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Abstract: The use of the surface plasmon resonance (SPR) effect of plasmonic metal nanocomposites to
promote photocarrier generation is a strongly emerging field for improving the catalytic performance
under visible-light irradiation. In this study, a novel plasmonic photocatalyst, AuPt/N–TiO2,
was prepared via a photo-deposition–calcination technique. The Au nanoparticles (NPs) were
used herein to harvest visible-light energy via the SPR effect, and Pt NPs were employed as a
cocatalyst for trapping the energetic electrons from the semiconductor, leading to a high solar-energy
conversion efficiency. The Au2Pt2/N–TiO2 catalyst, herein with the irradiation wavelength in the
range 460–800 nm, exhibited a reaction rate ~24 times greater than that of TiO2, and the apparent
quantum yield at 500 nm reached 5.86%, indicative of the successful functionalization of N–TiO2 by
the integration of Au plasmonic NPs and the Pt cocatalyst. Also, we investigated the effects of two
parameters, light source intensity and wavelength, in photocatalytic reactions. It is indicated that
the as-prepared AuPt/N–TiO2 photocatalyst can cause selective oxidation of benzyl alcohol under
visible-light irradiation with a markedly enhanced selectivity and yield.

Keywords: plasmonic photocatalyst; metal nanoparticle; N–TiO2; nanocomposites; photocatalytic
selective oxidation

1. Introduction

Titanium dioxide (TiO2) was extensively studied in the past two decades as a photocatalyst
because it can eliminate environmental pollutants, purify air, and produce clean hydrogen energy
through the efficient utilization of solar energy [1]. Nevertheless, owing to the rapid recombination rate
of the photogenerated electron–hole pairs and limited visible-light response, the application of pure
TiO2 is restricted. Appropriate modification, such as doping non-metals, is essential for TiO2 to allow
the further utilization of solar energy [2]. Nonetheless, the reported reactivity and quantum efficiency
of TiO2 derivative materials remains extremely low to meet the requirements of practical applications.

In order to sufficiently improve photocatalytic efficiency, both the visible-light absorption region
and electron–hole separation of the photocatalyst should be optimized. Recently, semiconductor
nanomaterials decorated with noble-metal nanoparticles (NPs) were recognized as a promising
method for boosting the performance of photocatalysts [3–8]. Coupling semiconductors with noble
metals (such as platinum and palladium) as the cocatalyst can form a Schottky barrier, serving as the
“electron trapper” to improve charge migration and separation [9,10]. Plasmonic metals (gold and
silver) nanoparticles with attractive SPR properties under visible-light excitation can be used as
antennas for converting light energy into a local electric field [7,11,12], and improve the photocarrier
generation/separation via plasmon-induced resonance energy transfer (PIRET) and the hot-electron
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injection mechanism [13,14]. Consequently, the combination of multi-functional metal NPs in a noble
metal/semiconductor nanostructure might effectively enhance the generation of photo-carriers and
strengthen charge migration and separation.

For the hot-electron injection effect, the so-called SPR-sensitization effect, the plasmonic metal
nanoparticles act as a dye molecule in dye-sensitized solar cells; as excited by the incident high-energy
photon, the SPR effect of the plasmonic metal causes confined free electrons oscillating with incident
light to generate excitation of hot electrons via non-radiative decay, so-called “plasmonic hot-electron
generation”. Furthermore, these hot electrons with energy high enough to overcome the Schottky
barrier can inject into the adjacent semiconductor’s conduction band [15–17]. To facilitate the PIRET
process, the existence of intra-bandgap level-related defects can play a crucial role in the promotion of
PIRET [18,19]. For instance, a TiO2 photoanode based on N-doped exhibits enhanced photocurrent
behavior induced by a PIRET water-splitting reaction [20]. N-doped TiO2 introduces a new
intra-bandgap level, which causes the absorption range of the semiconductor photocatalyst to overlap
with the extinction wavelength of the plasmonic material, thereby obtaining a sufficient resonance
interaction. In this case, the energy of the plasmonic oscillation is transferred from the plasmonic
material to the semiconductor photocatalyst by an electromagnetic field or a dipole–dipole interaction.

