Supplementary Materials

Transformation of Combustion Nanocatalysts inside Solid Rocket Motor under Various Pressures

Jun-Qiang Li ^{1,†}, Linlin Liu ^{2,†}, Xiaolong Fu ¹, Deyun Tang ², Yin Wang ², Songqi Hu ² and Qi-Long Yan ^{2,*}

- ¹ Xi'an Modern Chemistry Research Institute, Xi'an 710065, China; llijq@sohu.com (J.-Q.L.); fuxiaolong204@163.com (X.F.)
- ² Science and Technology on Combustion, Internal Flow and Thermo-structure Laboratory, Northwestern Polytechnical University, Xi'an 710072, China; Ill@nwpu.edu.cn (L.L.); tangdy@mail.nwpu.edu.cn (D.T.); wongyin@mail.nwpu.edu.cn (Y.W.); pinecore@nwpu.edu.cn (S.H.)
- ⁺ These authors contribute equally to this work.
- * Correspondence: qilongyan@nwpu.edu.cn

Characterizations

The surface morphology and microstructure of the condensed combustion products were examined by means of scanning electron microscopy (SEM). The SEM analysis was operated on a Quanta FEG 250, with an accelerating voltage 15 or 20 kV. Meanwhile, the products have to be coated by gold to get better electron conductivity. The field emission SEM is coupled with an accessory Energy Dispersive Spectrometer (EDS), through which we can get the element distribution information of the condensed products. More detailed compositions and structure information can be obtained by Transmission electron microscopy (TEM). The TEM analysis was operated on a Tecnai G2 F20, by which the target samples were dispersed in ethanol, so that they can achieve a maximum magnification of 1 million times at an accelerating voltage of 200 kV. A laser particle size analyzer (Kurt LS13320) was used to measure the particle size distribution of the elements were characterized by powder X-ray diffraction (XRD, Panaco Sharp Xpert Pro MPD; Bruker C2 Discover with GADDS, operating at 40 kV and 40mA with unfiltered Cu Ka radiation, E1/48049 eV, k1/41.5406 A).

Figure S1. The EDS spectra of CCPs from JZ propellant grains.

Figure S2. The EDS spectra of CCPs from LZ propellant grains.

			Te	st 1		Test 2					
Samples	Element	Element concentration	Weight Percentage	Weight Percentage (Sigma)	atom Percentage	Element concentration	Weight Percentage	Weight Percentage (Sigma)	atom Percentage		
	C K	6.27	0.3789	1.10	29.56	6.82	0.3808	1.06	30.98		
	N K	0.37	0.1636	0.89	3.42	0.36	0.1615	0.88	3.33		
	ОК	23.40	0.7110	0.61	44.14	23.48	0.7040	0.59	43.34		
-	Al K	9.04	0.7491	0.23	9.60	9.29	0.7544	0.22	9.49		
	Si K	3.21	0.7492	0.11	3.27	3.21	0.7532	0.10	3.15		
	РK	0.42	1.1293	0.05	0.26	0.38	1.1353	0.05	0.23		
JZ-15 -	S K	1.37	0.8614	0.10	1.06	1.52	0.8644	0.10	1.14		
	Cl K	0.79	0.6965	0.07	0.69	0.83	0.6958	0.06	0.70		
	ΚK	1.33	0.9784	0.06	0.75	1.13	0.9768	0.06	0.61		
	Ca K	0.42	0.9487	0.05	0.24	0.42	0.9481	0.05	0.23		
	Fe K	2.29	0.8912	0.11	0.99	2.38	0.8890	0.11	1.00		
	Ni K	0.71	0.8807	0.12	0.30	0.61	0.8797	0.11	0.25		
	Cu K	10.99	0.8403	0.32	4.42	10.84	0.8393	0.30	4.23		
	Pb M	9.91	0.7794	0.37	1.32	10.38	0.7819	0.36	1.33		
	СK	5.58	16.18	1.03	30.23	6.45	16.67	1.01	31.94		
	N K	0.28	1.86	0.82	2.98	0.24	1.42	0.82	2.33		
	O K	20.19	30.57	0.55	42.89	20.73	28.35	0.52	40.79		
JZ-20	Al K	8.41	12.08	0.22	10.05	9.58	12.09	0.22	10.31		
	Si K	2.66	3.82	0.10	3.05	2.96	3.73	0.09	3.06		
	ΡK	0.47	0.45	0.05	0.33	0.56	0.46	0.05	0.34		
	SK	1.37	1.70	0.10	1.19	1.69	1.85	0.10	1.32		

