Supplemental files

Interaction of ethylene with Ir_n (n = 1-10): From bare clusters to γ -Al₂O₃-supported nanoparticles

Xue-Rong Shi 1,2*, Yajing Zhang 1, Shibiao Zong 1, Wen Gu 1, Pan Ma 1, and Na Lu 1

- ¹ School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, P. R. China; shixuer05@mails.ucas.ac.cn(X.-R.S.), M050118113@sues.edu.cn(Y.Z.), M050117110@sues.edu.cn(S.Z.), guwen1-1@163.com(W.G.), mapan@sues.edu.cn(P.M.), 05160003@sues.edu.cn(N.L.)
- ² Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
- * Correspondence: shixuer05@mails.ucas.ac.cn; Tel.: +86-21-6779-1380

n	Geometry	$M\left[\mu_B ight]$	<i>d</i> (Ir-Ir) [Å]	CE ^a [eV/atom]	BE ^b [eV]
2	$D_{\infty h}$	$4(4^{c})$	2.21(2.21 ^c)	-2.68(-2.61 ^c)	-5.36
3	$D_{\infty h}$	1(1 ^c)	2.18(2.18 ^c)	-3.36(-3.27°)	-5.03
4	D _{4h}	$4(4^{c,d})$	$2.31(2.31^{\circ})$	-3.92(-3.85 ^c , 3.77 ^d)	-3.92
5	C _{4v}	5(5 ^{c,e})	2.47(2.47 ^c)	-4.16(-4.08 ^c , 4.01 ^d)	-2.60
6	D _{3h}	6(6 ^{c,e})	$2.42(2.42^{\circ})$	-4.54(-4.45 ^c , 4.38 ^d)	-3.03
7	C _{2v}	$11(11^{c,d,e})$	2.51(2.51 ^c)	$-4.64(-4.56^{\circ}, 4.51^{d})$	-2.50
8	O _h	$0(0^{c,d,e})$	2.37(2.37 ^c)	-5.08(-5.00 ^c , 4.90 ^d)	-3.39
9	Cs	3(3 ^{c,e})	2.38(2.39 ^c)	-5.08(-5.00 ^c , 4.90 ^d)	-3.27
10	C _{2v}	$4(4^{d,e})$	$2.42(2.42^{\circ})$	-5.23(-5.15 ^c ,5.02 ^d)	-3.08

Table S1: Geometry, magnetic moment (*M*), and energy of gas phase Ir_n (n = 2-10) clusters.

^a Cohesive energy = $(E[Ir_n] - nE[Ir])/n$

^b Bond energy = nCE/m where *m* is the number of Ir-Ir bonds in the cluster

^c Ref.[1], VASP code, PW91 functional, 380 eV;

^d Ref.[2], VASP code, PW91 functional, 300 eV;

^e Ref.[3], Dmol³ code, BPW91 functional

	E	ads	E _{nuc}		
N	γ-Al ₂ O ₃ (110)	γ -Al ₂ O ₃ (001) ^a	γ-Al ₂ O ₃ (110)	γ -Al ₂ O ₃ (001) ^a	
1	-2.58				
2	-2.53	-1.03	-2.73	-2.77	
3	-3.67	-1.17	-3.01	-2.75	
4	-4.12	-2.65	-3.00	-4.31	
5	-3.74	-2.18	-2.92	-4.04	
6	-3.92	-0.81	-4.05	-3.19	
7	-3.38	-1.82	-2.18	-4.44	
8	-2.16	-1.96	-4.33	-6.48	
9	-2.74	-1.64	-3.06	-3.33	
10	-2.98	-1.78	-4.25	-4.71	

Table S2: Adsorption energy E_{ads} (eV) and Nucleation energy E_{nuc} (eV) for Ir_n

clusters on γ -Al₂O₃ surfaces.

^a Ref.[1], VASP code, PW91 functional, cutoff energy 380 eV.

M configuration of ethylene adsorption

Figure S1: Most stable M configuration of ethylene adsorption on hydrated γ -Al₂O₃(110)-supported (a)Ir₄ and Ir_{6oct}.

Linear fitting of ethylene deformation energy $E_{def}(C_2H_4)$ (eV) and mean hybridization value of the carbon center in adsorbed ethylene.

Figure S2: Ethylene deformation energy $E_{def}(C_2H_4)$ via different modes as a function of mean hybridization value of the carbon center in adsorbed ethylene. The straight lines refer to linear fits.

Reference

- Chen, Y.; Huo, M.; Chen, T.; Li, Q.; Sun, Z.; Song, L. The properties of Ir_n (n = 2-10) clusters and their nucleation on γ-Al₂O₃ and MgO surfaces: from ab initio studies. *Phys Chem Chem Phys* 2015, *17*, 1680–1687, doi:10.1039/c4cp04881d.
- Pawluk, T.; Hirata, Y.; Wang, L. Studies of iridium nanoparticles using density functional theory calculations. *J Phys Chem B* 2005, *109*, 20817–20823, doi:10.1021/jp053563b.
- 3. Du, J.; Sun, X.; Chen, J.; Jiang, G. A theoretical study on small iridium clusters: structural evolution, electronic and magnetic properties, and reactivity predictors. *J Phys Chem A* **2010**, *114*, 12825–12833, doi:10.1021/jp107366z.