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Abstract: The primary objective of the present work is to study the effects of heat transfer and entropy
production in a nanofluid flow over a curved surface. The influences of Lorentz force and magnetic
heating caused by the applied uniform magnetic field and energy dissipation by virtue of frictional
heating are considered in the problem formulation. The effects of variable thermal conductivity
are also encountered in the present model. The dimensional governing equations are reduced to
dimensionless form by introducing the similarity transformations. The dimensionless equations are
solved numerically by using the Chebyshev–Gauss–Lobatto spectral method (CGLSM). The rate of
increase/increase in the local Nusselt number and skin friction coefficient are estimated by using
a linear regression model. The expression for dimensionless entropy production is computed by
employing the solutions obtained from dimensionless momentum and energy equations. Various
graphs are plotted in order to examine the effects of physical flow parameters on velocity, temperature,
and entropy production. The increase in skin friction coefficient with magnetic parameter is high for
nanofluid containing copper nanoparticles as compared to silver nanoparticles. The analysis reveals
that velocity, temperature, and entropy generation decrease with the rising value of dimensionless
radius of curvature. Comparative analysis also reveals that the entropy generation during the flow of
nanofluid containing copper nanoparticles is greater than that of containing silver nanoparticles.

Keywords: second law analysis; heat transfer; variable thermal conductivity; frictional and Ohmic
dissipation; curved surface; nanofluid; Chebyshev–Gauss–Lobatto spectral method

1. Introduction

Boundary layer flow over a stretching surface has extensive applications in industrial products
and different engineering processes. The interminable list of its engineering applications includes paper
production, a wind-up roll, manufacturing of plastic sheets and metal wires, extrusion of polymer
sheets, drawing plastic films, wire drawing, glass blowing metal spinning, cooling thread traveling
between a freed roll, and so forth. Sakiadis [1], Fox et al. [2], Tsou et al. [3], Gupta and Gupta [4],
Magyari and Keller [5], and Wang et al. [6] are the pioneers of the work on boundary layer flow induced
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by a stretching surface. Recently, Vajravelu et al. [7] studied the rotating magnetohydrodynamic (MHD)
flow over an elastic sheet of variable thickness with Hall and suction/injection effects. Butt et al. [8]
studied the influences of magnetic force and internal heat generation on dusty fluid flow over a
stretching disk. The parametric study of viscoelastic fluid flow in the presence of thermal radiation,
mixed convection, and constant magnetic field is reported by Hsiao [9]. The flow of viscous fluids and
nanofluids over a wavy surface, along with heat transfer analysis, are extensively discussed in the
book of Shenoy et al. [10]. Recently, Rosca and Pop [11] examined the influence of mass suction on
unsteady flow over a curved stretching/shrinking sheet. They used curvilinear coordinates and found
multiple solutions using bvp4c. Furthermore, stability analysis was also performed in order to point
out the solution which was stable. The influences of Soret and Dufour effects on a flow of nanofluid
over a curved surface under the influence of nonlinear thermal radiation were investigated by Reddy
et al. [12]. Pop et al. [13] recently reported the impacts of magnetic field on unsteady flow over a
curved stretching/shrinking surface. The practical utilization of fluid flow over an elastic curved
surface is in stretch-forming machines with curving jaws.