	Cl K	0.95	1.47	0.07	0.93	1.23	1.70	0.07	1.11
	КК	0.92	1.01	0.05	0.58	1.14	1.11	0.06	0.66
-	Ca K	0.34	0.38	0.05	0.21	0.38	0.38	0.05	0.22
	Fe K	2.11	2.53	0.11	1.02	1.91	2.02	0.10	0.83
•	Ni K	0.45	0.54	0.10	0.21	0.54	0.57	0.10	0.22
-	CuK	10.82	13.74	0.30	4.85	12.80	14 23	0.31	5.15
-	Ph M	9.94	13.66	0.36	1.00	12.00	15.42	0.38	1 71
		11.67	24 75	0.93	42.36	21.02	30.07	0.73	46 50
	NK	0.38	24.75	0.95	3.47	0.58	3.02	0.75	4.00
•	OK	18.85	2.50	0.55	34.61	26.47	30.34	0.70	25.22
		11.00	11 71	0.01	8.92	11 31	9.11	0.40	6.27
•	Si K	2 22	3 56	0.21	2.61	3 76	2.02	0.14	2.01
•	PK	0.83	0.59	0.05	0.30	0.63	0.34	0.07	0.20
•		1.57	1.51	0.05	0.39	2.00	1.7	0.03	0.20
JZ-25		1.57	1.01	0.07	1.04	1.20	1.4/	0.07	0.65
		1.45	1.60	0.07	0.70	2.50	1.20	0.05	0.07
		0.40	0.45	0.06	0.79	2.33	0.21	0.05	0.01
-	Ca K	1.22	1.20	0.05	0.23	0.44	1.04	0.03	0.15
	Fe K	0.91	1.30	0.08	0.48	1.34	1.04	0.06	0.35
		6.02	7.12	0.10	0.20	6.75	5.40	0.00	1.61
-	Dh M	14.59	15.59	0.21	2.31	14.51	11.92	0.15	1.01
		12.50	21.22	0.37	30.00	14.02	22.25	0.27	1.00
•		12.52	8.81	0.00	13.09	14.02	9.05	0.02	13.68
•	OK	14.87	22.75	0.70	21.45	15.06	23.48	0.75	21.00
- - - LZ-7		14.07	5.23	0.40	1 28	15.00	5 13	0.40	4.03
	Sik	2.13	2.15	0.11	1.20	1.69	1 75	0.10	1.32
	PK	0.38	0.25	0.07	0.18	0.38	0.26	0.00	0.18
		1.77	2 21	0.04	1 38	1.55	1 94	0.04	1 16
	KK	2.16	1 94	0.07	1.00	1.00	1.54	0.07	0.88
-	CaK	0.35	0.32	0.05	0.18	0.18	0.16	0.04	0.00
-	Fe K	1 48	1 42	0.09	0.10	2.02	1.98	0.09	0.75
•	Ni K	6.09	5.81	0.18	2 19	6.02	5.89	0.05	2.13
•	Cu K	4.20	4.19	0.18	1.46	3.99	4.09	0.16	1.36
•	Ph M	23.28	23.68	0.46	2.53	20.57	21.30	0.40	2.18
	CK	10.03	26.05	0.79	49.22	8.67	18.11	0.66	35.44
•	NK	3.03	4 62	0.18	0.86	0.24	1 29	0.48	2 16
	O K	11.30	19.92	0.41	28.25	21.42	27.88	0.40	40.95
•	Mg K	0.87	1.45	0.07	1.35	0.19	0.27	0.05	0.26
•	ALK	5.24	7.58	0.14	6.37	8.25	9.90	0.14	8.62
	Si K	3.97	5.47	0.11	4.42	2.67	3.12	0.08	2.61
	РК	2.01	1.88	0.08	1.38	0.35	0.26	0.05	0.20
LZ-18	Cl K	0.81	1.33	0.08	0.85	1.02	1.38	0.07	0.92
	KK	1.15	1.33	0.07	0.77	0.72	0.69	0.05	0.42
	Cr K	0.29	0.38	0.08	0.17	0.07	0.07	0.06	0.03
	Fe K	1.37	1.73	0.11	0.70	2.38	2.41	0.10	1.01
	Ni K	3.96	4.97	0.18	1.92	7.63	7.74	0.18	3.10
-	Cu K	3.63	4.75	0.20	1.70	4.52	4.79	0.18	1.77
-	Pb M	13.19	18.54	0.38	2.03	19.50	22.09	0.35	2.51
	СК	4.92	12.39	1.05	26.48	4.93	11.38	0.90	25.67
	N K	0.24	1.36	0.81	2.49	0.22	1.11	0.69	2.16
	ОК	19.54	27.80	0.52	44.61	19.74	25.65	0.43	43.43
	Al K	8.93	12.00	0.22	11.42	9.84	12.13	0.19	12.18
LZ-35	Si K	2.74	3.64	0.10	3.33	2.98	3.62	0.09	3.49
	РК	0.17	0.15	0.05	0.12	0.17	0.14	0.05	0.12
	Cl K	1.04	1.61	0.08	1.17	1.09	1.56	0.08	1.19
-	ΚK	0.91	0.98	0.06	0.65	1.09	1.09	0.06	0.75

