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Abstract: Graphene, a single atom thick layer of two-dimensional closely packed honeycomb carbon
lattice, and its derivatives have attracted much attention in the field of biomedical, due to its unique
physicochemical properties. The valuable physicochemical properties, such as high surface area,
excellent electrical conductivity, remarkable biocompatibility and ease of surface functionalization
have shown great potentials in the applications of graphene-based bioelectronics devices, including
electrochemical biosensors for biomarker analysis. In this review, we will provide a selective overview
of recent advances on synthesis methods of graphene and its derivatives, as well as its application to
electrochemical biosensor development. We believe the topics discussed here are useful, and able to
provide a guideline in the development of novel graphene and on graphene-like 2-dimensional (2D)
materials based biosensors in the future.
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1. Introduction

Graphene, a single 2-dimensional (2D) layer of a hexagonal structure consisting of sp2 hybridized
carbon atoms, and its derivatives have received increasing attention in biomedical fields, due to its
unique physicochemical properties. This feature includes a high surface area, excellent electrical
conductivity, strong mechanical strength, unparalleled thermal conductivity, and ease of surface
functionalization (Table 1) [1–5].

Table 1. Physicochemical properties of graphene and its derivatives.

Physicochemical Property Estimated Value Ref.

High surface area ~2630 m2g−1 [1]
Excellent electrical conductivity ~1738 siemens/m [2]

Strong mechanical strength Young’ Modulus ~1100 GPa,
Fracture strength ~125 GPa [3]

Thermal conductivity 5000 Wm−1K−1 [4]

Ease of functionalization π–π stacking interaction
Electrostatic interaction [5]

Particularly, owing to the high surface area, excellent electrical conductivity, and capability to
adsorb a variety of biomolecules, graphene has been considered as an ideal transducing material for
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constructing electrochemical biosensors [6,7]. It is well defined that the efficient electrochemical
reaction takes place at the close distance between the electrode surface and the electroactive
(reduction/oxidation, redox) site of a molecule. In detail, the electron transfer rate is inversely
proportional to the exponential distance between the electrode surface and the electroactive redox
site of the molecule [8,9]. Since the electron transfer between graphene and redox active molecule
typically take place at either edge of the graphene layer or defects in the basal plane, the high surface
area of 2D structure helps graphene to work as an excellent conducting material for electrical charge
and heterogeneous electron transfer [10,11].

In addition, based on the unique atomic thin layer structure, the electrical properties of graphene
are known to be highly sensitive to foreign atoms or absorbed molecules [12]. Favorably, graphene
is known to be highly reliable for capturing aromatic molecules through a π–π stacking interaction.
For example, single-stranded deoxyribonucleic acid (ssDNA) can bind to the graphene surface by π–π
stacking interaction between deoxyribonucleic acid (DNA) and polyaromatic structures of graphene,
and serve as a platform for various DNA based biosensing applications [13,14]. In addition, its
derivatives graphene oxide (GO) are known to possess the oxygen-containing hydrophilic groups
(hydroxyl and epoxy in the basal planes; carbonyl and carboxyl groups on the edges), that allows the
electrostatic interaction [9,15]. Alternatively, graphene can be also functionalized by covalent bonding
either through unsaturated p-bonds of graphene or oxygen-containing functional groups of GO [5,16].
As an example, various dienophiles, such as azomethine ylide, nitrene, and aryne, has been successfully
generated a variety of terminal groups on the graphene surface for further modification [17–19].
The carboxyl groups of GO are used to link the amino groups of molecules by well-established
carbodiimide chemistry [20]. According to the above mentioned unique physicochemical properties,
the utilization of graphene as a functional component for an electrode has gained considerable interest
in the field of electrochemical biosensors [19].

Although there exists an extensive collection of reviews for graphene synthesis methods and
electrochemical sensing applications, the tremendous amount of recent activities and a new, live
cell-based biosensing approach warrant a thorough review at this time. In this review, we will provide
a selective overview of the recent advances on the synthesis methods of graphene and its derivatives,
as well as its application in the electrochemical biosensor, which particularly covers small molecule,
nucleic acid/protein, and live cell-based sensing. This review will provide an extensive analysis
of the current state of the art and provide a perspective on key challenges that remain in the field.
We hope that this review will inspire interest from various disciplines and highlight an important
field wherein the advanced graphene-based electrochemical sensor is making great strides towards
biomedical applications.