In order to fully understand the excellent photocatalytic activity of the bifunctional
noble-metal-modified N-doped TiO2 under visible-light excitation, a detailed comparative study
of light intensity and light wavelength is required. Herein, we integrated the plasmonic effect and a
Schottky junction into one nanostructure by forming bifunctional plasmonic photocatalyst co-decorated
with Au and Pt NPs and N–TiO2. The activities of the AuPt/N–TiO2 samples were evaluated by
photocatalytic oxidation of benzyl alcohol. By strictly limiting the effects of other factors, we observed
a direct correlation between photocatalytic activity and the irradiation parameter, which is essential
for the design to improve the efficiency of the photocatalytic reaction. The results obtained in this
paper are expected to contribute to the rational design and development of multifunctional metal
nanoparticles for applications targeting solar energy conversion.

2. Materials and Methods

2.1. Synthesis

In a typical procedure, TiO2-supported nanocrystals were prepared according to our previous
paper [21]. The prepared TiO2 product was mixed and ground with urea (1:4), and then the mixture
was heated in air at 400 ◦C for two hours to obtain N–TiO2 [22]. Finally, the noble metals were
deposited on the N–TiO2 via a typical photo-deposition calcination method, and the as-prepared
catalysts were annealed in air for further use. All experimental methods are fully reported in the
Supplementary Materials.

2.2. Sample Characterization

X-ray diffraction (XRD) patterns of the samples were recorded using a PANalytical X’pert MRD
system (Almelo, Netherlands). Diffuse-reflectance ultraviolet–visible light (UV–Vis) spectra (DRS)
of the samples were recorded on a Shimadzu 3600 UV–Vis spectrophotometer (Kyoto, Japan) in
the air against BaSO4. Transmission electron microscopy (TEM) images and scanning electron
microscopy (SEM) images were taken by a FEI Tecnai F20 microscope (Hillsboro, OR, USA) and
Hitachi S4800 microscope (Tokyo, Japan). X-ray photoelectron spectra (XPS) of the samples were
recorded on a Thermo-Fisher Scientific ESCALAB 250XI system (Waltham, OR, USA). The steady-state
photoluminescence (PL) spectrum was recorded by a Hitachi F-7000 fluorescence spectrophotometer
(Tokyo, Japan). Photocurrent and electrochemical impedance spectroscopy measurements of the
photocatalyst were performed on a CHI 760D workstation (Shanghai, China). All electrochemical
measurements were made at room temperature.
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3. Results and Discussion

SEM and TEM images (Figure 1 and Figure S1) were recorded to observe the morphology of
as-prepared Au2Pt2/N–TiO2. As shown in the TEM images, gold nanoparticles with an average size
of ~25 nm can be observed instead of the presence of bimetallic Au–Pt alloy. It is suggested that
the size of the metal nanoparticles is critical for modifying the chemical composition of the resulting
nanomaterials, and the bimetallic alloy usually can be observed in the case of small gold (~7 nm) and
platinum (~2 nm) nanoparticles [23]. Here, in this case, the gold nanoparticle size was larger than 20 nm,
the formation of the bimetallic alloy NPs was not thermodynamically favored, and the segregation of
gold and platinum nanoparticles was maintained. On the other hand, the platinum metal NPs was
observed with a mean size of 2 nm (Figure 1h), which was uniformly decorated on the N–TiO2 support.
Furthermore, interplanar distances of 0.235 and 0.225 nm for gold and platinum NPs were observed in
the high-resolution TEM images (Figure 1f,g), which were indexed to the lattice spacings of Au(111)
and Pt(111) planes of face-centered cubic (fcc) structures, respectively [24]. Another type of lattice
fringe (~0.352 nm) can be indexed to the (101) plane of anatase TiO2. The results obtained from the
energy-dispersive X-ray (EDX) spectrum showed that the noble metal’s composition in Au2Pt2/N–TiO2

(list in Table S1, Supplementary Materials) was consistent with the nominal load. Furthermore,
the Brunauer–Emmett–Teller (BET) characterization results (Figure S2, Supplementary Materials)
indicated that all catalysts exhibited similar surface areas, while pore volume and pore size decreased
after the loading of noble-metal nanoparticles.
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Figure 1. SEM image of Au2Pt2/N–TiO2 (a,b) and TEM and high-resolution TEM (HRTEM)
images of N–TiO2 (c,d) and Au2Pt2/N–TiO2 (e–g). Nanoparticle size distributions of Au and Pt
in Au2Pt2/N–TiO2 (h). Scale bar (e,f): 2 nm.