Ca K	0.38	0.42	0.05	0.27	0.36	0.36	0.05	0.25
Fe K	1.15	1.29	0.10	0.59	0.95	0.96	0.09	0.47
Ni K	7.05	7.88	0.22	3.45	8.95	9.00	0.20	4.15
Cu K	5.08	5.94	0.22	2.40	5.90	6.19	0.20	2.64
Pb M	19.18	24.54	0.48	3.04	23.08	26.82	0.44	3.51

Figure S3. The particle size distribution curves for JZ propellant grains combustion under various pressures with repeated tests.

Figure S4. The particle size distribution curves for LZ propellant grains combustion under various pressures with repeated tests.

Table S2. A summary of the	CCPs particle distribution	ns for JZ propellant grains.

Samp	oles	Obscuration	Residual	Concentration	Span	D[4,3]	Uniformity	SSA	D[3, 2] - Surface weighted mean	d(0.1)	d(0.5)	d(0.9)
	Test1	7.63	1.43	0.0027	3.157	5.045	1.06	3.03	1.981	0.806	3.202	10.915
17 7	Test2	7.6	1.204	0.0027	3.118	4.901	1.03	3.07	1.951	0.792	3.167	10.663
JZ-7	Test3	7.58	1.317	0.0027	3.188	4.998	1.06	3.09	1.944	0.785	3.169	10.887
	mean	7.6	1.317	0.0027	3.154	4.981	1.05	3.06	1.959	0.794	3.179	10.819
Test Test	Test1	8.88	1.261	0.0034	1.879	4.654	0.801	2.68	2.239	1.104	3.293	7.292
	Test2	8.9	1.043	0.0033	2.005	4.569	0.847	2.79	2.153	1.025	3.144	7.33
JZ-12	Test3	8.91	1.127	0.0032	2.098	4.541	0.882	2.84	2.114	0.995	3.061	7.418
	mean	8.9	1.144	0.0033	1.992	4.588	0.842	2.77	2.167	1.035	3.167	7.343
	Test1	8.53	1.845	0.003	1.61	3.596	0.571	2.93	2.045	0.95	3.03	5.827
17 15	Test2	8.56	1.801	0.0029	1.693	3.466	0.61	3.1	1.933	0.87	2.851	5.697
JZ-15	Test3	8.57	1.749	0.0028	1.746	3.386	0.633	3.22	1.866	0.831	2.745	5.623
	mean	8.55	1.798	0.0029	1.685	3.483	0.606	3.08	1.945	0.875	2.876	5.721
	Test1	9.3	1.125	0.0031	2.385	4.004	0.87	3.15	1.906	0.865	2.742	7.403
17 20	Test2	9.31	1.177	0.003	2.517	3.937	0.906	3.25	1.846	0.83	2.646	7.492
JZ-20	Test3	9.31	1.073	0.003	2.646	3.937	0.941	3.31	1.814	0.813	2.592	7.671
	mean	9.31	1.125	0.003	2.512	3.959	0.905	3.24	1.855	0.834	2.661	7.519
	Test1	8.37	0.608	0.0039	4.079	12.349	2.27	2.35	2.556	1.099	4.382	18.972
17 25	Test2	8.48	0.634	0.0037	3.853	8.077	1.45	2.51	2.386	0.982	4.055	16.606
JZ-23	Test3	8.53	0.627	0.0036	4.041	8.274	1.59	2.61	2.301	0.926	3.903	16.696
	mean	8.46	0.623	0.0037	3.967	9.567	1.78	2.49	2.41	0.99	4.116	17.317