2. Synthesis of Graphene

As the outstanding physicochemical properties of graphene make this material promising
candidate for electrochemical biosensor applications, the synthesis processes of the graphene which
affect its properties also hold great influence on the proper development and performance of
the biosensors. To this end, a number of a different synthesis method for graphene has been
developed over the years. Particularly, in this review, most well-defined exfoliation phenomena
or chemical vapor deposition (CVD) will be discussed as graphene and its derivatives synthesis
methods (Figure 1) [9,21–23].
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Figure 1. Schematic illustration of the graphene and its derivatives synthesis methods. (a) Mechanical 
exfoliation (b) liquid phase exfoliation, (c) thermal decomposition, and (d) chemical vapor deposition. 
Reproduced with permission from [23], Copyright Springer Nature, 2017. 
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by external mechanical force (adhesive tape) based on the relatively weak interaction between the 
thin layers and the bulk materials. After the mechanical exfoliation, micromechanical cleavage of 
graphite, by rubbing a bulk crystal flake against another flake, was also utilized to obtain individual 
crystal planes of graphene layers [24]. In principle, through these mechanical exfoliation methods, 
high structural and electronic quality graphene crystals can be obtained without hosting structural 
defects into 2D graphene layers repeatedly [25–27]. However, these mechanical exfoliation methods 
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process, which is also known as liquid phase exfoliation (LPE), generally requires dispersion of bulk 
materials in a solvent, exfoliation, and purification [29]. Thus, the selection of ideal solvents is critical 
for LPE process to obtain high yield and stability [30]. However, the commonly used solvents for 
LPE, such as N, N-dimethylformamide (DMF) and N-methyl pyrrolidinone (NMP) are usually 
known to have acute toxic effects. To overcome this limitation, numerous approaches, such as urea-
based aqueous exfoliation, which even showed higher efficiency compare to conventional DMF based 
exfoliation, were recently developed [31]. In addition, graphene derivatives can be also synthesized 
by the chemical oxidation of graphite. For example, one of most well established Hummer’s method 
for preparing graphite oxide includes the addition of potassium permanganate (KMnO4) to a mixture 
of graphite, sodium nitrate (NaNO3), and concentrated sulfuric acid (H2SO4) [32]. During the 
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exfoliating GO layer from bulk graphite oxide flake and subsequent reduction of GO could also help 
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2.1. Mechanical and Chemical Exfoliation Method

The phenomena of exfoliation are to separate a few layers from the bulk material by overcoming
the strong van der Waals attractions between adjacent layers. Among the exfoliation based process,
the mechanical approach, ‘Scotch tape’ based exfoliation was first developed to obtain graphene,
where few layers of graphene are peeled off from a highly ordered pyrolytic graphite (HOPG) flakes
by external mechanical force (adhesive tape) based on the relatively weak interaction between the
thin layers and the bulk materials. After the mechanical exfoliation, micromechanical cleavage of
graphite, by rubbing a bulk crystal flake against another flake, was also utilized to obtain individual
crystal planes of graphene layers [24]. In principle, through these mechanical exfoliation methods,
high structural and electronic quality graphene crystals can be obtained without hosting structural
defects into 2D graphene layers repeatedly [25–27]. However, these mechanical exfoliation methods
are often limited for biosensor application, due to the difficulties in the mechanical cleavage of graphite
crystals in a controlled manner. Such as low yield in the production of single-layer or few-layer
graphene and relatively large lateral dimensions of graphene (range in micrometer size) often restrict
their application in biosensors. Apart from the mechanical exfoliation, the potential energy caused
by van der Waals attractions could be overcome in the presence of solvents as well [28]. This process,
which is also known as liquid phase exfoliation (LPE), generally requires dispersion of bulk materials
in a solvent, exfoliation, and purification [29]. Thus, the selection of ideal solvents is critical for LPE
process to obtain high yield and stability [30]. However, the commonly used solvents for LPE, such
as N,N-dimethylformamide (DMF) and N-methyl pyrrolidinone (NMP) are usually known to have
acute toxic effects. To overcome this limitation, numerous approaches, such as urea-based aqueous
exfoliation, which even showed higher efficiency compare to conventional DMF based exfoliation, were
recently developed [31]. In addition, graphene derivatives can be also synthesized by the chemical
oxidation of graphite. For example, one of most well established Hummer’s method for preparing
graphite oxide includes the addition of potassium permanganate (KMnO4) to a mixture of graphite,
sodium nitrate (NaNO3), and concentrated sulfuric acid (H2SO4) [32]. During the oxidation, small ions
intercalate to bulk graphite oxide during oxidation and weaken the interlayer interactions. In detail,
the sp2 hybridized carbon bonding is disrupted during the oxidation process, yielding formation of
sp3 hybridized carbon bonding. Through this mechanism, sonication allows exfoliating GO layer
from bulk graphite oxide flake and subsequent reduction of GO could also help to obtain reduce
graphene oxide (rGO) [33–35]. Owing to ease of process, the exfoliation based on chemical method
is known to be suitable for the synthesis of graphene at a large scale, which is important for the
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construction of bioelectronics devices, including electrochemical biosensors. In addition, the unique
chemical structure of chemically derived GO and rGO, which differs from the pristine graphene or
graphite, provide versatility in applications based on the chemical functionalization through the oxygen
functional groups. However, large amounts of structural defects caused by inevitably introduced
oxygen functional groups could affect the electrical properties of graphene and the performance of
electrochemical biosensors.

