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Abstract: Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles (NPs) were prepared using the
hydrothermal approach. The X-ray powder diffraction (XRD) pattern confirmed the formation of
single-phase spinel ferrite. The crystallite size was found to range from 18 to 26 nm. The lattice
parameters were found to increase with greater Niobium ion (Nb3+) concentration, caused by the
variance in the ionic radii between the Nb3+ and Fe3+. Fourier transform infrared analysis also proved
the existence of the spinal ferrite phase. The percent diffuse reflectance (%DR) analysis showed that
the value of the band gap increased with growing Nb3+ content. Scanning electron microscopy and
transmission electron microscopy revealed the cubic morphology. The magnetization analyses at
both room (300 K, RT) and low (10 K) temperatures exhibited their ferromagnetic nature. The results
showed that the Nb3+ substitution affected the magnetization data. We found that Saturation
magnetization (Ms), Remanence (Mr), and the Magnetic moment (nB) decreased with increasing
Nb3+. The squareness ratio (SQR) values at RT were found to be smaller than 0.5, which postulate
a single domain nature with uniaxial anisotropy for all produced ferrites. However, different samples
exhibited SQRs within 0.70 to 0.85 at 10 K, which suggests a magnetic multi-domain with cubic
anisotropy at a low temperature. The obtained magnetic results were investigated in detail in relation
to the structural and microstructural properties.

Keywords: spinel ferrites; Nb substitution; low temperature magnetization; optical properties;
TEM analysis

1. Introduction

Spinel ferrite nanoparticle materials are highly preferred in engineering and technology
applications like biomedicine, pharmaceuticals, sensors, magnetic resonance imaging, drug delivery,
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microwaves, high-frequency devices, information storage, and electronic chips [1–4]. The structure
and electromagnetic properties of nano-spinel ferrites can be modified by the substitution of different
cations. Rare earth substitutions are highly valuable for reducing the particle size and intensification
of the lattice parameter [5]. In this respect, substituting rare earth (RE) cations into the spinel ferrite
structure plays an important role in enhancing the dielectric, magnetic, and electric properties due
to the Fe–Fe interactions caused by the spin coupling effect of 3d electrons [6]. Therefore, electrical
and magnetic behavior may change when rare earth and iron interactions (3d–4f coupling) of the
spinel ferrites occur. Different RE substitutions have been proven to have different results on the
ferrite structure [7–9]. Many researchers have investigated the effects of RE substitution into cobalt
spinel ferrite (CoFe2O4) in bulk form, thin film, and nanoparticles [10–12]. Coercivity, anisotropic
constant, and uniaxial anisotropy were described as decreasing with the addition of m and Ce ions
into nano-cobalt ferrites [13]. Several methods have been used to synthesize nickel-substituted cobalt
ferrites, Co1−xNixFe2O4, such as the auto-combustion method, aerosol route, and co-precipitation
method [14–16]. Chen et al. [17] prepared Ni1−xCoxFe2O4 nanoparticles (NPs) using the hydrothermal
method and studied the increasing trend in saturation magnetization with increasing cobalt content,
which occurred due to the substitution of an Ni2+ ion to a Co2+ ion. Maz et al. [18] synthesized
Co1−xNixFe2O4 nanoparticles in a chemical co-precipitation process and noticed the increasing trend
of coercivity (Hc) and saturation magnetization (Ms) with increasing cobalt content.

Coercivity (Hc) and saturation magnetization (Ms) values were shown to decrease with an increase
in the Ni content in Co1−xMnxFe2O4 (0.0 ≤ x ≤ 0.4) nanoparticles [19]. A few papers have been
published on Nd3+ ion-substituted cobalt-ferrite in the Fe sites. Almessiere et al. [20] reported the
effect of the magnetocrystalline anisotropy constant decreasing with the addition of Nd3+ ions in
cobalt spinel nano-ferrites Co1−2xNixMnxFe2−yNdyO4 (0.0 ≤ x = y ≤ 0.3) synthesized using the sol-gel
method. Yadav et al. [21] examined the magnetic and structural properties by incorporating Nd3+ ions
in cobalt spinel ferrite nanoparticles, CoFe2−xNdxO4 (x ≤ 0.1), synthesized using the sol-gel method.
Tahar et al. [22] investigated the RE = La, Ho, Tb, Ce, Gd, Nd, and Sm substitutions in CoFe1.9RE0.1O4

