 79, 530 ± 70, and 196 ± 80 nm, respectively.
PAN/poloxamer nanofiber mat morphologies were not influenced by watering, thus, the original
idea of using water-soluble poloxamer as a possible sacrificial material could not be verified. Instead,
this blend formed solid fibers.

As a basis for the evaluation of mycelium growth on different nanofiber mats, first tests were
performed growing Pleurotus ostreatus on malt agar in petri dishes. The experiments showed the
highest mycelium growth for environmental temperatures of approximately 25 ◦C, typically resulting
in the petri dishes being completely covered with a fine layer of mycelium after 10 days (Figure 2a).
It should be mentioned that at a growth temperature of 25 ◦C, all 5 samples were completely covered
with mycelium, while at a temperature of 20 ◦C, 1 of the 5 samples was not yet fully covered, and at a
higher growth temperature of 30 ◦C, mycelium growth was visible on only 3 of the 5 samples. Due to
these observations, the next tests were performed at room temperature (~22–23 ◦C). As can be seen
in Figure 2a, mycelium growth on agar is always radially oriented. This was also found by other
researchers [48], while mycelium growth on wood, for example, is more longitudinally oriented [49].

Mycelium growth was also investigated on different nanofiber mats, as depicted in Figure 2b–d.
Firstly, it can be seen that on the pure malt agar, the mycelium grows more densely on the
nanofibers and only reluctantly across the fiber mat rims. Especially for PAN/sugar (Figure 2b)
and PAN/poloxamer (Figure 2c), it is clearly visible that the mycelium layer is denser than in
the case of pure agar (Figure 2a). The thickness of the mycelium varies strongly between approx.
1 mm and the maximum height which is limited by the closed petri dish. The stabilized nanofiber
mat was partly broken, which seems to impede mycelium growth (Figure 2d). This corresponds
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with the above-described finding that the mycelium grows denser on nanofiber mats. Since no
former investigations of mycelium growth on nanofiber mats can be found in the scientific literature,
this behavior can only be assumed to be correlated with the surface structure, since it is known that
the natural substrate for this mycelium is wood, whose structure may be mimicked better by the
nanofiber mats than by the flat, even malt agar surface. These first images suggest that mycelium
growth is not only possible on different nanofiber mats, but the material yield may even be increased
by electrospun substrates, compared to using pure agar as substrate. This finding is important for
applications requiring large amounts of mycelium, and will be investigated in more detail in a larger
future study. It should be mentioned that on this macroscopic scale, growth on PAN/poloxamer and
stabilized PAN seems to be, again, oriented linearly in a radial direction, while no such preferred
orientation is visible for PAN/saccharose (Figure 2b).
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Figure 2. Oyster mushroom mycelium grown on different substrates, with images taken after 10 days:
(a) malt agar extract; (b) PAN/saccharose nanofiber mat on malt agar extract; (c) PAN/poloxamer
nanofiber mat on malt agar extract; (d) stabilized PAN nanofiber mat on malt agar extract.

Here, however, another aspect is in the focus of the investigations. Figure 3a shows a
typical mycelium structure, grown on the usual malt agar substrate, while Figure 3b depicts a few
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mycelium fibers left after pulling the nanofiber mat from the polypropylene (PP) support on which
electrospinning usually occurs. The PP substrate was not detached before the growth test from
the nanofiber mat since we tried to avoid breaking of the latter, while detaching afterwards was
performed to investigate whether the mycelium grew through the nanofiber mat, which could be
verified. The mycelium morphology seems to differ between the irregular, knotty structures grown on
agar and the straight, even fibers grown on and under the nanofiber mat. It should be mentioned that
the irregular, knotty structure of mycelium grown on agar, in the nanoscale, does not correspond to
the clearly linear radial growth in the macroscale, as seen in Figure 2a.

Figure 3c,d depict CLSM images of the mycelium grown on the PAN nanofiber mat (Figure 3c)
as well as through it, as visible from below (Figure 3d). In both cases, the thicker mycelium fibers
can clearly be distinguished from the thinner nanofibers in the mat. The mycelium grows relatively
straight and, as clearly seen in both images, not only through the mat, but even inside it, i.e., parallel to
the nanofiber mat surface. This underlines the possibility of using mycelium to increase the mechanical
properties of nanofiber composites, as compared to pure nanofiber mats.
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Figure 3. SEM images of oyster mushroom mycelium (a) grown on agar; (b) grown between a PAN
nanofiber mat and the nonwoven PP used as a typical support for electrospinning; scale bars indicate
2 µm; CLSM images of (c) mycelium on PAN nanofiber mat; (d) mycelium under PAN nanofiber mat,
being grown through it. Scale bars indicate 20 µm.

