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Abstract: Novel flexible and recyclable core-shell heterostructured fibers based on cauliflower-like
MoS2 and TiO2/PVDF fibers have been designed through one-step hydrothermal treatment based on
electrospun tetrabutyl orthotitanate (TBOT)/PVDF fibers. The low hydrothermal temperature avoids
the high temperature process and keeps the flexibility of the as-synthesized materials. The formation
mechanism of the resultant product is discussed in detail. The composite of MoS2 not only expands
the light harvesting window to include visible light, but also increases the separation efficiency of
photo-generated electrons and holes. The as-prepared product has proven to possess excellent and
stable photocatalytic activity in the degradation of Rhodamine B and levofloxacin hydrochloride
under visible light irradiation. In addition, the TiO2/PVDF@MoS2 core-shell heterostructured fibers
exhibit self-cleaning property to dye droplets under visible light irradiation. Meanwhile, due to
its hydrophobicity, the resultant product can automatically remove dust on its surface under the
rolling condition of droplets. Hence, the as-prepared product cannot only degrade the contaminated
compounds on the surface of the material, but also reduce the maintenance cost of the material due
to its self-cleaning performance. Therefore, the as-prepared product possesses potential applications
in degradation of organic pollutants and water treatment, which makes it a prospective material in
the field of environmental treatment.
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1. Introduction

As a highly efficient, economical and environmentally friendly “green” technology, photocatalysis
offers tremendous potential for environmental protection and energy conversion. Therefore,
the production of advanced photocatalytic materials is one of the main strategies to solve the
current global environmental needs [1,2]. Titanium dioxide (TiO2) has proven to be a promising
candidate for photocatalysts in various transition metal oxide semiconductors over the past few
decades due to its good physicochemical properties, non-toxicity, low-cost, stable chemical and
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photonic properties [3]. However, as an n-type wide-bandgap semiconductor, TiO2 absorbs only
ultraviolet light, which accounts for only 4% of total sunlight in the solar spectrum. In addition,
the recombination rate of photo-generated electron hole pairs in TiO2 is high, resulting in low quantum
efficiency and low photocatalytic activity. Furthermore, for the traditional powder-like photocatalyst,
it is also very difficult to separate and recover a photocatalyst from the reaction solution after the
photocatalytic reaction.

Therefore, the key for preparation of a highly active and recyclable TiO2-based photocatalyst is
to find a strategy for inhibiting photo-generated electron-hole recombination, narrowing the band
gap and easy recovery and recycle. To this end, many strategies have been developed, one of
which is the composition of narrow band gap semiconductors to TiO2 to form a heterogeneous
structure [4–6]. On the one hand, the composition of narrow band gap semiconductors can improve
the photocatalytic activity of TiO2-based photocatalysts by expanding their light capture window to
the visible range [7]. On the other hand, the heterostructure between narrow band gap semiconductors
and TiO2 can also enhance the charge separation by coupling two semiconductor structures with
matched energy levels, thereby increasing the photocatalytic activity and efficiency of the TiO2-based
photocatalyst [8,9]. Among many narrow bandgap semiconductors, molybdenum disulfide (MoS2)
has become the material of choice for composite heterostructures due to its large reserves, low cost,
and excellent electronic and optical properties [10–12]. Zheng et al. synthesized hierarchical MoS2

nanosheet@TiO2 nanotube arrays by combining the anodic oxidation method and hydrothermal
method [13]. The as-prepared hierarchical composite materials are of enhanced photocatalytic
and photocurrent performances. Liu et al. prepared 3D sandwich-like heterojunction structured
mesoporous black TiO2/MoS2/TiO2 nanosheets which have 89.86% methyl orange degradation rate
and 0.56 mmol·h−1·g−1 hydrogen production rate [14]. However, the above-mentioned several kinds
of composite photocatalysts still exist in the form of powder. Therefore, there is still a disadvantage for
recovery and recycle when the photocatalyst was used in a reaction solution. In order to improve the
recovery and recycle of a photocatalyst, the method of supporting the photocatalytic material on an
inorganic porous material or a polymer material has been reported [15–18]. Zhang et al. fabricated
3D MoS2 nanosheet/TiO2 nanofiber heterostructures by using the electrospinning method combined
with hydrothermal treatment [19]. The as-synthesized fibers presented enhanced performance in the
photocatalytic decomposition of organic dyes under UV light irradiation. However, a high temperature
post-sintering process was employed in the synthesis procedure to remove the polymer composition,
which resulted in the as-synthesized nanofibers being too fragile and difficult to reuse [20]. In order
to solve the problem of difficult to recover photocatalysts, flexible substrate materials have been
introduced as photocatalyst carriers [21–24]. Lin et al. synthesized a novel floating sheet used in
solar photocatalytic water splitting. The as-synthesized novel floating sheet consists of WSe2 film
laser-deposited on a carbon foam substrate and nanodiamond-embedded Cu2O photocatalysts, which
has better reusability [21]. Yu et al. synthesized AgX (X = Br, I)-TiO2 nanoparticles immobilized
on polyacrylonitrile (PAN) nanofibers by combining the electrospinning technique, solvothermal
synthesis, physical adsorption, and gas/solid reaction. The as-prepared composite showed excellent
visible light catalytic performance against various pollutants [24]. Polyvinylidene difluoride (PVDF),
a widely used commercial polymer material, which has the advantages of good thermal stability,
high mechanical strength, and chemical resistance, is very suitable as a carrier for flexible composite
materials [25]. Our previous work showed that the use of PVDF as photocatalyst carrier can be a good
solution for the separation and recovery of photocatalysts from the reaction solution [26].

In this paper, novel flexible, recyclable, and reusable TiO2/PVDF@MoS2 core-shell
heterostructured fibers were synthesized by one-step hydrothermal treatment at low temperature
based on electrospun tetrabutyl orthotitanate (TBOT)/PVDF fibers. The one-step hydrothermal
method is very simple and feasible. In addition, the low hydrothermal temperature, avoiding the high
temperature process, will not damage the flexibility of the as-synthesized materials. A large number
of cauliflower-like MoS2 nanoparticles were grown on the surface of TiO2/PVDF fibers forming
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a flexible core-shell heterostructure. The as-prepared materials have good flexibility, recyclability,
and reusable property. The mechanism that the flexible TiO2/PVDF@MoS2 core-shell heterostructured
fibers have excellent photocatalytic activity on organic pollutants under visible light was discussed.
The self-cleaning properties of the resultant product were also investigated. The results show that the
photocatalytic activity of TiO2 crystal is significantly increased in the presence of MoS2 as a co-catalyst.
Furthermore, the as-prepared product cannot only degrade the contaminated compounds on the
surface of the material, but also reduce the maintenance cost of the material due to its self-cleaning
performance. Therefore, the application of flexible TiO2/PVDF@MoS2 core-shell heterostructured
fibers to the decomposition of toxic and harmful organic pollutants is of great significance for
environmental protection.