nanoparticles. Aside from these RE substitutions, Nd3+ ions considerably decrease the coercivity
and saturation magnetization. Zhao et al. [23] reported that coercivity and saturation magnetization
slightly increased with Nd3+ substitution in cobalt ferrite nanocrystals CoFe2−xNdxO4 synthesized by
the emulsion method. In this study, the effect of Nb3+ substituted in the Co-Ni spinel ferrite on the
structural, optical, and magnetic properties are discussed in detail.

2. Experimental Materials and Methods

2.1. Materials and Instruments

A Rigaku Benchtop Miniflex X-ray diffraction (XRD) diffractometer (Tokyo, Japan) with Cu Kα

radiation at room temperature (RT) over the 2θ range from 20◦ to 70◦ was used for the structural
analysis. Scanning electron microscopy (SEM, FEI Titan ST, Hillsboro, OR, USA) along with energy
dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM; FEI, Morgagni
268, Prague, Czech Republic) were used for the morphological and composition analyses. Spectral
analysis of all products was performed via Fourier transform infrared (FT-IR) spectroscopy (Bruker,
Berlin, Germany). Ultraviolet-visible (UV-vis) diffuse reflectance (DR%, Shimadzu, Tokyo, Japan)
spectra were recorded in the 200 to 800 nm wavelength range using a DR spectrophotometer.
The magnetic properties of the products were measured using a Quantum Design SQUID-PPMS
vibrating sample magnetometer (PPMS DynaCool, Quantum Design, San Diego, CA, USA).

Cobalt (II) nitrate (Co(NO3)2), nickel (II) nitrate (Ni(NO3)2), iron (III) nitrate hexahydrate
(Fe(NO3)3.6H2O), and niobium (V) nitrate (Nb(NO3)5) were received from Sigma-Aldrich (St. Louis,
MO, USA) and used as received.



Nanomaterials 2019, 9, 430 3 of 14

2.2. Procedure

The hydrothermal method approach was used to synthesize Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x
≤ 0.10) nanoparticles. Stoichiometric amounts of iron, nickel, and cobalt nitrates were dissolved in
50 mL deionized (DI) H2O. Niobium nitrate was dissolved in concentrated HCl in a separate beaker
with vigorous stirring. Then, the two solutions were mixed together and stirred for an extra 30 min
and the pH of the resulting solution was adjusted to 11 by adding sodium hydroxide (NaOH) with
continuous stirring for 30 min. Before transfer to a Teflon-lined vessel, the mixture was pretreated in
an ultrasonic water bath for 30 to 40 min. The final solution was transferred to a stainless-steel Teflon
autoclave (200 mL) and placed in an oven at 180 ◦C for 10 h. The resulting product was washed with
hot deionized water three times and left to dry overnight at 80 ◦C for 5 h.

3. Results and Discussion

3.1. XRD Analysis

Figure 1 displays the crystal structure of the Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles.
The XRD analysis showed the signature peaks of a single phase of Co spinel ferrite with no
presence of any extra secondary phase, which means that the Nb3+ was well dissolved in the
Co–Ni crystal. Only the x = 0.02 sample had a minor amount of the Fe2O3 phase as an impurity.
The structural parameters were calculated through Rietveld refinement using the XRD experimental
data, as registered in Table 1. We found that the lattice parameters increased with the rise in the Nb3+

amount due to the larger ionic radius of Nb3+ (0.72 Å) in comparison with Fe3+ (0.64 Å), which caused
stress in the lattice. The crystallite sizes were estimated to range from 18 to 26 nm.
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Table 1. Nb content and refined structural parameters (a is the lattice parameter, V is the volume of the
cell, DXRD is the crystallite size obtained from the broadening of the highest peak by using the Scherrer
method, χ2(chi2) is the squared ratio, RBragg is the Bragg factor) for the Co0.5Ni0.5NbxFe2−xO4 (0 ≤ x
≤ 1.0) nanoparticles.