In the XRD characterization, all catalysts exhibited diffraction peaks dominated by TiO2 (Figure 2a).
Concerning the Au NPs, some additional weak peaks observed at 38◦ corresponded to Au; however,
diffraction peaks for Pt were not found in the XRD patterns, possibly related to the line broadening
caused by the quantum-size effects of small-sized Pt NPs [25]. Figure 2b shows the UV–Vis absorption
spectra (DRS) of the as-prepared catalyst. The absorption band of the N–TiO2 sample in the visible
region of 400–500 nm corresponds to the presence of nitrogen. This effect is related to nitrogen doping,
which possibly leads to the formation of hybridized states at the top of the valence band of the
nitrogen 2p states and oxygen 2p states or an N-induced intermediate gap level [26]. XPS profiles
were recorded to investigate the localization of nitrogen. N was mainly located at the interstitial
atom on the Ti–O–N bonds (Figure S3, Supplementary Materials). By introducing impurity levels
into the TiO2 lattice, more overlapping portions of the absorption spectrum can be obtained between
the TiO2 and Au nanoparticles. In this way, the near-field electromagnetic resonance of the SPR
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effect can collect enough energy to stimulate the generation of electron–hole pairs through the PIRET
process. Compared to N–TiO2, Au2Pt2/N–TiO2 exhibited a stronger absorption feature around
550 nm in Figure 2b, corresponding to the SPR peak of Au NPs [27]. As reported previously [6,28–31],
plasmonic nanoparticles (gold, silver) loaded on a semiconductor, with a broad absorption cross-section,
are capable of absorbing visible light and generating hot electrons through intraband transitions.
These high-energy hot electrons then overcome the Schottky barrier and inject into the conduction
band of the semiconductor. In this way, the SPR effect of the metal nanoparticles leads the photon
energy transfer to the adjacent semiconductor or molecular complex, which in turn drives the
chemical reaction.

Also, the photoluminescence emission (PL) of the samples was recorded to understand the
behavior of the electrons and holes generated by light in catalysts. Here, the steady-state fluorescence
emission spectrum (Figure 2c) showed a substantial attenuation of the PL signal owing to the deposition
of noble metal (Pt), indicating that Pt NPs effectively form the Schottky barrier at the metal/N–TiO2

heterojunction. This Schottky barrier, in turn, reduces electron–hole (e−–h+) pair recombination
and increases the number of photoreactive photo-carriers available for photoreaction [32]. To further
determine the role of the noble-metal nanoparticles in illumination, the photoelectrochemical properties
of catalyst were characterized (Figure 2d), and it is demonstrated that the photocurrent intensity of
Au2Pt2/N–TiO2 is considerably higher than that of N–TiO2. Such an apparent transient photocurrent
enhancement is primarily associated with the available gold NPs, which absorb visible light and
promote photocarrier generation through the SPR effect. Subsequently, we used the electrochemical
impedance spectra (EIS) experiments to investigate the generation of the electron. The results of
charge transport characteristics (Figure 2d inset) revealed that the radius of Au2Pt2/N–TiO2 in
the middle-frequency region is smaller than the radius of N–TiO2, which demonstrates that the
photoinduced electron–hole separation efficiency is higher, and the interface charge can be transferred
to the electron donor more quickly.
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response (d) and electrochemical impedance spectroscopy (EIS) Nyquist plots (inset) of the sample
electrodes of TiO2, N–TiO2, Au2Pt2/TiO2, Au2Pt2/N–TiO2 under visible-light irradiation.
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For investigating the photocatalytic performance, we used the selective oxidation of benzyl
alcohol as a probe reaction to study the photocatalytic activity of Au2Pt2/N–TiO2 catalyst for
visible-light-driven organic catalytic synthesis [33–35]. Figure 3a summarizes the reaction parameters
such as conversion, yield, and selectivity data. After 2.5 h, benzaldehyde formed over bare TiO2