2. Experimental

2.1. Materials

PVDF (FR904) was purchased from Shanghai 3F New Materials Co., Ltd. (Shanghai, China),
Degussa P25 (80% anatase and 20% rutile) was purchased from Evonik Degussa Company (Shanghai,
China), N,N-dimethylformamide (DMF, AR, 99.5%), acetone (CP, 99.0%), sulphuric acid (H2SO4, CP,
95.0%~98.0%), TBOT(CP, 98.0%), Sodium molybdate dihydrate (Na2MoO4·2H2O, AR, 99.0%) and
thiourea (AR, 99.0%) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
All reagents were used as received without any further purification.

2.2. Preparation of TBOT/PVDF Fibers

A 4.0 g sample of PVDF powder was added into a mixture of solvents with 10 g DMF and 10 g
acetone and stirred vigorously at 40 ◦C until the solution was clear and transparent. Then, 10 mL of
TBOT was added to the clear solution and stirring was continued for 1 h at 40 ◦C. Electrospinning
was operated using a 5 mL syringe containing the TBOT/PVDF precursor solution with a blunt
metal needle. The fiber collector was a stainless steel roller wrapped with a sheet of aluminum foil
and operating a rotation speed of about 250 rpm. A DC voltage supply with a setting of 9 kV was
placed between the needle tip and the collector with the needle tip and collector at a distance of
11 cm. The fibrous mats collected on the aluminium foils were dried at 60 ◦C for 10 h after spinning to
eliminate any remaining solvent. All the as-prepared TBOT/PVDF fibers were cut into small pieces of
2.5 cm × 2.5 cm for the hydrothermal treatment.

2.3. Fabrication of TiO2/PVDF@MoS2 Core-Shell Heterostructured Fibers

0.5 mmol Na2MoO4·2H2O and 2.5 mmol thiourea were added into 30 mL of 0.5 M sulfuric
acid solution and stirred for 30 min. The solution was then transferred to a 50 mL stainless
steel autoclave. The TBOT/PVDF small pieces were then placed into the stainless steel autoclave.
The hydrothermal reaction was carried out at 150 ◦C for 24 h, and then the flexible TiO2/PVDF@MoS2

core-shell heterostructured fibers were obtained. For comparison, the same conditions were carried
out without Mo source and S source to form TiO2/PVDF fibrous mat, and the same conditions using
PVDF fibers mat to form MoS2/PVDF fibrous mat. The as-obtained fibers mats were thoroughly
washed with ethyl alcohol and deionized water, followed by drying in air at 60 ◦C for 10 h after the
hydrothermal treatment.

2.4. Characterization

X-ray diffraction (XRD) patterns were taken with a Rigaku SmartLab X-ray diffractometer
(Rigaku, Tokyo, Japan) using a Cu-Kα radiation in the 2θ range of 10–80◦ at room temperature.
The scanning electron microscopy (SEM) images of the as-synthesized samples were taken using a JEOL
JSM-7800F field emission scanning electron microscope (JEOL, Tokyo, Japan). A JEOL JEM-2100Plus
transmission electron microscopy (TEM) (JEOL, Tokyo, Japan) attached energy dispersive spectroscopy
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(EDS) was used for observation of the as-obtained samples. X-ray photoelectron spectroscopy (XPS)
measurements were carried out on a Thermo Scientific Escalab 250Xi system (Thermo Scientific,
Shanghai, China) with an Al Kα X-ray source. The Brunauer-Emmett-Teller (BET) specific surface
area was performed on a Quantachrome Autosorb-IQ-MP/XR nitrogen adsorption apparatus
(Quantachrome, Shanghai, China). UV-Vis diffuse reflectance spectra (DRS) of the as-prepared
samples were taken using a Shimadzu UV-2600 spectrophotometer (Shimadzu, Tokyo, Japan) with an
integrating sphere accessory, in which BaSO4 was utilized as a diffuse reflectance standard. A Hitachi
F-2500 fluorescence spectrometer (Hitachi, Tokyo, Japan) with a Xe lamp was used to determine the
photoluminescence spectra (PL) of the resultant membranes using 320 nm as the excitation wavelength
at room temperature.

2.5. Photocatalytic Activity

The photocatalytic performances of the as-synthesized samples were evaluated by decomposing
the model pollutants rhodamineB (RhB, 15 mg·L−1) and levofloxacin hydrochloride (LVFX, 5 mg·L−1)
under visible-light irradiation at room temperature. In order to compare the photocatalytic ability
to degrade dye contaminants, Degussa P25 was purchased and applied to the degradation of RhB
photocatalytic experiments. In photodegradation experiments, the photocatalysts (1 g·L−1) were
put into a 100 mL quartz tube with 60 mL target pollutants solution and magnetically stirred in the
dark for 45 min to ensure the adsorption-desorption equilibrium of target pollutants on the catalysts
surface. Then this system was placed under a 9 W white light LED (Figure S1, Supporting Information
(SI)) with a distance of 4.0 cm apart away from the quartz tube where the power density of the
white LED lamp is 0.9 mW·cm−2. At selected time intervals, 3 mL of aliquots were collected and
centrifuged to remove the particles, then sampled to analyze the concentration of RhB remaining in
the solution by measuring its absorbance at 554 nm for RhB (292 nm for LVFX) using a Shimadzu
UV-2600 spectrophotometer. For the membranes reaction system, the analyzed aliquot was quickly
poured back into the quartz tube to ensure a roughly equivalent volume of solution after every assay.
The photodegradation efficiency was expressed as C/C0, where C is the absorption of RhB absorption
spectrum at 554 nm (292 nm for LVFX) at selected time intervals and C0 is the absorption of the
starting concentration. In order to investigate the recycle stability, the as-prepared TiO2/PVDF@MoS2

core-shell heterostructured fibers were washed with ethyl alcohol and deionized water, and then dried
in air for the next photodegradation process.