x a (Å) V (Å)3 DXRD (nm) ± 0.09 χ2(chi2) RBragg

0.00 8.345 (1) 581.15 22.86 1.75 12.67
0.02 8.345 (9) 581.33 18.71 1.32 3.12
0.04 8.352 (3) 582.67 24.18 1.52 3.99
0.06 8.356 (6) 583.57 27.59 1.32 2.48
0.08 8.362 (3) 584.76 26.86 1.77 7.88
0.10 8.362 (4) 584.77 24.70 1.32 8.77

3.2. Spectral Analysis

Figure 2 highlights the FT-IR spectra of Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10). The strongest
stretching bands at 584.36 and 410.7 cm−1 represent the Co spinel ferrite structure. These bands can be
attributed to the stretching of the vibration band between F and O. The vibration bands shifted toward
higher wavenumbers when the Nb3+ content increased, which was due to the variation in the bond
length as a result of the larger ionic radii of Nb3+ [24–26].
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Figure 2. Fourier transform infrared (FT-IR) spectra of the Co0.5Ni0.5NbxFe2−xO4 (0.0 ≤ x ≤ 1.0) 
nanoparticles. 

3.3. Morphological Analysis 

The Field emission scanning electron microscope (FE-SEM) microstructure of the 
Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles is depicted in Figure 3. The images exhibited a 
higher agglomeration cubic shape with an average grain size of less than 27 nm, which agreed with 
the crystal size estimated by XRD. The EDX spectrum and elemental mapping confirmed the 
existence of Co, Ni, Nb, and O in compositions x = 0.02 and 0.06, as shown in Figure 4. The 
quantitative analysis of selected samples that recorded the atomic weigh of x = 0.02 and 0.06 showed 
that the estimated values were close to the expected values for the samples. The TEM and SAED 
(Selected area electron diffraction) pattern of the Co0.5Ni0.5NbxFe2−xO4 (x = 0.06) nanoparticles are 
shown in Figure 5. The images confirmed the cubic spinel structure and aggregate. 

Figure 2. Fourier transform infrared (FT-IR) spectra of the Co0.5Ni0.5NbxFe2−xO4 (0.0 ≤ x ≤
1.0) nanoparticles.

3.3. Morphological Analysis

The Field emission scanning electron microscope (FE-SEM) microstructure of the Co0.5Ni0.5NbxFe2−xO4

(0.00 ≤ x ≤ 0.10) nanoparticles is depicted in Figure 3. The images exhibited a higher agglomeration cubic
shape with an average grain size of less than 27 nm, which agreed with the crystal size estimated by XRD.
The EDX spectrum and elemental mapping confirmed the existence of Co, Ni, Nb, and O in compositions x
= 0.02 and 0.06, as shown in Figure 4. The quantitative analysis of selected samples that recorded the atomic
weigh of x = 0.02 and 0.06 showed that the estimated values were close to the expected values for the samples.
The TEM and SAED (Selected area electron diffraction) pattern of the Co0.5Ni0.5NbxFe2−xO4 (x = 0.06)
nanoparticles are shown in Figure 5. The images confirmed the cubic spinel structure and aggregate.
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3.4. Optical Analysis

The optical properties of Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles were studied using
a DR-UV-visible spectrophotometer ranging from 200 to 800 nm. Figure 6 shows that the compositions
at different concentrations exhibited spectra in the visible range. The Kubelka–Munk model was used
to compute the optical band gap energy (Eg) [27]. The band gap energy was calculated using a plot of
(αhv)2 vs. photon energy (hv), which is also called the Tauc plot, of the Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤
x ≤ 0.10) nanoparticles (Figure 7).