2.2. Thermal Decomposition and Chemical Vapor Deposition Method

An alternative approach to synthesize a high quality graphene layer in a large scale comprises
the self-organization of carbon atoms on the surface of the crystal by the thermal decomposition of
hydrocarbon and segregation of the carbon monolayer on metal substrates through CVD [36–38].
For example, the evaporation of silicon from single-crystalline silicon carbide (SiC) substrates at a
high annealing temperature results in the organized attachment of the remaining carbon atoms on the
surface of lattice-matched SiC substrates. Though, this method directly provides graphene layers on
insulating SiC substrates in a wafer-scale; however, the strong interaction of graphene with substrates
limits doping property, as well as transfer efficiency to other substrates for biomedical applications.
Among the numerous metal substrates, nickel (Ni) and (copper) Cu substrates demonstrated the
potential to separate graphene layer from the substrates and transfer onto other substrates, including a
solid substrate to flexible and bendable substrates [36]. In detail, the synthesis mechanism for the metals
substrate with high solubility of carbon species, such as Ni substrate include catalytic decomposition
of the precursor, dissolution of decomposed carbon species, segregation of dissolved carbon atoms
onto the metal surface, and followed by nucleation and growth of graphene layer on the surface of
the substrate [39]. Though, the several critical factors, such as the thickness of Ni films, growth time,
and cooling rate has been already revealed to improve the quality of synthesized graphene layers;
however, it is still difficult to obtain a single layer of graphene through the polycrystalline Ni substrate
and the electrical property of the synthesized graphene layer were found to be not very satisfactory as
well. Comparably, by using a Cu substrate, which has low solubility of carbon, highly uniformed single
graphene layer with the excellent electrical property was synthesized [36,40]. Due to the low solubility
of carbon, the formation of graphene happens through the self-limited nucleation and lateral growth by
diffusion of carbon atoms on the surface directly after the decomposition of precursors [41]. In addition,
free-floating graphene layers could be obtained by metal etching or electrochemical bubbling method
for further applications [42]. Although, CVD method can synthesize graphene layer even in a large
area (up to several inches) with high electronic quality (mobility up to 105 cm2V−1s−1) comparable to
the exfoliation methods [36,39,43], the structural defects or contamination which can be originated
during the etching and transfer process are still limiting factor for obtaining high profile graphene
layer and can also affect the performance of electrochemical biosensors as well.

3. Application to Electrochemical Sensing

The biosensor is the analytical device which consists of a biological component that recognizes the
target analytes and an electrical component (transducer) which converts the recognition event into a
measurable signal. To improve the performance of biosensors, tremendous efforts from multidiscipline
fields has been established. Ever since the discovery of graphene by Geim and Novoselov in 2004,
numerous approach has been conducted to utilize graphene as transducing material to improve the
performance of electrochemical sensors [6,44]. Graphene and its derivatives modified electrodes have
exhibited excellent electrochemical behavior in terms of their high surface area and active electron
transfer sites [7], which makes graphene as a promising electrode material to improve the performance
of graphene and its derivatives based electrochemical biosensors. In this review, the division of
biomedical electrochemical sensors will be divided into three categories i) small molecules, ii) nucleic
acids and proteins, and iii) Live cell-based sensing.
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3.1. Small Molecule Sensing

There are many small molecules that are highly relevant to human health and disease. Even
a subtle change of these biomolecules could cause a serious disease which threatens a patient’s
life [45–48]. For example, dopamine (DA) is one of the most important neurotransmitters that play
a vital role in the central nervous system. Abnormal level of DA can cause severe neurological
disorders, such as Parkinson’s disease [49–51]. However, due to the complex matrices of nature, it is
still challenging to develop a biosensor to distinguish the biomolecules which share a similar oxidation
potential, such as ascorbic acid (AA), uric acid (UA) and other catecholamine molecules. To resolve this
problem, graphene has been adopted as a transducing material in the development of the electrode.
Through its phenyl structure, these molecules could adsorb on the graphene-modified electrode surface
through the different π-π stacking interactions. Ping et al. introduced a graphene-based screen-printing
ink which could selectively and sensitively analyze these molecules via differential pulse voltammetry
(DPV) [52]. Even in the co-existence of these three molecules, the linear range and detection limit were
found to be 0.5–2000 µM, 4.0–4500 µM, and 0.8–2500 µM and 0.12 µM, 0.95 µM, and 0.20 µM for DA,
AA, and UA, respectively.