Control experiments on the photodegradation of RhB were carried out by using ethylene
diamine tetraacetic acid (EDTA, 10 mM), tertiary butanol (tBuOH, 10 mM) and nitrogen (N2) as
the photo-generated holes (h+), the hydroxyl radicals (OH•) and the superoxide anion radicals (O−•2 )
scavenger, respectively.

2.6. Self-Cleaning Performance

2.6.1. Hydrophobicity Property

The hydrophobicity of the TiO2/PVDF@MoS2 core-shell heterostructured fibers is evaluated by
measuring the contact angle of the droplets (including H2O, RhB, methylene blue (MB)) on the material
under ambient temperature. The water contact angle measurements were carried out by the drop
method on a Theta Attension optical contact angle instrument (Biolin Scientific, Stockholm, Sweden).

2.6.2. Fading of Dye Droplets

The RhB and MB dye droplets with a concentration of 10 mg·L−1 were dripped onto the
TiO2/PVDF@MoS2 core-shell heterostructured fibers and irradiated under visible light. An optical
photograph was taken every 25 min to compare the color of the dye, which was used to characterize
the self-cleaning performance of the as-prepared product to the surface colored pollutants.
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2.6.3. Removal of Dust on Sample Surface

In order to evaluate the self-cleaning effect of the TiO2/PVDF@MoS2 core-shell heterostructured
fibers on the dust on its surface, the dust was scattered on the surface of the sample before measurement.
Then, a drop of water was dropped on the surface of the sample. Tilted the sample slightly to make the
droplet move on the sample surface and take away the dust, thus making the material surface clean.

3. Results and Discussion

3.1. Synthesis and Application Process

A brief synthesis and application process of TiO2/PVDF@MoS2 core-shell heterostructured fibers
are depicted in Figure 1. Firstly, the TBOT/PVDF fibrous mat was obtained by electrospinning
TBOT/PVDF homogeneous solution. Secondly, the as-prepared TBOT/PVDF fibrous mat was cut into
small pieces, followed by hydrothermal treatment to synthesize flexible TiO2/PVDF@MoS2 core-shell
heterostructured fibers. Thirdly, the flexible TiO2/PVDF@MoS2 core-shell heterostructured fibers
were applied to degrade organic pollutant under visible light. Finally, the flexible TiO2/PVDF@MoS2

core-shell heterostructured fibers were drawn out from the reaction system and thoroughly washed
with ethyl alcohol and deionized water, followed by drying in air at 60 ◦C for 10 h for the next
photocatalytic experiment.
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Figure 1. Schematic illustration for the synthesis and application process of TiO2/PVDF@MoS2

core-shell heterostructured fibers.

3.2. Structure and Morphology Characteristics

Figure 2 depicts the X-ray diffraction (XRD) patterns of the as-prepared samples. As displayed in
Figure 2 curve (a), no obvious diffraction peak was detected except the diffraction peak 2θ at 20.7◦

which can be assigned to the β phase of PVDF [27,28]. This means that the TiO2 small crystal
in the TBOT/PVDF hybrid fibers mat, formed through TBOT hydrolyzed with the H2O in air,
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was mainly in the amorphous structure. After hydrothermal reaction in 0.5 M H2SO4 at 150 ◦C
for 24 h, the characteristic diffraction peaks of anatase phase TiO2 (PDF card 89-4921, Joint Committee
on Powder Diffraction Standards (JCPDS)) appeared in the prepared hybrid material, whose diffraction
peaks 2θ at 25.6, 37.9, 48.2, 54.4, and 62.8◦ as shown in the curve (b). The addition of H2SO4 ensured
the formation of anatase phase TiO2 [29]. In addition to the above-mentioned anatase phase TiO2

diffraction peaks in the curve (b), a weak and broad diffraction peak at 14.4◦ can be detected in the
curve (c), which can be indexed to the (002) crystal face of MoS2 (PDF card 37-1492, JCPDS). Comparing
curve (c) with curve (a) and (b), it can be seen that the intensity of the diffraction peaks of PVDF and
anatase TiO2 decreased after synthesizing MoS2 on TiO2/PVDF fibers, indicating that the surface area
of TiO2/PVDF was covered with MoS2 that forms a core-shell structure. In order to further determine
whether the preparation of MoS2 was successful, the powder in the hydrothermal autoclave was
centrifuged after hydrothermal reaction and tested (shown in curve (d)). Comparing curves (d) with
(c), it was obvious that all the diffraction peaks were at the same position except the diffraction peaks
of PVDF especially, where the diffraction peak of MoS2 became stronger, indicating the MoS2 was
synthesized successfully. As a comparison, the XRD patterns of pure PVDF fibers mat, MoS2/PVDF
hybrid fibers mat and MoS2 powder remaining in the hydrothermal autoclave after hydrothermal
synthesizing MoS2/PVDF hybrid fibers mat were displayed in Figure S2 (SI). It can be concluded the
MoS2 was successfully grown on the PVDF fibers.
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Figure 2. XRD patterns of (a) TBOT/PVDF fibers, (b) TiO2/PVDF hybrid fibers, (c) TiO2/PVDF@MoS2

core-shell heterostructured fibers, and (d) MoS2 and TiO2 powders.

Figure 3 shows the typical SEM images of TBOT/PVDF fibers, TiO2/PVDF fibers and
TiO2/PVDF@MoS2 core-shell heterostructured fibers, respectively. As illustrated in Figure 3a,
TBOT/PVDF fibers randomly distributed with a rough surface different from pure PVDF fibers
synthesized in our previous work [26], mainly due to the TBOT component in the fibers hydrolyzed
with the H2O in the atmosphere. It can be seen from Figure 3a that the fiber diameter distribution
was very uneven, some particularly thick and some particularly fine. Besides, it is obvious that some
fibers were broken, and the same phenomenon also appeared in Figure 3b,c. Considering the blend of
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PVDF polymer and TBOT in the precursor solution, the spinning needle would be blocked, caused by
the hydrolysis reaction between TBOT and H2O in the air during the electrospinning process, which
would lead to the diameter distribution of fibers nonuniform. While the TBOT component in the fibers
continuing to hydrolyze with H2O in the air will cause fiber fracture. After being hydrolyzed in 0.5 M
H2SO4 at 150 ◦C for 24 h, anatase phase TiO2 occurred on the fiber surface (shown in Figure 3b), which
can be confirmed by the XRD patterns. As depicted in Figure 3b, anatase phase TiO2 particles with
irregular shapes and sizes were randomly distributed on the fibers surface. During hydrothermal
growth process, a portion of the TBOT component in the fibers dissolved in the reaction liquid while
the other part remained in the fibers. In an acid solution environment, both of them began to hydrolyze
to form TiO2 at the same time. Due to the lack of nucleation centers in the liquid, a part of the TBOT
dissolved in the liquid hydrolyzed and grew homogeneously to form TiO2 powder directly, and the
other part combined with the TiO2 particles formed by TBOT hydrolysis in the fiber to become larger
particles. As a result, morphology as shown in Figure 3b was formed.
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As presented in Figure 3c,d, unlike the common layered structure of MoS2, a large number of
cauliflower MoS2 particles appeared on the fibers surface forming core-shell structure. In contrast to
the morphology of the TiO2 particles in Figure 3b, these cauliflower MoS2 particles were relatively
uniform and dense. For TiO2/PVDF@MoS2 fibers, the hydrolysis of TBOT and the growth of MoS2