The band gap values were 0.25, 0.35, 0.51, 0.72, 0.76, and 0.77 eV for x = 0.00, 0.02, 0.04, 0.06,
0.08, and 0.1, respectively. When the value of x increased, the band gap value increased. The increase
in the band gap value was ascribed to the development of the energy level or interface defects in
M. Almessiere et al. [28]. The increase in the band gap could also be due to the synergistic effect of
nano-ferrite with niobium, which decreases the electron hole recombination [29].
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Figure 6. DR% spectra of the Co0.5Ni0.5NbxFe2−xO4 (0.0 ≤ x ≤ 0.10) nanoparticles.
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Figure 7. [αhv]2 versus hv graphs of the Co0.5Ni0.5NbxFe2−xO4 (0.0 ≤ x ≤ 0.10) nanoparticles.
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3.5. Magnetization Investigations

The magnetization plots against an applied magnetic field of ±20 kOe, M(H) for all the
Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles performed at RT are illustrated in Figure 8.
Table 2 summarizes the various deduced magnetic parameters for all the Co0.5Ni0.5NbxFe2−xO4

(0.00 ≤ x ≤ 0.10) nanoparticles at RT. The Nb3+ substitution in the Fe3+ sites altered the magnetic
properties of the CoNi ferrite. The different CoNi ferrites displayed remanence magnetization
(Mr) ranging from 13.00 to 23.66 emu/g. Hc ranged from 207.31 to 1129.92 Oe. The Mmax,20

(magnetization at a maximum field of 20 kOe) was found to be between 42.36 and 49.77 emu/g.
The Stoner–Wohlfarth (S–W) theory was used to extract the saturation magnetization (Ms) [30–32].
An example of the estimation of Ms for the x = 0.00 sample is shown in Figure 9. The extrapolation
of this plot at high magnetic fields approaching zero produces the Ms value. The Ms values of
the Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles ranged from 43.15 to 50.62 emu/g at RT.
According to the obtained findings, we confirmed that the differently produced Co0.5Ni0.5NbxFe2−xO4

(0.00 ≤ x ≤ 0.10) nanoparticles have a soft ferromagnetic (FM) nature at RT.

Table 2. Magnetic parameters of the Co0.5Ni0.5NbxFe2−xO4 (0 ≤ x ≤ 1.0) nanoparticles at room
temperature (RT) (Mmax,20: max magnetization at 20 kOe, Ms: saturation magnetization, Mr: remanence
magnetization, Ka: magnetic anisotropy constant, SQR: squareness ratio, Hc: coercivity and nB:
magnetic moment).

x Mmax,20
(emu/g)

Ms
(emu/g)

Mr
(emu/g)

Ka
(Erg/g) SQR Hc

(Oe)
nB

(µB)

0.00 49.77 50.62 18.47 1.96 × 105 0.365 648.11 2.13

0.02 47.98 48.81 20.9 1.74 × 105 0.428 509.9 2.06

0.04 46.57 47.36 13 1.78 × 105 0.274 286.11 2.00

0.06 45.68 46.52 23.66 2.16 × 105 0.509 1129.92 1.97

0.08 43.93 44.71 18.5 1.77 × 105 0.414 775.67 1.90

0.10 42.36 43.15 13.48 1.63 × 105 0.312 207.31 1.84

The M(H) were also performed for all of the Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles
at 10 K (Figure 10). The deduced magnetic parameters at 10 K are listed in Table 3. Hc ranged from
708.93 to 5882.24 Oe. Mr ranged from 34.11 to 48.09 emu/g. The Mmax,20 values ranged from 45.36 to
57.22 emu/g. Ms varied from 45.71 to 57.96 emu/g. Spinel ferrite nanoparticles have been reported
to have a superparamagnetic threshold below 10 nm [33]. Since our nanoparticles had dimensions
larger than 10 nm, the effect of the superparamagnetic state nanoparticles on lower magnetization was
neglected. The obtained magnetic results at 10 K revealed the semi-hard FM nature of all products.
Compared to 300 K, the Ms, Mr, and Hc showed a remarkable increase at 10 K. This increase was due
to reduced thermal fluctuations of the magnetic moments [34,35]. In the literature, the anisotropy
contribution of RE ions has been reported via spin-orbit coupling when they occupy the B sites of
spinel ferrites [31,36]. This is one of the reasons for the observation of higher coercivities at CoMn
ferrites doped with rare-earth ions.

