Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in-vivo bioimaging

Caoxing Huang 1#, Huiling Dong 2#, Yan Su 1, Yan Wu2, Robert Narron3, and Qiang Yong 1,*

- ¹ Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, hcx@njfu.edu.cn (C.H.); suyan1994@njfu.edu.cn (Y.S.);
- ² College of Furnishings and Industrial Design, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China, ll233d@163.com (H.D.); wuyan@njfu.edu.cn (Y.W.);
- ³ Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005 USA, robnarron@gmail.com (R.N.)
- * Correspondence: swhx@njfu.com.cn (Q.Y.); Tel.: +86 25 85427797
- [#] Huiling Dong contributed equally to this work, regarding as the first author.

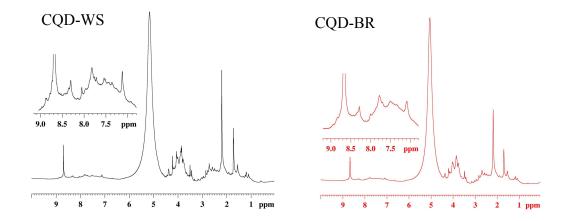


Fig. S1 ¹H NMR spectra of CQD-WS and CQD-BR

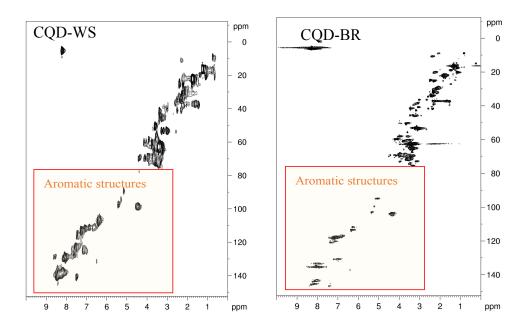


Fig. S2 2D-HSQC spectra of CQD-WS and CQD-BR

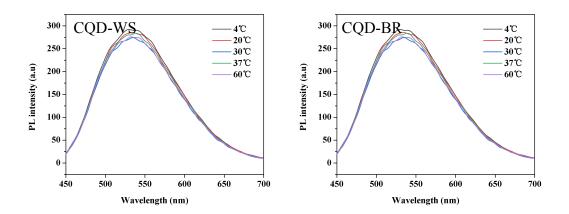


Fig. S3 the fluorescent behavior of the CQD-WS and CQD-BR observed at 4-60 °C

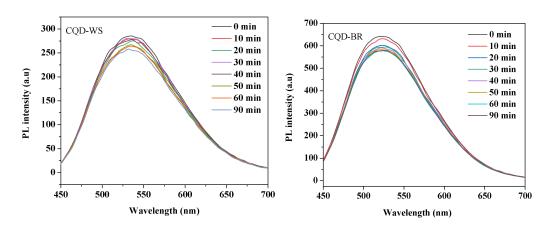


Fig. S4 Fluorescence intensity of CQD-WS and CQD-BR upon irradiation with UV light at $365 \text{ nm} (0.1 \text{ mW cm}^{-2})$ in aqueous solution