were carried out simultaneously. Since there were many MoS2 particles in the solution, this makes the
TiO2 in the liquid hydrolyzed by TBOT more likely to combine with the MoS2 to form heterogeneous
growth rather than to grow on the fibers. Therefore, no particularly large TiO2 particles were formed
on the fibers. The amount of Na2MoO4 and (H2N)2CS in the solution was sufficient so that MoS2 can
either directly form a powder in solution or grow on the surface of the TiO2/PVDF core, which was
the main reason for the difference in topography between Figure 3b,c.
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The morphology of TiO2/PVDF@MoS2 core-shell heterostructured fiber was further confirmed
by TEM and HRTEM, as shown in Figure 4. It is clearly observed that the very fine MoS2 particle
grew on the surface of TiO2/PVDF fiber and core–shell structures appeared, as displayed in Figure 4a.
The high-resolution TEM image showed that the MoS2 particles with several layer thicknesses were
about 5 nm in size. In addition, the MoS2 particles with an average spacing of 0.61 nm can be seen,
which belongs to the (002) facet of MoS2 [30–32]. In Figure 4b, the lattice spacing of TiO2 was measured
to be 0.35 nm, which was in close agreement with (101) facets of anatase TiO2 [33]. The lattice spacing
shown in the HRTEM images is consistent with the XRD results, further confirming the formation of
TiO2/PVDF@MoS2 core-shell structure.
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Figure 4. TEM image of TiO2/PVDF@MoS2 core-shell heterostructured fiber (a) and high-resolution
TEM image of TiO2/PVDF@MoS2 core-shell heterostructured fiber (b).

The EDS technique was employed for further detecting the elemental composition of as-prepared
TiO2/PVDF@MoS2 fiber. The EDS spectroscopy in Figure S3 (SI) displays the elements of C, O, F, Cu,
Ti, S, and Mo, of which Cu was from copper mesh brackets, confirming the presence of PVDF, TiO2,
and MoS2.

The chemical composition information and the bonding configuration of the as-prepared products
were determined by XPS analysis. Characteristic peaks from Mo, S, O, Ti, F, and C can be clearly found
from the XPS survey spectra, as shown in Figure S4 (SI). Figure 5 illustrates the high-resolution XPS
spectra of Ti 2p, O 1s, Mo 3d, and S 2p. As shown in Figure 5a, the binding energies of Ti 2p3/2 and
Ti 2p1/2 peaks were located at 459.0 and 464.6 eV, respectively [34]. The peak of O1s was broken up
into four peaks (shown in Figure 5b), respectively, corresponding to Ti-O of TiO2 (530.2 eV), Ti-O-Mo
bonds between MoS2 and TiO2 (530.8 eV), hydroxyl group (531.7 eV), and C-O bond (532.6 eV) in
the resultant product [35–37]. In Mo 3d profiles (Figure 5c), the peaks at 232.6 and 229.3 eV were
corresponding to 3d3/2 and 3d5/2 of Mo4+, respectively. And the satellite-peak at 227.2 eV ascribed to
2s of S species [38]. Meanwhile, the peaks of S element could be divided into three different chemical
environments, as displayed in Figure 5d. The broad spectra could be fitted with sets of doublets
related to spin orbit split to 2p3/2 and 2p1/2. The peaks at binding energies of 162.4 and 163.7 eV were
assigned to the 2p3/2 and 2p1/2 of S2− [13]. Whereas, the peaks at 163.3 and 164.4 eV may be assigned
to C-S bonds or related to the presence of bridging S2

2− [39,40]. Besides, the weak peak at 168.9 eV
was related to the residual of SO4

2− in the as-prepared sample [41,42]. These results further confirmed
the presence of MoS2, TiO2, and PVDF, which agreed well with the XRD and TEM results.



Nanomaterials 2019, 9, 431 9 of 22

 9 

/PVDF@MoS2 core-shell heterostructured fibers tended to be smaller, mainly due to the fact that the 

surface of TiO2/PVDF fibers was covered with smaller MoS2 particles instead of larger TiO2 

particles, which was consistent with the SEM results. Hence, the as-obtained TiO2 /PVDF@MoS2 

core-shell heterostructured fibers possessed much more absorption interface. 

 

Figure 5. High-resolution XPS spectra of (a) Ti 2p, (b) O 1s, (c) Mo 3d and (d) S 2p in 

TiO2/PVDF@MoS2 core-shell heterostructured fiber. 

453 456 459 462 465 468

Ti 2p
1/2

 

 

In
te

n
s
it

y
 (

a
.u

.)

Binding Energy (eV)

Ti 2p
3/2

459.0

464.6

528 530 532 534 536 538

532.6531.7

530.8  

 

In
te

n
s
it

y
 (

a
.u

.)

Binding Energy (eV)

530.2

224 226 228 230 232 234 236 238

232.6

Mo 3d
3/2

 

 

In
te

n
s
it

y
 (

a
.u

.)

Binding Energy (eV)

227.2

S 2s

Mo 3d
5/2

229.3

160 162 164 166 168 170

168.9

164.4

163.7

163.3

 

 

In
te

n
s
it

y
 (

a
.u

.)