This finding was investigated in more detail by comparing mycelium growth on different
nanofiber mats. Figure 4 shows, exemplarily, mycelium grown on PAN/poloxamer (Figure 4a) and
on stabilized PAN (Figure 4b), respectively. Here, again, the morphologies clearly differ between the
straight, even mycelium fibers grown on the stabilized PAN and the more chaotic, irregularly bent
fibers grown on PAN/poloxamer. This finding is unexpected, since the stabilized PAN shows more
conglutinations at fiber crossing points, as mentioned above [35,50], which does not intuitively indicate
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the formation of straighter mycelium fibers on this substrate. Apparently, the mycelium morphology
does not only differ from agar to nanofiber mats as substrates, but even between different nanofiber
mats. It must be mentioned that this finding was also not expected based on the macroscopic images
where mycelium on PAN/poloxamer showed a clearly linear, radially oriented growth (Figure 2c).
Apparently, it is necessary to distinguish between nano- and macrostructure for the description of
mycelium growth.Nanomaterials 2019, 9, x FOR PEER REVIEW  7 of 13 
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Figure 4. SEM images of oyster mushroom mycelium on different nanofiber mats: (a) PAN/poloxamer;
(b) stabilized PAN without further additives. Only the mycelium is visible, completely covering the
nanofiber mats below. The nominal magnification is 200×. Scale bars indicate 20 µm.

To investigate the unexpected finding that mycelium fibers grow straighter on stabilized PAN,
Figure 5a depicts the mycelium fibers grown on stabilized PAN again at a higher magnification,
while Figure 5b clearly shows the differences between the brown (=stabilized) PAN and the grey
mycelium. Both images exhibit not only that the mycelium fibers grow through the openings between
the nanofibers and can thus form a composite but, again, indicate that the mycelium fibers have a very
straight morphology, making them more mechanically stable than the curling fibers growing on agar
or on PAN/poloxamer, since the straight fibers cannot be lengthened by a force along their axes.
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Figure 5. Oyster mushroom mycelium on stabilized PAN without further additives: (a) SEM image,
scale bar indicates 2 µm; (b) CLSM image, scale bar indicates 20 µm. Thicker grey fibers are created by
the mycelium, while thinner brown fibers stem from the stabilized nanofiber mat.

Figure 6a shows mycelium grown on a PAN/saccharose sample, which clearly differs from
the other samples. Here, small thickenings and conglomerations can be observed, which are not
visible on samples with PAN/poloxamer (Figure 6b) and stabilized PAN (Figure 5b) nanofiber
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mats. To investigate whether these conglomerations consist of sugar or of mycelium, Figure 6c,d
show different positions on PAN/saccharose nanofiber mats after watering. Apparently, round or
ellipsoidal conglomerations were formed after watering (Figure 6c), but the sugar partly also washed
off (Figure 6d), so that it can be concluded that the conglomerations in Figure 6a most probably consist
of saccharose.Nanomaterials 2019, 9, x FOR PEER REVIEW  8 of 13 
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Figure 6. CLSM images: (a) oyster mushroom mycelium (thick fibers) on PAN/saccharose
nanofiber mat (thin PAN fibers and saccharose agglomerations); (b) oyster mushroom mycelium
on PAN/poloxamer nanofiber mat (the latter not visible here); (c) and (d) PAN/saccharose nanofiber
mats after watering. Scale bars indicate 20 µm.

The fiber structure of a PAN/saccharose mat seems to be more irregular than that of the other
two nanofiber mats. Apparently, the sugar influences mycelium formation in a different way than
the stabilized PAN nanofiber mats or PAN/poloxamer mats do. Nevertheless, the strong percolation
of the mycelium through the nanofiber mats is, again, visible, underlining the possibility of forming
composites in this way.