At both measurement temperatures, the x = 0.00 sample had the highest magnitudes of Ms, which
were about 49.77 and 57.22 emu/g at 300 and 10 K, respectively. Likewise, the x = 0.00 product
exhibited the maximum Mr values with magnitudes of 18.47 and 48.09 emu/g at 300 and 10 K,
respectively. The magnetization magnitudes found in the present study for the non-substituted sample
were comparable to those of the CoFe2O4 and NiFe2O4 inverse spinel ferrites [37,38], but they are
larger than those reported in the literature for Co0.5Ni0.5Fe2O4 [39]. The obtained magnitudes were
smaller than those reported for both the bulk CoFe2O4 and NiFe2O4 inverse spinel ferrites [33,40].
The lower Ms and Mr magnitudes, in comparison to that of the bulk samples, were largely attributed
to the smaller crystallite size, which leads to a structural disorder on the surface since the spin
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disorder will be significant when the volume and surface ratio are important [41]. Spin canting as
a result of antiferromagnetic interaction competition, the construction of a magnetic inactive layer,
the non-collinear arrangement of the magnetic moments of Fe3+ ions, and the disordered cations
distributions on the surface could all explain the lowered magnetization magnitudes [42,43].
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Table 3. The deduced magnetic parameters of the Co0.5Ni0.5NbxFe2−xO4 (0 ≤ x ≤ 1.0) nanoparticles
at 10 K (Mmax,20: max magnetization at 20 kOe, Ms: saturation magnetization, Mr: remanence
magnetization, Ka: magnetic anisotropy constant, SQR: squareness ratio, Hc: coercivity, and nB:
magnetic moment).

x Mmax,20
(emu/g)

Ms
(emu/g)

Mr
(emu/g)

Ka
(Erg/g) SQR Hc

(Oe)
nB

(µB)
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Figure 10. Magnetization against an applied field of ±20 kOe, M (H), for all of the Co0.5Ni0.5Fe2−xO4

(0.0 ≤ x ≤ 0.10) nanoparticles at 10 K.

At both temperatures, the highest Hc was observed for x = 0.06 and the lowest for x = 0.10. Various
parameters governed the coercivity, like grain size, magnetic particle morphology, magnetocrystalline
anisotropy, strains and exchange coupling between the collinear spins in the core, and the canted
spins on the surface [34,35]. The improvement in coercive field can be principally attributed to the
increase of magnetocrystalline anisotropy [44,45]. Equation (1) describes the proportionality between
the coercivity Hc and magnetic anisotropy constant Ka [44].

Hc ∝
2Ka

µo Ms
(1)

where µo is the permeability constant. When the magnetic anisotropy increases with increasing
substitution content, coercivity grows. To determine the anisotropy constant Ka, the expression used to
estimate the values of Ms according to the S–W fit is shown below [31,32].

M = Ms

(
1 − β

H2

)
(2)

Consequently, the slope of the linear fitting provides the constant β, which is related to the
magnetocrystalline anisotropy constant Ka. Once the values of the β constant are determined,
the magnetic anisotropy constant (Ka) can be estimated by using the equation below [31,32].

Ka = Ms

(
15 β

4

) 1
2

(3)

The deduced Ka values at 300 and 10 K are listed in Tables 2 and 3, respectively. The magnetocrystalline
anisotropy was the maximum for the x = 0.06 product and was the minimum for x = 0.10. This result
explains the highest coercivity in the x = 0.06 sample.

The Nb3+ substitution led to a gradual reduction in the Ms and Mr values. The lowest magnitudes
were observed for the Co0.5Ni0.5Fe1.9Nb0.1O4 (x = 0.1) sample. The minimum Ms values belonging to
the x = 0.1 product were about 43.15 and 45.71 emu/g at 300 and 10 K, respectively. The minimum Mr

for x = 0.1 were 13.00 and 34.11 emu/g at 300 and 10 K, respectively. The evolutions in the Mr values
showed a similar trend to Ms with respect to the Nb3+ concentration. It has been reported previously
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that evolutions in the Mr values depend principally on evolutions in Ms and on the net alignment of
magnetization grains derived from super-exchange interactions between the magnetic particles [32].