Binding Energy (eV)

162.4

(a) (b)

(c) (d)

Ti 2p O 1s

Mo 3d S 2p

Figure 5. High-resolution XPS spectra of (a) Ti 2p, (b) O 1s, (c) Mo 3d and (d) S 2p in TiO2/PVDF@MoS2

core-shell heterostructured fiber.

To investigate the specific surface area of resultant products, nitrogen adsorption-desorption
analysis was carried out by using the BET method. Figure 6 displays the nitrogen
adsorption–desorption isotherms of TiO2/PVDF and TiO2/PVDF@MoS2 fibers, and the inset illustrates
the corresponding pore diameter distribution by using the Barrett-Joyner-Halenda (BJH) method.
The isotherm curves of TiO2/PVDF and TiO2/PVDF@MoS2 fibers were well in agreement with the
type IV isotherm behavior with H3 hysteresis [43,44].

The surface area of TiO2/PVDF fibers was 49.5 m2·g−1, whereas the TiO2/PVDF@MoS2 core-shell
heterostructured fibers had a surface area of 59.2 m2·g−1. Meanwhile, the pore diameter distribution
of TiO2/PVDF and TiO2/PVDF@MoS2 core-shell heterostructured fibers was very irregular, as shown
in the inset of Figure 6. Compared to the TiO2/PVDF fibers, the pore diameter distribution of
TiO2/PVDF@MoS2 core-shell heterostructured fibers tended to be smaller, mainly due to the fact
that the surface of TiO2/PVDF fibers was covered with smaller MoS2 particles instead of larger TiO2

particles, which was consistent with the SEM results. Hence, the as-obtained TiO2/PVDF@MoS2

core-shell heterostructured fibers possessed much more absorption interface.
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Figure 6. Nitrogen adsorption–desorption isotherms and the corresponding pore-diameter distribution
curves (inset) of TiO2/PVDF (Black line) and TiO2/PVDF@MoS2 core-shell heterostructured fibers
(Red line).

3.3. Optical Characteristics

Optical absorption of P25, PVDF, MoS2/PVDF, TBOT/PVDF, TiO2/PVDF, and TiO2/PVDF@MoS2

were investigated by UV-Vis diffuse reflectance spectra, displayed in Figure 7. It can be found that
all materials had a strong absorption except PVDF at wavelengths below 400 nm. Most especially,
the TBOT/PVDF fibers had the strongest absorption in the ultraviolet region, owing to formation of
amorphous structured TiO2 crystal through TBOT hydrolyzed with the H2O in air. In the visible light
region, the samples with MoS2 particles covered on the surface present enhanced absorption character
compared to P25 and TiO2/PVDF fibers.

For an indirect-band-gap semiconductor, the band-gap energy can be acquired by equation
Eg = 1240/λg (eV), where λg is the absorption edge calculated from the intercept between the tangent
of the absorption curve and the abscissa coordinate [45]. The absorption edge and band-gap energy
for P25, TBOT/PVDF, TiO2/PVDF, MoS2/PVDF, and TiO2/PVDF@ MoS2 was displayed in Table 1.
Obviously, the band-gap energy of the TiO2/PVDF@ MoS2 was different from the MoS2/PVDF and
the TiO2/PVDF, mainly due to its core-shell structure [46].
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Figure 7. UV-vis diffuses reflectance spectra of different samples: P25, PVDF, MoS2/PVDF,
TBOT/PVDF, TiO2/PVDF and TiO2/PVDF@MoS2.

Table 1. The absorption edge and energy band gap for the typical samples.

Typical Sample Absorption Edge (nm) Energy Band Gap (eV)

MoS2/PVDF 780.4 1.6
TiO2/PVDF@ MoS2 639.3 1.9

P25 375.7 3.3
TiO2/PVDF 361.8 3.4

TBOT/PVDF 335.5 3.7

Benefitting from the addition of narrow band gap MoS2, the absorption edge of TiO2/PVDF@
MoS2 core-shell heterostructured fibers shifted to longer wavelength (1.9 eV) compared to that of
TiO2/PVDF fibers at 3.4 eV. Therefore, the core-shell heterostructured TiO2/PVDF@ MoS2 fibers
offered enhanced light harvesting in the visible region of the solar spectrum, and thus, presented
considerable photocatalytic abilities under visible light illumination.

The photoluminescence (PL) spectra were usually used to evaluate the efficiency of charge
trapping and recombination of photo-induced electron-hole pairs in the semiconductor [47,48]. Figure 8
shows the PL spectra of P25, TiO2/PVDF, MoS2/PVDF, and TiO2/PVDF@MoS2. There were four main
emission peaks for P25 and TiO2/PVDF, respectively. The peak located at 398 nm (≈3.12 eV) belonged
to P25; meanwhile, the peaks located at 386 nm (≈3.21 eV) belonged to TiO2/PVDF. The other
three peaks, located at 448 nm (≈2.77 eV), 465 nm (2.67 eV) and 487 nm (≈2.55 eV), respectively,
appear in both P25 and TiO2/PVDF. The first peak of these two materials corresponded to their
near-band gap emission [26], whereas the other three peaks were likely assigned to the emission
of oxygen vacancies related defect formed in the synthetic process [49–51]. Besides, it is obviously
that P25 has the highest PL intensity, which means having the highest photo-generated electron-hole
recombination. Interestingly, the PL intensity of TiO2/PVDF fibers was weaker than that of P25,
implying a relatively higher photo-generated electron-hole separation efficiency. The formation of F-Ti
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coordination bond in the fibers and the relatively high ionic conductivity of PVDF as a ferroelectric
material should take the main responsibility [22]. In addition, the TiO2/PVDF@MoS2 fiber has lower
PL intensity compared to the MoS2/PVDF fiber, which was attributed to the core-shell heterostructure,
indicating that the recombination of photo-generated electron-holes was suppressed effectively.
Therefore, the TiO2/PVDF@MoS2 could effectively enhance the separation of photo-generated charge
carriers and extend the lifetime of photo-generated electron-hole pairs, leading to the superior
photocatalytic activity.
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Figure 8. PL spectra of P25, TiO2/PVDF, MoS2/PVDF and TiO2/PVDF@MoS2.