As an alternative approach, graphene was also utilized to provide large surface area, as well
as a binding motif for the mediator (i.e., enzyme) to improve the electrocatalytic performance of
electrochemical sensors to determine small molecules, such as hydrogen peroxide (H2O2), glucose,
and nicotinamide adenine dinucleotide (NADH) sensitively. Besides its well-known cytotoxic effects,
as an essential mediator in many biological processes, H2O2 detection has earned great attention.
However, due to the co-existing other electro-active constituents, the detection of H2O2 is easily
interfered [53,54]. To improve the H2O2 detection efficiency, graphene was also utilized to improve
the performance of electrochemical sensors. Fan et al., designed a graphene capsule, which served as
a carrier for horseradish peroxidase (HRP), to detect H2O2 in human serum [53]. Through the large
surface area and high conductivity of graphene, the synergistic effect on catalytic activity was able to
be obtained. Instead of using the enzyme, Wang et al., have grown Prussian blue nanocubes on the
surface of nitrobenzene-functionalized reduced graphene oxide as an “artificial enzyme peroxidase”
for constructing H2O2 electrochemical biosensors [55]. Another approach based on the incorporation
of myoglobin (Mb) on graphene oxide encapsulated molybdenum disulfide (MoS2) nanoparticle
(Mb-GO@MoS2) hybrid structure was also reported by Choi’s group (Figure 2) [56]. Mb is a one
of metalloprotein family with unique redox properties, due to the metal ion core integrated into
the hemin group. Through this unique redox properties, Mb can be used to detect H2O2 through
electrochemical reduction of H2O2 as well. The developed Mb-GO@MoS2 structure and extended
electroactive surface also affected the fast electron transfer and resulted in an enhanced amperometric
response H2O2. Instead of using full protein, Song et al. utilized hemin porphyrin and functionalized
on the graphene/GNP/glassy carbon electrode to avoid the possible insulating effect from protein
structure [57]. Note that hemin porphyrin is a well-known natural metalloporphyrin which is the
active site in heme-proteins, such as hemoglobins and myoglobins [58]. Alternatively, Shao et al. have
shown that by just doping graphene nitrogen, the better electrocatalytic activity could be obtained for
H2O2 detection as well [59]. The enhanced performance of nitrogen-doped graphene is expected, due
to the existence of nitrogen functional groups in addition to oxygen-containing groups and structural
defects. In a similar manner, graphene was also utilized to improve the electrocatalytic performance of
electrochemical sensors to determine other small molecules, such as DA, glucose, and NADH as well.
The recent researches on graphene-based electrochemical biosensors toward various small molecules
are compared in Table 2.
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Figure 2. (a) Schematic of graphene oxide encapsulated molybdenum disulfide (MoS2) nanoparticle
preparation for the fabrication of electrochemical biosensors composed of myoglobin (Mb) and (b) its
application to H2O2 detection with improved electrochemical performance. (c–d) Amperometric
response curves obtained from Mb/GO@MoS2 upon successive (c) addition of 100 nM L-ascorbic acid
(AA), 100 nM sodium nitrite (NaNO2), 100 nM sodium bicarbonate (NaHCO3), and 100 nM H2O2

solutions; and by (d) addition of 100, 50, 20, and 10 nM H2O2 solutions. Reproduced with permission
from [56], Copyright Elsevier, 2017.

Table 2. Comparison of different graphene-based electrode for small molecule detection.

Electrode Materials Target Linear Range Detection
Limit Ref.

Graphene capsule/horseradish peroxidase H2O2 0.01–12 mM 3.3 µM [53]
Prussian blue nanocubes/nitrobenzene/reduced

graphene oxide H2O2 1.2 µM–15.25 mM 0.4 µM [55]

Myoglobin (Mb)/MoS2 nanoparticle/graphene oxide H2O2 - 20 nM [56]
Hemin porphyrin/graphene/gold nanoparticle H2O2 0.3 µM–1.8 mM 0.11 µM [57]
Cobalt ferrite nanoparticles decorated exfoliated

graphene oxide
H2O2

NADH
0.9–900 µM
0.50–100 µM

0.54 µM
0.38 µM [60]

Au-Ag nanoparticles/poly(L-Cysteine)/reduced
graphene oxide

NADH
ethanol

0.083 µM–1.05 mM
0.017 µM–1.845 mM

9.0 nM
5.0 µM [61]

Graphene-pyrroloquinoline quinone NADH 0.32 µM–220 µM 0.16 µM [62]

FeN nanoparticles/nitrogen-doped graphene core-shell NADH 0.4 µM–718 µM 25 nM [63]

Screen-printed graphene
Dopamine

Ascorbic acid
Uric acid

0.5 µM–2000 µM
4.0 µM–4500 µM
0.8 µM–2500 µM

0.12 µM
0.95 µM
0.20 µM

[52]

Nickel and copper oxides-decorated graphene Dopamine 0.5 µM–20 µM 0.17 µM [64]
Molecularly imprinted polymer modified

graphene/carbon nanotube Dopamine 2.0 fM–1.0 pM 667 aM [65]

Gold nanoparticle-anchored nitrogen-doped graphene Dopamine
glucose

30 nM–48 µM
40 µM–16.1 mM

10 nM
12 µM [66]

Graphene-encapsulated gold nanoparticle glucose 6 µM–28.5 mM 1 µM [67]

Cobalt phthalocyanine–ionic liquid–graphene glucose 0.01–1.3 mM
and 1.3–5.0 mM

0.67 µM [68]

Copper nanoparticle/graphene oxide/single wall
carbon nanotube glucose 1 µM–4.538 mM 0.34 µM [69]