Finally, it was tested whether it would also be also possible to stabilize and carbonize a nanofiber
mat together with mycelium. To avoid confusion with carbonized sugar or poloxamer, the fungus was
grown on pure PAN nanofiber mats (16% PAN dissolved in DMSO) prior to stabilization. CLSM images
of the stabilized and carbonized mycelium are depicted in Figure 7. Unexpectedly, the mycelium
shows less straight structures than in the previous tests on stabilized PAN (Figure 5). Apparently,
the stabilization process changes the mycelium morphology, similar to the well-known change of
the nanofiber structure during stabilization [40]. This has to be examined, in detail, in a future study.
The mycelium fiber diameters are again, as in the experiments before, in the range of approx. 0.5–3 µm,
with most fibers having diameters in the range of 1–2 µm.
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The experiment shows, however, that stabilization and carbonization of oyster mushroom
mycelium grown on PAN nanofiber mat is possible. In this way, pure carbon composites consisting of
thicker mycelium fibers and thinner nanofibers can be realized, paving the way to carbon composites
from fibrous structures of different diameters.

4. Discussion

Our experiments have given new insights into possibilities to grow the oyster mushroom Pleurotus
ostreatus on nanofiber mats. Since this oyster mushroom is of high industrial interest due to its edible
fruiting body and ability to accumulate selenium, an important essential trace element [51], several
studies are reported in the scientific literature that deal with the influence of the substrate and other
growth conditions on the chemical composition of the fruiting body and on mycelium morphology.
Just recently, a study was published on P. ostreatus and another mushroom growing on different
substrates and forming composites with them [52]. The authors showed that mycelium grown on
sawdust as a substrate had a higher density than mycelium grown on straw or cotton fibers, while
the mechanical properties were found to be dependent only on the following fabrication process to
form a composite. This demonstrates, similar to our study, that the substrate influences the density of
the mycelium grown on it, while in this study, no investigations of the original mycelium structure
before pressing were performed. A possible dependence of the substrate on mycelium morphology
was not evaluated.

Likewise, most other studies examined only mycelium growth without taking into account the
morphology of the mycelium. In a detailed study, Dzulkefli and Zainol investigated the mycelium
extension rate for mushroom cultivation on empty palm fruit bunches or sugarcane bagasse as
substrates and its dependence on different mass ratios of spawn to substrate, substrate size, growth
temperature, and a possible steam pretreatment [53].

Only a few other studies have mentioned the morphology of the mycelium. Haneef et al.
cultivated P. ostreatus on cellulose and cellulose/potato dextrose, respectively. The authors found
different amounts of polysaccharides, proteins, chitin, etc. in the mycelium, depending on the substrate.
They concluded that the mycelium became stiffer on a harder-to-digest substrate, such as cellulose,
as opposed to the small sugar molecules of potato dextrose [54]. This result fits with the findings of
our study, that the mycelium grown on saccharose-coated nanofiber mats shows a different structure
than the mycelium grown on pure or stabilized PAN (cf. Figures 2 and 6).

Investigations of the mycelium morphology of other mushroom species also revealed differences
between vegetative and generative development stages [55], a point which has to be taken into account
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in future long-term studies of P. ostreatus mycelium growth. Mykchaylova et al. found a dependence of
the mycelium morphology of Fomitopsis officinalis on the nutrient medium [56]. Bellou et al. attributed
differences in the morphology of Yarrowia lipolytica to the dissolved oxygen concentration, defining
whether mycelium or cells with yeast-like morphology are developed [57].

The latter mushrooms, however, have properties very different from the here-examined P. ostreatus,
and should thus be kept in mind for future examinations, but cannot be directly compared with the
results of our study.

Stabilization and carbonization of the P. ostreatus mycelium, which was shown here for the first
time, clearly influenced mycelium morphology, suggesting that further investigations on the process
parameters are warranted.

5. Conclusions

Here, we report on first successful experiments growing oyster mushroom (Pleurotus ostreatus)
mycelium on PAN nanofiber mats, partly with additional ingredients. The underlying nanofiber
mats enable tailoring of mycelium morphology, which in turn allows for modifying the mechanical
properties. On the other hand, the complete PAN/mycelium composites can be stabilized and
carbonized, thus allowing for the creation of carbon composites with different fiber dimensions.

Following this first proof-of-principle, further experiments will examine the influence of nanofiber
morphology and chemical composition on the mycelium growth and morphology, its mechanical
properties, as well as the overall carbon yield.
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