3.4. Photocatalytic Performances

The photocatalytic performances of the as-prepared samples have been investigated by monitoring
the time-dependent absorbance changes of RhB under visible light irradiation by using a white LED
lamp. Figure 9a shows the time-dependent absorbance changes of RhB at 554 nm for RhB without
photocatalyst, P25, TiO2/PVDF, MoS2/PVDF and TiO2/PVDF@MoS2, respectively. As can be seen,
the absorbance of RhB without photocatalyst was almost unchanged under visible light illumination
for 120 min, indicating that RhB was stable under visible light. Compared with the MoS2/PVDF
reaction system, the TiO2/PVDF@MoS2 reaction system exhibited a superior photocatalytic efficiency,
which was attributed to the core-shell heterostructure. Surprisingly, the P25 and TiO2/PVDF reaction
systems both had good catalytic efficiency since they can only absorb UV light, as discussed in the
UV-Vis section. Specifically, the TiO2/PVDF reaction system seemed to have the highest catalytic
efficiency. There were two reasons for the photocatalytic effect under visible light irradiation for P25
and TiO2/PVDF reaction systems. On the one hand, the chromophore of RhB absorbed visible light
and came to be in an excited state. Then the fast electron transferred from the excited chromophores to
the conduction band of TiO2 led to degrade the RhB [52]. On the other hand, there were some oxygen
vacancies related to a defect in P25 and TiO2/PVDF, as discussed in the PL spectra section, which
could absorb visible light and lead to the degradation of RhB.
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Figure 9. (a) Photocatalytic degradation curves of RhB over the samples: RhB without photocatalyst,
P25, TiO2/PVDF, MoS2/PVDF and TiO2/PVDF@MoS2. (b) The wavelength of maximum absorption
λmax vs irradiation time. (c) The adsorption of RhB in dark as well as the N-deethylation and
cycloreversion of RhB under visible light irradiation for different samples. (d) The degradation
performance during 45-min adsorption of RhB in dark and 120-min photocatalytic degradation of RhB
with the TiO2/PVDF@MoS2 core-shell heterostructured fibers. The experiment was repeated five times.

By carefully observing the changes of the UV-Vis spectra at different times of the resultant
samples, it was easy to find that the maximum absorption peaks of RhB solution for MoS2/PVDF
and TiO2/PVDF@ MoS2 only had intensity changes rather than peak shift, as shown in Figure S5
(SI). While the maximum absorption peaks of RhB solution for P25 and TiO2/PVDF had not only
intensity changes, but also peak shift. By comparing the optical photographs of RhB solution at
different times of TiO2/PVDF and TiO2/PVDF@ MoS2, it could be found that the RhB solution for
TiO2/PVDF constantly faded and turned yellow with the increase of time, however, the corresponding
RhB solution for TiO2/PVDF@ MoS2 just faded, as displayed in Figure S6 (SI).

The wavelength of maximum absorption λmax vs irradiation time was shown in Figure 9b. It can
be found that the maximum absorption λmax for MoS2/PVDF and TiO2/PVDF@ MoS2 reaction
system remained unchanged, while P25 and TiO2/PVDF shifted to short wavelength. There are two
pathways to degrade RhB; one in the cleavage of chromospheres, and the other is the N-deethylation
of RhB [53–55]. The products of RhB stepwise N-deethylation are N,N,N′-triethyl rhodamine
(TER), N,N′-diethyl rhodamine (DER), N-ethyl rhodamine (MER) and rhodamine, respectively.
The corresponding maximum absorption peaks for the products are located at 539, 522, 510, and 498 nm,
respectively [56]. Therefore, part of RhB in the TiO2/PVDF reaction system eventually produced
rhodamine through stepwise N-deethylation, while the RhB in P25 reaction system was only
partial N-deethylation and did not form any of the above four final products. It can be calculated
that 47.6% of the initial RhB molecules were transformed into rhodamine with N-deethylation by
using the absorbance and molar extinction coefficient of RhB and rhodamine at 554 and 500 nm,
respectively [57,58]. Figure 9c displays the three pathways in the MoS2/PVDF, P25, TiO2/PVDF and
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TiO2/PVDF@MoS2 reaction systems, adsorption, N-deethylation, and cycloreversion, respectively.
As can be seen, TiO2/PVDF@MoS2 was more adsorptive than TiO2/PVDF, owing to the larger
specific surface area. Benefitting from high photogenerated electron-hole separation resulting from the
core-shell heterostructure, the amount of cleavage of RhB in the TiO2/PVDF@MoS2 reaction system
was about 58.4%, more than 8.0% of the MoS2/PVDF reaction system, 50% of P25 reaction system,
and 28.9% of TiO2/PVDF reaction system, respectively. Although the TiO2/PVDF reaction system
showed a 76.5% degradation rate in Figure 9a, 47.6% degraded, RhB was only converted to a smaller
rhodamine molecule.

In order to test the reusability of TiO2/PVDF@MoS2 core-shell heterostructured fibers, the recycled
experiments were performed by using TiO2/PVDF@MoS2 core-shell heterostructured fibers five times
and depicted in Figure 9d. Obviously, the TiO2/PVDF@MoS2 core-shell heterostructured fibers still
maintained high adsorption and photocatalytic properties after repeated use five times. Besides,
it can be seen that the adsorption and photocatalytic properties of the TiO2/PVDF@MoS2 core-shell
heterostructured fibers decreased slightly with the increase of the reuse times, which was attributed to
the loss of the photocatalyst on the fibers surface in the rinsing process in recovery.

The flexible characteristic was of great practical significance in recycling and reuses processes
for photocatalytic materials. For the powdery photocatalysts, an inevitable problem was the loss of
the photocatalyst during the separation process, leading to difficulties in recycle and reuse processes.
In addition, some fibrous photocatalysts prepared by electrospinning generally required a high
temperature to remove the organic components in the fibers, which resulted in very brittle fibrous
photocatalysts. When these brittle fibrous photocatalysts were used in the photocatalytic experiments,
the photocatalysts would be broken and lost due to being stirred, and thus couldn’t be recycled
and reused.

For the flexible TiO2/PVDF@MoS2 core-shell heterostructured fibers synthesized in this work,
the presence of PVDF and a low temperature hydrothermal synthesis could keep it very flexible.
Therefore, after five repeated uses, the photocatalytic performance of the flexible TiO2/PVDF@MoS2

core-shell heterostructured fibers was only slightly reduced due to the shedding of a few photocatalysts.
In addition, the separation of the flexible TiO2/PVDF@MoS2 core-shell heterostructured fibers from
the reaction system was very simple. It only needed to be clipped directly from the reaction system,
which had a very important practical application value.