3.2. Nucleic Acid and Protein Sensing

A sensitive and selective nucleic acids (DNA/ribonucleic acid, RNA) sensor is in high demand for
the diagnosing gene-related diseases. DNA sensors also referred to as geno-sensors, are an analytical
system, which integrates a sequence-specific probe on a transducer. Thus, the immobilization of
DNA strands greatly influences the performance of the electrochemical DNA sensor. In this manner,
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graphene and its derivatives provide an excellent avenue to develop electrochemical DNA sensor.
Hu et al. utilized GO as a DNA probe immobilization layer for electrochemical detection of HIV-1 gene
fragment [70]. First, GO is anchored on diazonium functionalized electrode surface via electrostatic
attraction, hydrogen bonding or epoxy ring opening. The π-π stacking interaction between the aromatic
ring of GO and DNA base ring facilitated DNA immobilization, and impedance measurement was
used for the quantitative detection of HIV-1 gene fragment up to 0.11 pM. Moreover, Akhavan et al.
developed a graphene nanowall structure and showed an extremely high response to single-strain
DNA towards single-strain DNA electrochemical sensing. As a result, they have observed a unique
response signal from each kind of basic group through DPV measurement (Figure 3) [71].
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Figure 3. (a) Scanning electron microscopy images of the graphene oxide nanowalls deposited on
a graphite rod by using electrophoretic deposition (b,c) Differential pulse voltammetric profiles of
the reduced graphene nanowalls (RGNW), graphene oxide nanowalls (GONW), reduced graphene
nanosheet (RGNS), and graphene oxide nanosheet (GONS) electrodes as compared to the graphite and
glassy carbon (GC) electrodes for detection of (b) the four free bases of DNA (G, A, T, and C) separately,
and (c) equimolar mixture of G, A, T, and C. Reproduced with permission from [71], Copyright
American Chemical Society, 2012.

Although it is clear that nucleic acids can effectively immobilize on the graphene and its
derivatives, many researchers have focused to modify the graphene and its derivatives electrode surface
with various materials to achieve improved performance on electrochemical sensor. For example,
Tiwari et al. electrophoretically deposited graphene oxide modified iron oxide-chitosan hybrid
nanocomposite onto indium tin oxide (ITO) coated glass substrate and utilized for the detection
of a pathogenic Escherichia coli DNA with a detection limit of 10 fM [72]. In addition to the surface
modification, the enzyme was also utilized to improve electrochemical sensor. Esteban-Fernández de
Ávila et al. designed a disposable electrochemical DNA sensor based on carboxymethyl-cellulose-rGO
modified screen-printed carbon electrodes. And HRP was utilized to catalyze the redox mediator,
tetramethylbenzidine (TMB), and the substrate (H2O2) for the detection of the p53 tumor suppressor
gene [73]. Besides, graphene can be also utilized for DNA sequencing. With the presence of nanopore
on the monolayer graphene, detailed electric signals can be sensed when DNA passes the pore
by measuring transverse conductance of DNA. Through this mechanism, Freedman et al. have
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distinguished long and short DNA using nanopores with graphite polyhedral crystal (GPC)-edges
(Figure 4) [74].
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Figure 4. (a) Transmission electron microscopy image of the shrunked nanopore with graphite
polyhedral crystal (GPC)-edges sculpted by the irradiation of electron beam (6.2 × 105 electrons/nm2·s)
on to the single layer graphene. Scale bar = 5 nm. (b) Current versus voltage plot for a 5 nm
nanopore (in diameter) having GPC-edges in the 2M KCl condition. (c) Current drop translocation
time scatter plot for double stranded λ-DNA (5 nM concentration, 48.5 kb long) using a 5 nm nanopore
with a GPC-edges at 250 mV [1 M KCl, 10 mM Tris, 1 M ethylenediaminetetraacetic acid (EDTA)].
The mean current drop value was 332 ± 62 pA by the scatter plot. (d–e) Ionic current traces for
single-stranded DNA (25 bases in length) in (d) a 5 nm silicon nitride nanopores (50 nm thick) and
(e) 5 nm graphene nanopores with GPC-edges. (f–h) Detailed characterization of 5 nm graphene
nanopores with GPC-edges for 25 nucleotide-long DNA fragment sensing. (f) The linear increase
in current drop based on applied voltages, (g) The exponential decrease of peak translocation time
based on applied voltages, and (h) Calculated translocation velocity from (e). The velocity of the
25 nucleotide-long DNA fragment in 5 nm graphene nanopores with GPC-edges was 0.35 Å/µs at
100 mV/room temperature, which demonstrates the slower velocity than the silicon nitride pores.
Events were recorded at 100, 125, 150, 175, 200, and 250 mV in 2 M KCl, 10 mM Tris (pH 8), 1 mM
EDTA and 10 nM DNA at room temperature. Reproduced from Reference [74] with permission from
the American Chemical Society.