Table S3. Particle distribution of LZ propellant grains combustion products.

Samples		Residual	Concentration	Span	D [4, 3] - Volume weighted mean	Uniformity	SSA	D [3, 2] - Surface weighted mean	d (0.1)	d (0.5)	d (0.9)
	Test 1	0.570	0.0047	20.455	36.345	5.91	1.98	3.024	1.235	5.654	116.882
LZ-0	Test 2	0.559	0.0044	19.948	35.469	6.22	2.14	2.804	1.075	5.274	106.282
	Test 3	0.585	0.0042	16.814	28.885	5.31	2.26	2.65	0.988	4.97	84.558
	mean	0.571	0.0044	18.859	33.566	5.83	2.13	2.818	1.084	5.298	101.003
LZ-2	Test 1	0.764	0.0058	63.939	56.990	11.00	1.77	3.390	2.092	4.886	314.492
	Test 2	0.923	0.0057	58.168	53.230	10.60	1.84	3.253	1.975	4.753	278.462
	Test 3	0.908	0.0057	60.503	54.282	10.90	1.86	3.22	1.921	4.723	287.694
	mean	0.865	0.0057	61.074	54.834	10.80	1.83	3.286	1.995	4.788	294.406
	Test 1	1.694	0.0079	1.442	9.195	0.459	0.85	7.070	4.15	7.956	15.624
175	Test 2	1.53	0.0064	1.382	8.291	0.435	1.38	4.361	3.568	7.7	14.213
LZ-3	Test 3	1.618	0.0063	1.385	8.043	0.436	1.43	4.203	3.409	7.5	13.797
	mean	1.614	0.0069	1.392	8.510	0.445	1.22	4.929	3.761	7.714	14.498
	Test 1	1.946	0.0043	1.698	5.224	0.514	2.33	2.573	0.947	4.72	8.962
177	Test 2	2.040	0.0043	1.686	5.153	0.527	2.31	2.600	1.069	4.578	8.790
LZ-/	Test 3	1.969	0.0041	1.732	5.000	0.546	2.42	2.477	0.96	4.387	8.557
	mean	1.985	0.0042	1.708	5.126	0.530	2.35	2.549	0.986	4.561	8.777
LZ-9	Test 1	0.452	0.0047	6.834	14.787	3.060	2.28	2.637	1.358	4.072	29.182