(yield: 3.37%) under visible-light irradiation. Considering that bare TiO2 does not absorb visible light,
this visible-light catalytic reactivity can be ascribed to the ligand-to-metal charge transfer resulting
from the surface complex formed by the adsorption of benzyl alcohol on the surface of TiO2 [36–38].
Moreover, N–TiO2 does not significantly increase the activity, and the selectivity in TiO2 and N–TiO2

cases was low (~70%). Hence, the loading of metal NPs can significantly improve reaction efficiency
compared with TiO2. Among all samples, the Au2Pt2/N–TiO2 composite presented the highest
photocatalytic performance, and its yield was 24 times that of TiO2. On the contrary, the yield
of the Au2Pt2/TiO2 photocatalyst was only 70% of the Au2Pt2/N–TiO2, which suggests that the
overlapped intrinsic absorption of N–TiO2 with plasmonic material may boost the PIRET process.
Moreover, the yields over Au2/N–TiO2 and Pt2/N–TiO2 increased by 5.5 and 19 times, respectively,
indicating that the Schottky barrier formed between Pt nanoparticles and TiO2 is crucial for the
improvement in the catalyst efficiency. It is interesting to note that, after the loading of noble-metal
NPs, the selectivity increased from 73.8% to greater than 95%, which means that, when noble-metal
nanoparticles are used as photocatalysts for selective oxidation of benzyl alcohol, the photolysis of the
reaction is negligible.

To better understand the factors affecting the performance of Au2Pt2/N–TiO2 photocatalyst,
we tuned and investigated the light-source wavelength and intensity in the photocatalytic reaction.
The most significant enhancement in the yield of the reaction was observed by irradiation of 460–560 nm
over Au2Pt2/N–TiO2 photocatalyst (Figure 3b), accounting for 81.26% of the strengthening of the
total light irradiation. Also, we used a multiple-wavelength laser light source to confirm the effect
of illumination wavelength (Figure 3d and Figure S4, Supplementary Materials). Au2Pt2/N–TiO2

exhibited an exceptionally high apparent quantum yield at two wavelengths (500 nm and 532 nm),
with 5.86% at 500 nm and 4.57% at 532 nm. Moreover, it is believed that there are two possible
mechanisms that may affect the performance of the photocatalytic activity, namely hot-electron
injection and PIRET. Upon irradiation of visible light, following light absorption and SPR excitation in
these nanostructures, electromagnetic decay takes place on a femtosecond timescale non-radiatively
by transferring the energy to hot electrons; then, these “hot enough” electrons with high energy would
inject into the N–TiO2 conduction band. In this manner, the apparent quantum yield will fit well
with the pattern of the plasmonic metal absorption spectrum, which is consistent with an observation
reported in previous literature [39]. On the other hand, in this case, nitrogen doping introduces a new
intra-bandgap level above the TiO2 valence band, which can resonate with the electromagnetic field
generated by the gold SPR effect, and the electromagnetic field is then able to improve the generation
of photocarriers from intra-bandgap levels to the TiO2 conduction band through the PIRET process.
As a result, it will further increase the photocatalytic efficiency. Therefore, a high apparent quantum
yield (AQY) was observed in the band that was contributed by the hot-electron injection mechanism
caused by plasmonic absorption and the PIRET mechanism. Subsequently, further analysis (Figure 3c)
showed that the correlation between the dependence of light enhancement on optical irradiance of
all photocatalysts indicates that photoexcitation intensity is a crucial factor for the photo-enhancing
activity, which is consistent with previously published literature [40,41]. The above analysis suggested
that the enhanced activity on the Au2Pt2/N–TiO2 catalyst is dominated by the specific illumination
wavelength and irradiation intensity. Through the analysis of PL and photoelectrochemical tests,
we believe the following two factors can describe this: (1) through the loading with Au NPs (plasmonic
nanoparticles), on the one hand, plasmonic photocatalysts can utilize a specific wavelength of photons
(especially in the visible-light range) to extract hot electrons from the plasmonic metals and more
efficiently generate electron–hole pairs. On the other hand, due to the strong near-field electromagnetic
resonance caused by the surface plasmons, the rate of generation of photocarriers in TiO2 is enhanced
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by the PIRET between the electromagnetic field and the resonance electronic energy levels of TiO2;
(2) the integration of a cocatalyst such as Pt NPs can result in the formation of a Schottky barrier that
acts as an “electron trapper” for improving photoinduced charge transport and separation.
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Figure 3. (a) Conversion, yield, and selectivity for the photo-oxidation of benzyl alcohol to
benzaldehyde over prepared photocatalysts. (b) The dependence of yield and irradiation wavelength
over photocatalysts for the selective oxidation of benzyl alcohol. (c) The rate of photocatalytic
reaction over TiO2, N–TiO2, Au2Pt2/TiO2, and Au2Pt2/N–TiO2 as a function of irradiance intensity.
(d) Diffuse-reflectance UV–Vis spectra of Au2Pt2/N–TiO2 photocatalyst and the quantum yield for the
formation of benzaldehyde under a multiple-wavelength laser light source. The apparent quantum
yield was calculated using the equation ΦAQY = (Yvis − Ydark)/N × 100%, where Yvis and Ydark are
the yields of photocatalytic reaction under irradiation or dark conditions, and N is the number of
incident photons in the reaction vessel.