In parallel, many biological processes can be also monitored by quantification of specific proteins.
Owing to the amphiphilic nature of graphene and its derivate, it provides sufficient active sites
to immobilize these probes, including aptamer and antibody to detect specific proteins as well.
Wen et al. explored hairpin-shaped DNA aptamer as a cognition element for carcinoembryonic
antigen on the gold nanorods functionalized graphene electrode surface [75]. In addition, by targeting
membrane protein of pathogenic microbes, Natarajan et al. successfully developed an immunoassay
for white spot syndrome virus using a methylene blue dye (MB) immobilized graphene oxide
modified glassy carbon electrode (GCE/GO@MB) (Figure 5) [76]. Here, graphene was also utilized
to improve antibody immobilization efficiency and enhance electron transfer, the binding on the
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target produced an enhanced immune-recognition response by the sandwich assay with an enzyme
reaction. As mentioned above, considerable approaches have been made to develop and improve
graphene-based electrochemical DNA and protein sensors. However, the simultaneous detection of
multiple targets in complex biological matrices still remains a major bottleneck for clinical analysis.
The recent researches on graphene-based electrochemical biosensors toward various protein and
nucleic acids are compared in Table 3.
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Figure 5. Schematic illustration for the development of electrochemical white spot syndrome virus
immunosensor using a methylene blue dye (MB) immobilized graphene oxide modified glassy carbon
electrode. Reproduced with permission from [76], Copyright Springer Nature, 2017.

Table 3. Comparison of different graphene-based electrode for protein/nucleic acid detection.

Electrode Materials Target Linear Range Detection Limit Ref.

Graphene Oxide/probe DNA HIV-1 gene (cDNA) 1 pM–1 µM 0.11 pM [70]
Reduced graphene nanowalls dsDNA 0.1 fM–10 mM 9.4 zM [71]
Graphene oxide modified iron
Oxide/chitosan/probe DNA

Escherichia coli O157:¨H7 gene
(cDNA) 10 fM–1 µM 10 fM [72]

Screen-printed carbon/reduced graphene
oxide/Carboxy-methyl-cellulose/probe DNA

p53 tumor suppressor gene
(cDNA) 10 nM–0.1 µM 2.9 nM [73]

Nitrogen-doped graphene/Au
nanoparticles/probe DNA multidrug resistance gene 10 fM–100 nM 3.12 fM [77]

Fe3O4 Nanoparticles/reduced graphene oxide HIV-1 gene
(cDNA) 10 aM–100 pM - [78]

Glassy carbon/reduced graphene
oxide/polypyrrole–3–carboxylic acid Breast cancer 1 gene 1 pM–0.1 µM 0.3 pM [79]

Gold nanorods/graphene/ hairpin-shaped
DNA aptamer Carcinoembryonic antigen 5 pg·mL−1–50 ng·mL−1 1.5 pg·mL−1 [75]

Graphene quantum dot-ionic
liquid-nafion/hairpin aptamer Carcinoembryonic antigen 0.5 fg·mL−1–0.5 ng mL−1 0.34 fg·mL−1 [80]

Graphene/glassy carbon/aptamer Carcinoembryonic antigen 80 ag·mL−1–950 fg·mL−1 80 ag·mL−1 [81]
Glassy carbon/graphene oxide methylene

blue/Antibody White spot syndrome virus 1.36 × 10−3–107 copies·µL−1 103 copies·µL−1 [76]

Graphene-wrapped copper oxide/cysteine E. coli O157:H7 10 CFU·mL−1–108 CFU·mL−1 3.8 CFU·mL−1 [82]
Gold/reduced graphene
oxide/polyethylenimine E. coli 10 CFU·mL−1–104 CFU·mL−1 10 CFU·mL−1 [83]
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3.3. Live Cell-based Sensing

Owing to their excellent biocompatibility, solubility, and unique interactions with specific
molecules, graphene, and its derivatives has been also utilized to detect a response from the
biological process of living cells. For example, effective and accurate characterization of H2O2

concentration in a living cell is critical to achieving the normal physiological activities of cells.
Wu et al. integrated nitrogen-doped graphene to monitor H2O2 release process from live cells through
improved electrocatalytic activity [84]. After the injection of phorbol 12-myristate-13-acetate to induce
H2O2 generation in the neutrophil cells, the rapid increase of amperometric response was able to be
observed, which indicates a large amount of H2O2 release from the cells. Sun et al., also reported
a graphene/Intermetallic platinum/lead (Pt/Pb) nanoplates composites for sensing H2O2 release
from live macrophage cells (Raw 264.7) (Figure 6) [85]. Through the high-density of electrocatalytic
active sites on the unique PtPb nanoplates and the synergistic effect with graphene contributed for
outstanding electroanalytical performance. The proposed construct showed 12.7 times higher redox
signals than that of commercial Pt/Carbon electrode and able to detect H2O2 with a wide linear
detection range of 2 nM to 2.5 mM. Zhang et al. also proposed a way to monitor H2O2 secretion
from viable cells with a freestanding nanohybrid paper electrode composed of 3D ionic liquid (IL)
functionalized graphene framework (GF) decorated by gold nanoflowers [86]. The gold nanoflower
modified IL–GF was synthesized by a dopamine-assisted one-pot self-assembly method. The resultant
nanohybrid paper electrode exhibits good non-enzymatic electrochemical sensing performance toward
H2O2. Through the real-time tracking of H2O2 release from different breast cells attached to the paper
electrode allow to distinguish the normal breast cell line HBL-100 from the cancer breast cell line
MDA-MB-231 and MCF-7 cells. Liu et al. utilized HRP on a porous graphene electrode to monitor the
H2O2 release from living cells [87]. A simple method based on silver nanoparticles etching process was
proposed to prepare porous graphene network. Owing to the versatile porous structure, the analysis
performance was significantly improved by loading large amounts of enzyme and accelerating
diffusion rate. A significant low detection limit of 0.0267 nM and wider linear range of 7 orders
of magnitude were achieved. A rat adrenal medulla pheochromocytoma cell line PC12 was chosen as a
model cancer cell, and H2O2 release was monitored within AA stimulation. In a similar manner, Li et al.
monitored nitric oxide (NO) by developing a new 3D hydrogel composite via in situ reductions of Au3+