In order to further investigate the photocatalytic performance of the as-prepared samples,
the photocatalytic degradation of LVFX which only absorbs UV light was carried out, as displayed in
Figure 10. As can be seen, the absorbance of LVFX without photocatalyst remained unchanged under
white light LED illumination for 120 min. Obviously, the as-obtained TiO2/PVDF@MoS2 core-shell
heterostructured fibers still had the best photocatalytic properties in three kinds of photocatalysts,
which was attributed to relatively large adsorption and high photogenerated electron-hole separation
owing to the core-shell heterostructure. Meanwhile, MoS2/PVDF showed a very weak photocatalytic
performance, except for the relatively large adsorption capacity. Surprisingly, TiO2/PVDF exhibited
better photocatalytic performance than MoS2/PVDF under visible light irradiation. Taking into account
the band-gap of TiO2/PVDF fibers and the spectrum of LED white light used in the experiment,
the photocatalytic activity of TiO2/PVDF fibers membrane on LVFX was mainly attributed to the
absorption of visible light by defects in TiO2/ PVDF fibers discussed earlier.
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Figure 10. Photocatalytic degradation curves of LVFX over the samples: LVFX without photocatalyst,
TiO2/PVDF, MoS2/PVDF and TiO2/PVDF@MoS2.

3.5. Photocatalytic Mechanism

Generally, h+, OH• and O−•2 were recognized as the primary active species in the photocatalytic
reaction [59]. To investigate the photocatalytic mechanism of the TiO2/PVDF and TiO2/PVDF@MoS2

fibers, control experiments with addition of individual scavengers for h+, OH• and O−•2 were
conducted on the photodegradation of RhB.

As shown in Figure 11a, the degradation of RhB was suppressed slightly by adding the N2 (O−•2
scavenger) to the TiO2/PVDF reaction system, indicating the O−•2 radical species, not main active
oxidizing species in the photocatalytic process. However, it was significantly suppressed when the
EDTA (h+ scavenger) was added, and a moderate suppressed degradation of RhB was appeared by the
addition of tBuOH (OH• scavenger). This result indicates that the h+ and OH• were the main active
oxidizing species involved in the TiO2/PVDF reaction system, with an order of h+ > OH•, during the
photodegradation process.

As mentioned above, the visible light photocatalytic ability of TiO2/PVDF fibers mainly came
from oxygen vacancy related defects. Under visible light irradiation, electrons were excited from the
valence band (VB) of TiO2 and trapped by defects, forming holes in the VB. The photo-generated holes
migrated to the surface of the TiO2/PVDF fibers. On the one hand, parts of photo-generated holes
were directly involved in oxidizing organic contaminants. On the other hand, parts of photo-generated
holes reacted with water molecules to form OH• [26]. Therefore, the addition of EDTA not only
inhibits the h+ from participating in the oxidation of organic contaminants, but also inhibits the
transformation of h+ into OH•. The addition of tBuOH prefers to inhibit OH• to participate in the
oxidation reaction rather than inhibit the participation of h+ in the oxidation process. Therefore,
the addition of EDTA had a greater effect on the photodegradation of RhB than that of the addition of
tBuOH. As described above, the photo-generated electrons in the TiO2 were trapped by the defects,
so that very few photo-generated electrons migrated to the surface to react with the oxygen molecules
in the reaction system to form O−•2 . Therefore, the addition of N2 had little effect on photodegradation
of RhB.
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Figure 11. Control experiments with radical scavengers. (a) The relative concentration variation plots
of RhB solution using TiO2/PVDF fibers as the photocatalyst. (b) The relative concentration variation
plots of RhB solution using TiO2/PVDF@MoS2 fibers as the photocatalyst.

The photodegradation of RhB in the TiO2/PVDF@MoS2 reaction system with the addition of
scavenger was displayed in Figure 11b. Similar to the TiO2/PVDF reaction system, the addition of
EDTA had a stronger suppression on photodegradation of RhB than that of the addition of tBuOH
and N2 in the TiO2/PVDF@MoS2 reaction system. Slightly different was that the inhibition of
photodegradation of RhB with the addition of tBuOH in the TiO2/PVDF@MoS2 reaction system
was very close to that of the addition of EDTA.

To further understand this result, a schematic illustration for the photo-induced electron-hole
separation and transfer process between TiO2/PVDF core and MoS2 shell is shown in Figure 12.
Under visible light irradiation, electrons were excited from the valence band of MoS2 to its conduction
band (CB), leaving a hole in the valence band. Since the VB of TiO2 was lower than that of MoS2,
the photo-generated electrons were transferred from the CB of MoS2 to the CB of TiO2. [60] Accordingly,
the holes migrated from the VB of TiO2 to the VB of MoS2. As a consequence, the photo-generated
charge carriers were separated at the core-shell interface of the TiO2/PVDF@MoS2 heterostructure,
as illustrated in Figure 12. As the h+ transported to the VB of MoS2 from the VB of TiO2, most of the
h+ oxidized the water molecules in the solution to form OH• [14] due to the relatively large specific
surface area of TiO2/PVDF@MoS2 fiber compared to TiO2/PVDF fiber. On the other hand, a small
portion of h+ was directly involved in the oxidation of organic contaminants. Hence, a close inhibitory
effect on the photodegradation of RhB appeared in the addition of tBuOH compared the addition of
EDTA. Meanwhile, the photo-generated electrons were transported to the CB of TiO2. Since TiO2 was
in the core of the composite, only a very small number of electrons reacted with oxygen molecules in
solution to form O−•2 [61] which could participate in the reaction of oxidizing organic contaminants.
Therefore, the addition of N2 had little effect on inhibiting the photodegradation of RhB.
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Figure 12. Schematic illustration for the photo-generated electron-hole separation and transfer process
between TiO2/PVDF core and MoS2 shell.

3.6. Self-Cleaning Performance

The wettability of the surface determines the main cleaning mechanism. One of the main
parameters to characterize the wetting behavior of the surface is the static contact angle, which is the
observable angle between liquid and solid. The contact angles of H2O, RhB, MB are 128.28◦, 120.30◦,
129.27◦, respectively, as shown in the Figure 13a–c. Therefore, it can be obtained that the prepared
TiO2/PVDF@MoS2 core-shell heterostructured fibers are hydrophobic to water and three dyes.