The reaction mechanism involved in the photocatalytic oxidation of benzyl alcohol on
Au2Pt2/N–TiO2 was inspected by a control experiment using different radical scavengers and by
electron spin resonance (ESR) spectroscopy measurement using spin trapping and labeling [42].
As shown in Figure 4a, there was no significant change in the reaction process for the hydroxyl (·OH)
radicals scavenged by TBA. However, when ammonium oxalate, silver nitrate, and benzoquinone
were separately added to capture photogenerated holes, electrons, and superoxide (·O2−) radicals,
the yield of the reaction was significantly reduced. This observation indicated that, in addition
to the hydroxyl (·OH) radicals, radicals such as photogenerated holes, electrons, and superoxide
radicals are involved in the process of visible-light photooxidation of benzyl alcohol. Furthermore,
ESR measurement using spin trapping and labeling (Figure 4b) indicated that oxygen can be used to
capture photogenerated electrons, providing superoxide ·O2−) radicals, which played a vital role in the
photocatalytic process. It is a known fact that the ·OH radical is a highly reactive intermediate which
can oxidize substrate molecules indiscriminately without selectivity [43]; however, superoxide (·O2−)
radicals are well-known oxidants for selective oxidation reactions [44,45]. Thus, the specific oxidation
behavior of the superoxide species in the system and the absence of hydroxyl (·OH) radicals can
advantageously favor the selective oxidation of benzyl alcohol and can be a significant cause of high
reaction selectivity.
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The possible reaction mechanism is illustrated in Figure 4c. Under specific wavelength and
intensive visible-light irradiation, the incident photons excite the SPR of the gold nanoparticles.
The electrons collectively oscillating by localized surface plasmons decay non-radiatively through
intraband or interband excitations on Au NPs, generating hot electrons with high enough energy,
then finally transfer into the N–TiO2 conduction band. Meanwhile, in this case, N-doping introduces a
new intra-bandgap level above the TiO2 valence band, which can resonate with the electromagnetic
field generated by the gold SPR effect, and the electromagnetic field is then able to improve the
generation of photocarriers from intra-bandgap levels to the TiO2 conduction band through the PIRET
process. After the contact of Pt and N–TiO2, a Schottky junction can be established at the interface,
wherein the conduction and valence band are bent upward to the N–TiO2 interface. The electrons on
the N–TiO2 conduction band are enriched by the Pt NPs via the Schottky barrier between cocatalyst
and N–TiO2 and then captured by oxygen molecules, affording superoxide (·O2−) species [11,46].
The superoxide (·O2−) species may attract the hydrogen atom of the substrate (benzyl alcohol) to form
an alkoxide intermediate; after that, the transient alkoxide intermediate undergoes rapid hydride
transfer, resulting in the elimination of proton hydrogen, and ultimately resulting in benzaldehyde.
The local electromagnetic field generated by the gold nanoparticles under visible light enhances the
excitation probability of the photogenerated electron and hole pairs of the N–TiO2 support material,
resulting in more photogenerated carriers, and then these photogenerated electrons migrate to the
cocatalyst nanoparticles across the Schottky barrier between Pt–TiO2 and react with oxygen to form
superoxide radicals.
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5,5-dimethyl-1-pyrroline-N-oxide ((DMPO-·O2

−)) as the spin trap. (c) A plausible mechanism for the
photo-oxidation of benzyl alcohol over Au2Pt2/N–TiO2 under visible-light irradiation.