Numerous factors can affect the magnetic properties of spinel ferrites, including the crystallite size
change, variations in magnetic moments (nB), variations in the nature and concentration of different
sites, and the preferred site occupancy of different ions [36]. The local strains and the super-exchange
interactions between different ions might influence the magnetic parameters [34,35]. Principally,
the magnetic moment of spinel ferrites is derived from the iron ions and their distribution in the crystal
sites. The A–A and B–B interactions were unimportant. However, the A–B exchange interactions
were dominant. Consequently, any factors that affect the strength of various exchange interactions
will modify the magnetization. In our case, the observed decrease in Ms and Mr values with Nb3+

substitution was attributable to the weakening of the exchange interactions in the Fe sites. The ions of
the host Fe3+ (0.62 Å) displayed a slightly smaller ionic radius when compared to that of Nb3+ (0.72 Å).
The contrast of magnetic moments and ionic radii of the host and substituted ions might produce
a non-collinear ferromagnetic arrangement and local strains that cause the disorder and variations
in electronic states in the hexaferrite systems [32,34,35]. The substitution of Fe3+ ions with Nb3+ ions
resulted in increasing the distance separating the magnetic ions and, therefore, decreasing the strength
of the A–B super-exchange interactions. The relation between the magnetic moment (nB) and Ms is
given by the formula below [36].

nB =
Molecular Weight × Ms

5585

The estimated nB values of all of the Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles at 300
and 10 K are summarized in Tables 2 and 3, respectively. The decrease in nB values resulting from
the weakening of the super-exchange interactions among the various sites led to a decrease in the nB
values. In our case, nB was found to decrease with increasing Nb3+ content. The x = 0.00 sample where
the Ms value was the highest displayed the greatest nB. The x = 0.10 sample where the Ms value was
the lowest displayed the lowest nB. This indicates a weakening of the super-exchange interactions.

The squareness ratios (SQR = Mr/Ms) were calculated for all the Co0.5Ni0.5NbxFe2−xO4 (0.00
≤ x ≤ 0.10) nanoparticles at 300 and 10 K. According to the S–W theory, the SQR can take two
values including one around 0.83 associated with the cubic anisotropy, and another around 0.5 that
corresponds to uniaxial anisotropy [30,32]. The findings of SQR equal to or above 0.5 indicated that the
particles were in the single magnetic domain, and those below 0.5 could be attributed to the formation
of a multi-domain structure [46]. As can be seen from the tables, the SQR at RT was found to be around
0.509 for the x = 0.06 sample, which suggests a single magnetic domain with uniaxial anisotropy.
However, the other samples displayed SQRs that ranged from 0.31 to 0.42, which were less than 0.50
and can be attributed to surface spin disorder effects. This SQR was lower than 0.5, which indicates
the formation of a multi-domain structure with uniaxial anisotropy. At 10 K, the different samples
were found to have SQRs ranging between 0.70 and 0.85, which are greater than 0.5. This suggests
a single magnetic domain with cubic anisotropy.

4. Conclusions

A series of Nd3+-substituted Co-Ni ferrite was synthesized via the hydrothermal approach.
The XRD and FT-IR analyses proved the existence of single-phase spinel Co-ferrite. TEM analyses
showed the hexagonal morphology of the products with minor agglomeration. The optical results
showed that the band gap of the Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles were 0.25, 0.35,
0.51, 0.72, 0.76, and 0.77 eV, respectively. The M(H) analyses showed an FM comportment at both
RT and 10 K for the Co0.5Ni0.5NbxFe2−xO4 (0.00 ≤ x ≤ 0.10) nanoparticles. The magnetic parameters
strongly depend on temperature and Nb substitution content. The deduced Ms, Mr, and nB values
were the highest for the x = 0.00 sample and decreased with increasing Nb substitution. This effect is
due to the weakening of super-exchange interactions, the creation of local strains, the preferred site
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occupancy, and the decrease in the magnetic moments (nB) with respect to the Nb content. The SQR
values at RT were found to be smaller than 0.5, which postulates a single domain nature with uniaxial
anisotropy for all the produced ferrites. However, the different samples exhibited SQRs in the 0.70–0.85
range at 10 K, which suggests a magnetic multi-domain with cubic anisotropy at a low temperature.
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