In addition, the self-cleaning properties of TiO2/PVDF@MoS2 core-shell heterostructured fibers
were tested by dropping 10 mg·L−1 of RhB and MB onto the surface of the as-prepared product under
visible light illumination, as depicted in Figure 13d–s. It can be easily found that the colors of these two
dyes almost disappear in about 150 min, meaning a good self-cleaning performance to these two dyes.

Furthermore, due to the hydrophobicity of TiO2/PVDF@MoS2 core-shell heterostructured fibers
surface, water droplets can remain on the surface of the sample. Therefore, the dust can be removed
from the sample surface by rolling the water droplets on the sample surface to achieve self-cleaning
effect. As displayed in Figure S7 (SI), before dropping water onto the surface of the sample, a layer of
dust is sprayed on the sample surface. Then, the droplets are then dropped onto the surface of the
sample. Slightly tilted sample, droplets roll on its surface and bring dust down to reveal the original
surface of the sample. This means that in the actual use, the as-prepared products can remove the
adhered dyes or dust by sunlight or rainwater themselves, so as to reduce maintenance costs.



Nanomaterials 2019, 9, 431 18 of 22

 18 

 

Figure 13. The optical images taken while the water and dye droplets come into contact to the 

surface of TiO2/PVDF@MoS2 core-shell heterostructured fibers (a–c). Photographs of the RhB (d–k) 

and MB (l–s) droplet on the surface of TiO2/PVDF@MoS2 core-shell heterostructured fibers under 

visible light illumination. 

4. Conclusions 

Novel flexible, recyclable, and reusable TiO2/PVDF@MoS2 fibers with core-shell 

heterostructures were synthesized by one-step low temperature hydrothermal method on the basis 

of TBOT/PVDF fibers prepared by electrospinning. The as-prepared core-shell heterostructured 

TiO2/PVDF@MoS2 fibers have good visible light absorption performance owing to the addition of 

narrow bandgap MoS2. As the core-shell heterostructure can greatly improve the photo-generated 

electron-hole pair’s separation efficiency, the as-prepared core-shell heterostructured 

TiO2/PVDF@MoS2 fibers have a very high dye contamination and antibiotic removal rates compared 

to the TiO2/PVDF fibers, under white light LED irradiation. Different from the main path way that 

the N-deethylation accompanied by cycloreversion to degrade RhB with TiO2/PVDF fibers, the path 

way to remove RhB with TiO2/PVDF@MoS2 core-shell heterostructured fibers is mainly the cleavage 

effect on chromospheres ring, which is a more complete degradation. Furthermore, the h+ was 

recognized as the most active species in the oxidation of organic pollutants. The results show that 

the as-prepared product has good photocatalytic activity and self-cleaning performance under 

visible light. Due to the presence of the PVDF polymer inside TiO2/PVDF@MoS2 the fiber 

membrane, the TiO2/PVDF@MoS2 core-shell heterostructured fiber has good flexibility and 

reusability, making itself a prospective material in the field of environmental management. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: The 

spectrum of LED white light used in the experiment, Figure S2: XRD patterns of (a) PVDF fibers, (b) 

MoS2/PVDF fibers & (c) MoS2 powder, Figure S3: EDS spectrum of TiO2/PVDF@MoS2 fiber, Figure S4: XPS 

survey spectrum of TiO2/PVDF@MoS2 fiber, Figure S5: Absorption spectra of RhB solutions at various 

irradiation times for different samples: (a) MoS2/PVDF, (b) P25, (c) TiO2/PVDF & (d) TiO2/PVDF@MoS2, Figure 

S6: Optical photographs of RhB solutions at various irradiation times for (a) TiO2/PVDF and (b) 

H2O

RhB

MB

0 min 25 min 50 min 75 min

100 min 125 min 150 min 175 min

0 min 25 min 50 min 75 min

100 min 125 min 150 min 175 min

a

b

c

d e f g

h i j k

l m n o

p q r s

Figure 13. The optical images taken while the water and dye droplets come into contact to the surface
of TiO2/PVDF@MoS2 core-shell heterostructured fibers (a–c). Photographs of the RhB (d–k) and
MB (l–s) droplet on the surface of TiO2/PVDF@MoS2 core-shell heterostructured fibers under visible
light illumination.

4. Conclusions

Novel flexible, recyclable, and reusable TiO2/PVDF@MoS2 fibers with core-shell heterostructures
were synthesized by one-step low temperature hydrothermal method on the basis of TBOT/PVDF
fibers prepared by electrospinning. The as-prepared core-shell heterostructured TiO2/PVDF@MoS2

fibers have good visible light absorption performance owing to the addition of narrow bandgap
MoS2. As the core-shell heterostructure can greatly improve the photo-generated electron-hole
pair’s separation efficiency, the as-prepared core-shell heterostructured TiO2/PVDF@MoS2 fibers
have a very high dye contamination and antibiotic removal rates compared to the TiO2/PVDF
fibers, under white light LED irradiation. Different from the main path way that the N-deethylation
accompanied by cycloreversion to degrade RhB with TiO2/PVDF fibers, the path way to remove
RhB with TiO2/PVDF@MoS2 core-shell heterostructured fibers is mainly the cleavage effect on
chromospheres ring, which is a more complete degradation. Furthermore, the h+ was recognized as the
most active species in the oxidation of organic pollutants. The results show that the as-prepared product
has good photocatalytic activity and self-cleaning performance under visible light. Due to the presence
of the PVDF polymer inside TiO2/PVDF@MoS2 the fiber membrane, the TiO2/PVDF@MoS2 core-shell
heterostructured fiber has good flexibility and reusability, making itself a prospective material in the
field of environmental management.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/3/431/s1,
Figure S1: The spectrum of LED white light used in the experiment, Figure S2: XRD patterns of (a) PVDF fibers,
(b) MoS2/PVDF fibers & (c) MoS2 powder, Figure S3: EDS spectrum of TiO2/PVDF@MoS2 fiber, Figure S4:
XPS survey spectrum of TiO2/PVDF@MoS2 fiber, Figure S5: Absorption spectra of RhB solutions at various
irradiation times for different samples: (a) MoS2/PVDF, (b) P25, (c) TiO2/PVDF & (d) TiO2/PVDF@MoS2,
Figure S6: Optical photographs of RhB solutions at various irradiation times for (a) TiO2/PVDF and
(b) TiO2/PVDF@MoS2, Figure S7: The effect of a water drop rolling on the surface of the TiO2/PVDF@MoS2
core-shell heterostructured fibers to remove dust.
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