on three-dimensional graphene hydrogel [88]. The developed sensor showed improved electrochemical
performance compare to pure gold nanoparticles, pure graphene, 3D graphene hydrogels, and gold
nanoparticle-graphene hybrids. A linear relation was obtained for 0.05–0.4 mM of NO. Two different
normal and cancer skin cell was stimulated with Ach, and concentration-dependent signal increments
were analyzed.Nanomaterials 2019, 1, x FOR PEER REVIEW  11 of 18 
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Figure 6. (a) Transmission electron microscopy image of PtPb nanoplates. (b) Chronoamperometric
curves of the graphene/Intermetallic PtPb nanoplates composite (PtPb/G) electrode with the successive
addition of 0.1 mM H2O2, 1 mM Uric Acid (UA), 1 mM L-Cysteine, 1 mM ascorbic acid (AA), and 1 mM
glucose at a constant potential at −0.2 V. (c) Amperometric responses of the PtPb/G electrode to
the addition of N-formyl methionyl-leucyl-phenylalanine (fMLP) with and without Raw 264.7 cells.
Reproduced with permission from [85], Copyright American Chemical Society, 2017.
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Differently, Lee et al., utilized graphene-Au hybrid nanoelectrode array (NEAs) to monitor stem
differentiation in a non-destructive real-time manner (Figure 7) [89]. Typically, unique multifunctional
graphene-Au hybrid NEAs were fabricated via laser interference lithography and physical vapor
deposition methods. Followed by surface modification with reduced graphene oxide. The presence of
reduced graphene oxide enhanced the cell adhesion and spreading without functionalization with
any extracellular matrix proteins, which could work as an insulator and diminish ET between the
electrode and electroactive molecules. Owing to the excellent biocompatibility and electrochemical
performance of graphene-Au hybrid NEAs, the osteogenic differentiation of human mesenchymal
stem cell was successfully monitored through an alkaline phosphatase (ALP)-based enzymatic reaction.
During the osteogenesis, ALP expression level is known to be sequentially increased. P-aminophenyl
phosphate (PAPP) were introduced to cell prior to electrochemical monitoring, the ALP expressed on
the cell catalytically hydrolyzed the PAPP to produce electroactive p-aminophenol (PAP), and the redox
reaction between PAP and Quinone imine (QI) was monitored by cyclic voltammogram. Through
this mechanism, the osteogenic differentiation of human mesenchymal stem cell was successfully
monitored in both non-destructive and real-time manner. Although, stem cell therapy has arisen as a
promising method in the field of biomedicine owing to their unique ability to differentiate into multiple
cell lineages [90], necessary required destructive analysis process, such as cell lysis and cell fixation
were one of a critical limiting factor for further clinical applications. Such a novel electrochemical
detection method proposed by graphene-Au hybrid NEAs could be a breakthrough in the preclinical
investigation of differentiated stem cells. Consequently, this kind of work is expected to be highly
potential to advance stem cell differentiation assays by providing a practical, non-destructive, real-time
monitoring tool. The recent researches on graphene-based electrochemical biosensors toward various
live cell-based sensing strategies are compared in Table 4.

Table 4. Comparison of different graphene-based electrode for live cell-based detection.

Electrode Materials Target Linear Range Detection Limit Ref.

Nitrogen doped graphene H2O2 0.5 µM–1.2 mM 0.05 µM [84]
Graphene/PtPb-nanoplate H2O2 2 nM–2516 µM 2 nM [85]

Gold nanoflowers modified ionic liquid
functionalized graphene framework H2O2 0.5 µM–2.3 mM 100 nM [86]

HRP supported Porous graphene H2O2 2.77 µM –835 µM 26.7 pM [87]
Graphene-Pt nanocomposites H2O2 0.5 µM–0.475 mM 0.2 µM [91]

GNP deposited 3D graphene hydrogel NO 200 nM –6 µM 9 nM [88]
GNP/calf thymus DNA/nitrogen-doped graphene NO 2 nM–500 nM 0.8 nM [92]

Iron phthalocyanine decorated nitrogen-doped
graphene on ITO NO 0.18 µM–400 µM 0.18 µM [93]

3-aminophenylboronic acid functionalized
graphene foam network H2S 0.2 µM–10 µM 50 nM [94]

