Supplementary Materials

Thermally self-healing graphene-nanoplate/polyurethane nanocomposites via Diels–Alder reaction through a one-shot process

Cho-Rong Oh ^{1,†}, Sang-Hyub Lee ^{1,†}, Jun-Hong Park ^{2,*} and Dai-Soo Lee ^{1,*}

- ¹ Division of Semiconductor and Chemical Engineering, Chonbuk National University, Baekjedaero 567, Jeonju 54896, Korea; ohcho38@naver.com (C.-R.O.); shlee87@jbnu.ac.kr (S.-H.L.)
- ² R & D Center, Lotte Advanced Materials, Sandan-ro 334-27, Yeosu 59616, Korea
- * Correspondence: jh711.park@lottechem.com (J.-H.P.); daisoolee@jbnu.ac.kr (D.-S.L.); Tel.: +82-63-270-2310 (D.-S.L.); +82-61-689-1731 (J.-H.P.)
- + These authors contributed equally to this work.

Comunito ao dio	Composition (wt%)				
Sample code	MDI	Polyol	BD	FD	GNP
0_CPU	31.71	63.42	4.87	0	0
0.1_CPU	31.68	63.35	4.87	0	0.10
0.25_CPU	31.63	63.25	4.87	0	0.25
0.5_CPU	31.55	63.09	4.87	0	0.49
1_CPU	31.37	62.73	4.87	0	1.04
2_CPU	31.04	62.08	4.87	0	2.01
0_DPU	29.75	59.50	0	10.75	0
0.1_DPU	29.72	59.44	0	10.75	0.09
0.25_DPU	29.67	59.33	0	10.75	0.25
0.5_DPU	29.59	59.17	0	10.75	0.50
1_DPU	29.40	58.80	0	10.74	1.06
2_DPU	29.10	58.20	0	10.74	1.98

Table S1. Sample code and compositions of the GNP/PU nanocomposites

Figure S1. TGA thermogram of the GNP and modified GNP (a), Raman spectra of GNP and modified GNP (b).

Contact angle (°)	Deionized water	Toluene	FD
	17.8	12.5	21.4
Slide glass			
	85.6	24.2	16.4
Teflon film			10.4
	Contra Characteria		
GNP	81.4	0	-
GIVI			
	70.6	8.4	
Prepolymer			-

Table S2. Contacts angles of liquids on the surface of solids (20 $^{\circ}$ C)

Components of surface tensions for Slide glass and Teflon films were determined employing equations (2) and Young's equation with contact angles of two known liquids, deionized water and toluene, to get surface tension components of FD. Components of surface tensions for GNP and Prepolymer were obtained also employing equations (2) and Young's equation with contact angles of the two known liquids. Components of surface tensions obtained are summarized in Table S3.

Table S3.	Components	of the	surface	tensions	(20	°C)
-----------	------------	--------	---------	----------	-----	-----

Materials	γ_i (dyne / cm)	γ_i^d (dyne / cm)	γ_i^p (dyne / cm)
Toluene ^a	28.5	27.2	1.3
Deionized water ^a	72.8	21.8	51
Slide glass	72.8	29.2	43.6
Teflon film	36.1	27.3	8.8
Prepolymer	44.8	29.6	15.2
GNP	39.9	29.9	9.9
FD	38.4	34.2	4.2

a) γ_i , γ_i^d , and γ_i^p of toluene and deionized water were obtained from literatures [1,2].

Figure S2. Stress–strain curves of the CPUs.

		Increasing of GNP content			
CPU	Before the healing	0_CPU	0.25_CPU	0.5_CPU	1_CPU
	After the healing		0.25_CPU	тенентената 0.5_СРU еслование на есло волга востата полодите на есло во село востата част	естеренте мание на вели али то не 1_СРU
DPU	Before the healing	0_DPU 2	0.25_DPU	0.5_DPU	1_DPU
	After the healing		0.25_DPU	0.5_DPU	1_DPU

Figure S3. SEM images of various GNP/PU nanocomposites before and after the healing at 110 $\,\,{}^\circ\!{}^\circ\!{}^\circ$ for 1 h.

Reference

- 1. Moncayo, D.; Buitrago, G.; Algecira, N. The surface properties of biopolymer-coated fruit: A review. *Ingeniería e Investigación* **2013**, *33*, 11-16.
- 2. Van Oss, C.J.; Ju, L.; Chaudhury, M.K., Good, R.J. Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels. *J. Colloid Interface Sci.* **1989**, *128*, 313-319.