	Test 2	0.453	0.0046	7.076	14.091	2.92	2.30	2.604	1.295	4.037	29.859
	Test3	0.542	0.0047	8.194	17.396	3.710	2.29	2.617	1.276	4.073	34.649
	mean	0.482	0.0047	7.373	15.425	3.230	2.29	2.619	1.308	4.06	31.245
1 77 10	Test 1	0.650	0.0036	1.496	3.898	0.453	2.54	2.362	1.321	3.619	6.737
	Test 2	0.702	0.0035	1.545	3.739	0.465	2.66	2.259	1.168	3.461	6.517
LZ-12	Test 3	0.871	0.0035	1.569	3.637	0.470	2.73	2.195	1.087	3.364	6.366
	mean	0.741	0.0035	1.541	3.758	0.464	2.64	2.270	1.18	3.481	6.544
	Test 1	1.482	0.0028	1.586	2.643	0.485	3.45	1.740	0.873	2.402	4.683
1710	Test 2	1.618	0.0027	1.654	2.713	0.548	3.53	1.698	0.836	2.345	4.714
LZ-10	Test 3	1.583	0.0027	1.675	2.673	0.559	3.61	1.663	0.812	2.298	4.661
	mean	1.561	0.0027	1.638	2.676	0.53	3.53	1.700	0.839	2.349	4.685
	Test 1	1.619	0.0029	1.607	2.653	0.562	3.70	1.623	0.757	2.279	4.419
1725	Test 2	1.744	0.0028	1.504	2.425	0.503	3.74	1.605	0.785	2.168	4.045
LZ-33	Test 3	1.844	0.0028	1.568	2.410	0.527	4.00	1.501	0.703	2.132	4.047
	mean	1.736	0.0028	1.562	2.496	0.533	3.81	1.574	0.75	2.191	4.171

Notes: a), the weighted average of the particle size to the surface area; b), the weighted average of the particle size to the volume. c), particles whose diameter is equal to or less than the value of D(0.1), and the sum of the volume fractions of which accounts for ten percent ; it is the same for d) and e); SSA, specific surface area.

Table S4. Chemical compositions of the CCPs of JZ propellants at various pressures.

	Chemicals (volume %)										
Samples	Cu	Pb(OH)Cl	Pb ₂ Cl ₂ (CO ₃)	Al ₂ O	AlCu ₃	AlCu ₄	Al ₂ O ₃	С	SiO ₂		
JZ-7	46	36	-	18	-	-	-	-	-		
JZ-12	43	16	-	-	14	-	-	-	27		
JZ-15	34	34	-	-	-	32	-	-	-		
JZ-20	37		50	-	-	-	13	-	-		
JZ-25			29	-	25	-	-	46	-		

Table S5. Chemical compositions of the CCPs of LZ propellants at various pressures.

Samples	LZ-0	LZ-2	LZ-5	LZ-7	LZ-9	LZ-12	LZ-18	LZ-35
Cu	-	40	-	-	-	-	-	-
CuO	5	-	-	-	-	-	-	-
Cu ₃ N ₁	-	-	18	26	-	-	-	-
Cu1.8S	-	-	-	-	-	-	21	-
$C_{12}H_{27}N_3O_6\bullet CuC_{12}\bullet 2H_2O$	-	-	-	-	12	-	-	-
Cu(NO3)2•3H2O	-	-	-	-	-	-	-	13
Pb(OH)Cl	34	27	31	-	47	-	-	51
Pb2SO5	-	-	-	27	-	-	-	-
2Pb(CO ₃)•Pb(OH) ₂	-	-	-	-	-	32	-	-
$Pb_4O_3Cl_2 \bullet H_2O$	-	-	-	-	-	-	23	
Al2O3	37		29	23	-	-	-	-
AlNi ₃ C _{0.5}	-	35	-	-	-	-	-	-
HAlO ₁₀ Si ₄	-	-	-	-	30	-	-	-
AlCu ₄	-	-	-	-	-	20	-	-
AIN	-	-	-	-	-	-	27	-
CH18AlN3O14S2	-	-	-	-	-	-	-	11
Ni	30	-	-	-	-	-	29	-
Pb2Ni(NO2)6	-	-	19	-	-	-	-	-
(NH4)2Ni(SO4)2•6H2O	-	-	-	24	-	-	-	-
C2H2NiO4•2H2O	-	-	-	-	11	-	-	-
NiO	-	-	-	-	-	20	-	25
С	-	-	-	-	-	28	-	-