Dendritic Pt nanoparticles decorated freestanding
graphene paper DA 87 nM–100µM 5 nM [95]

Zn-NiAl layered double hydroxide on reduced
graphene oxide DA 1 nM–1 µM 0.1 nM [96]

Aryldiazonium Salts and GNP decorated reduced
graphene oxide TNF-α 0.1–150 pg·mL−1 0.1 pg·mL−1 [97]

Graphene-Au hybrid nanoelectrode array ALP 0.1–10 unit·mL−1 0.03 unit·mL−1 [89]
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Figure 7. (a) Schematic illustration of alkaline phosphatase (ALP) based enzymatic reaction and
electrochemical sensing mechanism on the 3D surface in graphene-Au hybrid nanoelectrode arrays
(NEAs) compared to 2D flat ITO surface. (b) Improved voltammetric response of graphene-Au NEAs
compares to bare ITO substrate, rGO-coated ITO substrate, and Au NEAs. (c,d) Cyclic voltammogram
and Anodic peak (oxidation potential: IPA) value of P-aminophenyl phosphate (PAPP) on graphene-Au
NEAs before and after enzyme reaction with ALP. (e) The linear correlations between concentrations of
ALP and the current signal at IPA. (f) Schematic illustration of electrochemical signal change between
undifferentiated hMSCs and differentiated osteocyte based on ALP generation. (g) Cyclic voltammetry,
and (h) calculated IPC values from time-dependent monitoring during osteogenesis of hMSCs (range
from D1 to D21). Reproduced with permission from [89], Copyright John Wiley and Sons.

4. Conclusions and Future Outlook

It is evident that the exceptional physicochemical properties of graphene and its derivatives
make them compelling for various electrochemical biosensor applications. The development and
wide application of the electrochemical sensing based on these materials were hindered by the lack
of facile and reproducible synthesis method of these materials with defined properties. In order
to make it compatible to develop various electrochemical sensors, numerous efforts have been
devoted to controllable and scalable production of graphene and its derivatives. Mechanical
exfoliation method was first used to obtain graphene; however, the poor controllability and low
production were the limiting factors. To achieve scalable production, LPE based methods were
developed to obtain a dispersed solution of these materials and its products has been the most
widely utilized for the electrochemical biosensors. More or less, recently CVD method was also
adopted to synthesize graphene with controllable properties; however, limited scale production
of graphene and its derivatives still hinders its applications. For example, various oxygenated
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surface functional groups provide a relatively high surface area, while it inhibits the performance
of electrochemical biosensor as an insulator. Thus, a novel synthesis method which can consistently
produce graphene and its derivatives with defined properties (high quality) in a large scale (high yield)
and cost-effective manner is still required for future commercialization of graphene and its derivatives
based electrochemical biosensors.

During the past years, many different strategies have been also explored to develop novel
graphene and its derivatives based electrochemical biosensors for analyzing bio/chemical molecules.
It is clear that the optimization through the selection of a suitable surface functionalization method still
needs to be revealed, in order to develop a highly effective and reproducible electrochemical biosensors.
In addition, the combination with functional materials, such as ionic liquids, nanomaterials and
polymers, have provided numerous choices to take the synergistic effect to enhance the electroanalytical
performances. However, designing and finding the appropriate combinatorial structure with
functional materials must be addressed for each biomolecule to maximize the performance of
electrochemical biosensors. Although extensive studies have been made to design and fabricate
novel electrochemical biosensors, long-term stability of combinatorial structure and functionalized
surfaces (with receptor), in complexed real sample matrices, should be considered. Real biological
fluids, such as blood and plasma, always contain various molecules and ions which can cause the
interference through nonspecific binding events and undermine the performance of electrochemical
biosensors. Furthermore, to adopt graphene and its derivatives for recently arisen in situ live cells
and in vivo sensing strategies, more effort, such as long-term toxicity of graphene and its derivatives,
as well as incorporated functional materials, should be also discovered. Moreover, since graphene
and its derivatives can serve as both the sensing component and transducer, utilization to flexible
electrode and miniaturization in size by forming free-standing structures via self-assembly would be
an excellent approach for developing an implantable (flexible) and portable (lightweight) sensors as
well. However, the lack of a suitable power source is a limiting factor.

In addition, owing to the advantages of specific planar morphology, graphene-like 2D
nanomaterials have attracted significant attention as emerging materials for electrochemical sensor
approaches. Taking the advantages of diverse composition and structural effect, graphene-like 2D
nanomaterials also have promoted great efforts to improve the performance of electrochemical
biosensors. Similar to graphene and its derivatives, the defined synthesis method for high
quality graphene-like 2D nanomaterials with controllable sizes and thickness, as well as tunable
properties, and surface functionalization method is highly desirable for their practical application
to electrochemical biosensor development as well. In witness of their current attention, we also
endeavor that further improvement of graphene and its derivatives, as well as graphene-like
2D nanomaterial-based electrochemical biosensors, will lead to a significant advance in analytic
applications for the highly effective and reliable detection of biomarker and open new avenues in
biological and medical fields.
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