As listed in Table 1, we further investigated the photocatalytic oxidation of various aromatic
alcohols over Au2Pt2/N–TiO2. As expected, Au2Pt2/N–TiO2 has not only high activity for oxidation
of aromatic alcohols, but also has excellent selectivity for carbonyl compounds. Furthermore,
the conversions of different aromatic alcohol substrates were significantly different; for example,
the substitution of para-substituted benzyl alcohol with an electron-donating group (–OCH3 and –CH3)
can increase the efficiency of the reaction, while substitution with an electron-withdrawing group
(–Cl) lowers the activity. Furthermore, the durability of the photocatalyst is also a crucial parameter
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for its further application. As shown in Figures S5 and S6 (Supplementary Materials), no significant
decrease in the photocatalytic activity was observed after five cycles, indicating that Au2Pt2/N–TiO2

maintained highly durability in the photocatalytic reaction.

Table 1. Photocatalytic selective oxidation of various aromatic alcohols on Au2Pt2/N–TiO2
a.

Entry Substrate Product Yield b

(%)
Selectivity c

(%)

1
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4. Conclusions

In this study, we successfully synthesized the plasmonic photocatalyst Au2Pt2/N–TiO2 and
investigated its catalytic performance for photo-oxidation of aromatic alcohol. A combination of
bifunctional metal NPs was demonstrated for their dual properties related to plasmonic absorption,
as well as efficient electron trapping. Coupling a semiconductor with Pt NPs as the cocatalyst can
form a Schottky barrier interface, serving as the “electron trapper” to improve charge migration and
separation. The Au nanoparticles can be used as an antenna for converting light energy into a local
electric field, and hot-electron injection and PIRET mechanisms improve photocarrier generation.
The intra-bandgap states of N-doped TiO2 take a crucial part in improving both hot-electron injection
and PIRET from plasmonic metal nanoparticles to the semiconductor. As a result, the reaction rate of
the Au2Pt2/N–TiO2 catalyst, herein, is ~24 times than that of TiO2, and the AQY at 500 nm reaches
5.86%, indicative of the successful functionalization of N–TiO2 via the integration of Au plasmonic NPs
and the Pt cocatalyst. Furthermore, it is indicated that the intensity and wavelength of the illumination
source and the choice of the light source have a significant impact on the activity of photocatalytic
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reaction. This modification of multifunctional metal NPs demonstrates promise for visible-light-driven
catalytic applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/3/391/s1:
Figure S1: TEM images of Au2Pt2/N–TiO2 photocatalyst; Figure S2: (a) N2 adsorption/desorption isotherm of
as-prepared catalysts; (b) the corresponding Barrett–Joyner–Halenda (BJH) desorption pore size distribution;
Figure S3: Fine XP spectra of (a) Au 4f, (b) Pt 4f, (c) N 1s, and (d) O 1s obtained from Au2Pt2/N-TiO2; Figure S4:
(a–d) Diffuse-reflectance UV–Vis spectra of TiO2, N-TiO2, Au2Pt2/TiO2, and Au2Pt2/N-TiO2 catalysts and the
quantum yield for the formation of benzaldehyde under laser irradiation of different wavelengths, such as
405 nm, 450 nm, 500 nm, 532 nm, and 635 nm. The apparent quantum yield was calculated using the equation
ΦAQY = (Yvis − Ydark)/N × 100%, where Yvis and Ydark denote the yield of benzaldehyde under light and
dark conditions, respectively. N denotes the number of incident photons in the reaction vessel; Figure S5:
Recyclability tests of Au2Pt2/N–TiO2 for the selective oxidation of benzyl alcohol; Figure S6: (a,b) TEM images
of Au2Pt2/N–TiO2 catalyst after photocatalysis reaction; (c,d) the EDX analysis of photocatalysis before and
after photocatalysis reaction; Table S1: Summarized physical and chemical data for TiO2, N–TiO2, Au2Pt2/TiO2,
and Au2Pt2/N–TiO2 photocatalysts.
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