Nanofluids are fluids which are obtained by dispersing the nanoparticles in a base fluid.
The nanoparticles can be made of metals (Cu, Al), carbides (SiC), nonmetals (graphite), carbon
nanotubes, and oxides (CuO), while the base fluids may include oil, biofluids, polymer solutions,
ethylene glycol, and engine oil. The nanoparticles typically have the dimension of order 10 nm. These
nanoparticles are stably suspended in the base fluid unlike in conventional solid–liquid suspensions,
and the nanofluids do not cause clogging or abrasion. These exhibits enhanced thermal, magnetic,
and electrical properties. The conventional base fluids, like water and oil, etc., have low thermal
conductivity and in order to enhance the thermal conductivity of base fluids, nanoparticles are added
to base fluids. An ideal nanofluid should possess the highest thermal properties with minimum
concentration of nanoparticles in the base fluids. These fluids are basically used for cooling purposes,
both at the microlevel, like in electronic chips, and at the macrolevel, like in car engines and jets.
Initially, Choi [14] introduced the word “nanofluid” for fluids containing nanoparticles. Recently,
Sulochana et al. [15] studied ferrofluid flow over a thin needle under the influence of Lorentz force.
They reported that the velocity of Fe3O4–water is greater than the velocity of Fe3O4–methanol. Mutuku
and Makinde [16] theoretically investigated the effects of double stratification on MHD flow over a flat
surface in the presence of mass transfer phenomenon. Khan et al. [17] reported the flow and first law
analysis of thin film nanofluid flow sprayed over a stretching cylinder. The flow and thermal analysis
of Williamson nanofluid thin film flow with variable fluid properties is investigated by Khan et al. [18].
The effects of variable magnetic field on the three-dimensional flow of linear radiative nanofluid are
studied by Nayak et al. [19]. Sheikholeslami and Ganji [20] investigated the Marangoni boundary layer
flow of CuO–H2O nanofluid in the presence of magnetic fields and absence of viscous dissipation.
Das and Jana [21] reported the natural convection flow of nanofluid over a vertical plate by taking
the effects of Lorentz force. Stability analysis of mixed convection flow of nanofluid over a permeable
cylinder with the effects of radiation and porous medium is performed by Abu Bakar et al. [22].
The stability analysis of nanofluid flow past over a vertical thin needle by taking the effects of mixed
convection is reported by Salleh et al. [23]. Soret and Dufour effects on stagnation point flow nanofluid
over a stretching/shrinking sheet with stability analysis are studied by Najib et al. [24]. The parametric
study of micropolar nanofluid flow in the presence of viscous dissipation and constant magnetic field
is reported by Hsiao [25].

Viscous dissipation plays an important role in the heat transfer analysis, especially in boundary
layer flows, due to high velocity gradients inside the boundary layer. The energy dissipation acts like
a heat source and which is why it leads to an appreciable rise in the fluid temperature. Due to the high
velocity gradients inside the boundary layer, the kinetic energy of fluid is converted into thermal energy
and enhances the fluid temperature. Gebhart [26], for the first time, pointed out the enhancement of
fluid temperature in a natural convection flow. Recently, Afridi and Qasim [27] reported the influence
of viscous dissipation on thermal transfer in a nonlinear radiative fluid flow over moving thing needle.
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Makinde [28] studied the classical Sakiadis flow of nanofluid with Newtonian and frictional heating.
The first law analysis of nanofluid flow over a vertical flat surface in the presence of inclined magnetic
field and viscous dissipation is reported by Sandeep and Sugunamma [29]. Lin et al. [30] numerically
studied the impacts of viscous dissipation on heat transfer in the flow of pseudo-plastic nanofluid thin
film with variable thermal conductivity. Ohmic heating and viscous dissipation effects on viscous fluid
flow, thermal radiation, velocity, and thermal slip are reported by Sreenivasulu et al. [31]. Some of the
recent studies on boundary layer flows are reported in [32–34].

The law of thermodynamics declares that all forms of energy are conserved and convertible to
another form of energy. The second law of thermodynamics puts a limitation on the conversion of
some form of energy to others. The second law indicates that heat cannot be entirely converted into
work. That portion of heat which cannot be converted into work is called unavailable energy, and it
needs to be rejected as low-grade heat after the work has been done. The availability of energy in a
thermal system always decreases, and this unavailability of energy is called entropy. In real thermal
processes, the availability of energy decreases, and this phenomenon is called entropy generation.
There are different sources that cause entropy generation, particularly in a fluid flow, for example,
heat transfer, viscous dissipation, magnetic dissipation, and energy dissipation due to porous medium.
Many researchers performed the analysis of entropy generation in boundary layer flows to minimize
entropy generation. Recently, Farooq et al. [35] reported the effects of transpiration and viscous
dissipation on hybrid nanofluid flow over nonlinear stretching disk. The impacts of variable transport
properties on entropy generation in a nonlinear radiative flow over a Riga plate are reported by
Afridi et al. [36]. Das et al. [37] investigated the entropy generation in nanofluid flow over a disk with
convective boundary condition and porous medium. The entropy generation in a mixed convection
flow of nanofluid in a vertical porous channel is investigated by Makinde and Tshehla [38] in the
presence of Lorentz force. Some of the recent investigations on the minimization of entropy generation
are reported in [39–48].

In the present study, we reported the impacts of magnetic and viscous dissipation on the heat
transfer in a flow of nanofluid over a curved stretching surface. The thermal conductivity of nanofluid
is taken to be temperature dependent. In addition, second law analysis is also performed. The reduced
momentum and energy equations are solved numerically using the Chebyshev–Gauss–Lobatto
spectral method (CGLSM). The transformed set of equations are also solved using the generalized
differential quadrature method (GDQM) and Runge–Kutta method. The obtained results are compared
and found to be in an excellent agreement. The obtained numerical results are tabulated and
discussed comprehensively by plotting against the similarity variable ξ for different values of physical
flow parameters.

2. Description of the Mathematical Formulation

As schematically shown in Figure 1, we consider an incompressible flow of nanofluid over
a curved surface at r = R with the frictional and Ohmic heating. Moreover, it is presumed that

the radial magnetic field
→
B0 is uniform and acting outwardly on the nanofluid flow. Furthermore,

the nanofluid thermal conductivity k∗n f is taken to be temperature dependent, which is written in the
form k∗n f = kn f ω(T), so that ω(T) = 1+ ε[(T − Tb)/(Tw − Tb)], where ε is a thermal control parameter
related to the thermal conductivity. The thermophysical properties of some nanoparticles and water
are tabulated in Table 1. Curvilinear coordinates (r, s) are used in the mathematical formulation, where
r is normal to any tangent at the curved surface and the coordinate of the arc length s is along the flow
direction. The stretching velocity and temperature of the curved sheet are taken to be uw(s) = uos,
and Tw(s) = Tb + Tos2, uo is a dimensional constant, Tb represents the temperature of the bulk fluid
(outside the edge of boundary layer), and To indicates a dimensional constant.
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Figure 1. Description of the physical flow model in the curvilinear coordinate system.

Table 1. Thermophysical properties of some nanoparticles and water [21,49,50].

Properties Base Fluid (Water) Ag (Silver) Cu (Copper)

cp(J/kgK) 4179 235 385
k(W/mK) 0.613 429 401
ρ
(
kg/m3) 997.1 10,500 8933

σ
(
S·m−1) 5.5 × 10−6 6.3 × 107 5.96 × 107

Pr 6.8 - -

Under the abovementioned assumptions along with the Prandtl boundary layer approximations,
the governing equations of total conservation of mass, momentum, and thermal energy corresponding
to the present physical problem can be written in curvilinear coordinates as follows [12]:

∂

∂r
(r∗ur) + R

∂us

∂s
= 0 , (1)

1
r∗

u2
s =

1
ρn f

∂p
∂r

, (2)

ρn f

(
ur

∂us

∂r
+

R
r∗

us
∂us

∂s
+

1
r∗

usur

)
= − R

r∗
∂p
∂s

+ µn f

(
∂2us

∂r2 +
1
r∗

∂us

∂r
− 1

r∗2 us

)
− σn f B2

o us , (3)

(
ρcp
)

n f

(
ur

∂T
∂r

+
R
r∗

us
∂T
∂s

)
=

kn f

r∗
∂

∂r

(
r∗ω(T)

∂T
∂r

)
+ µn f

(
∂us

∂r
− 1

r∗
us

)2
+ σn f B2

o u2
s . (4)

Here, r∗ = r + R is the modified space variable.
The boundary layer equations (i.e., Equations (1)–(4)) described the physical model under

consideration, subjected to the following boundary conditions [13]:

us = uw, ur = 0, T = Tw at r = 0, (5)

us → 0 ,
∂us

∂r
→ 0 , T → Tb as r → ∞. (6)

Here, (us, ur) are velocity components in the direction of s and r directions, Bo is strength of
applied magnetic field, p shows r dependent pressure, T indicates fluid temperature, and Tw and Tb
represent the temperature of curved sheet and fluid in the stress free region, respectively.

According to Das and Jana [21], the expressions of the effective thermophysical properties of
the studied nanofluids, like the density ρn f , the heat capacity

(
ρcp
)

n f , the dynamic viscosity µn f ,
the electric conductivity σn f , as well as the dynamic viscosity kn f , are given by [17]:

ρn f = (1− φ)ρb f + φρs, (7)
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(
ρcp
)

n f = (1− φ)
(
ρcp
)

b f + φ
(
ρcp
)

s, (8)

µn f =
µb f

(1− φ)2.5 , (9)

σn f

σb f
= 1 +

3
(

σs
σb f
− 1
)

φ(
σs

σb f
+ 2
)
−
(

σs
σb f
− 1
)

φ
, (10)

kn f

kb f
= 1 +

3
(

ks
kb f
− 1
)

φ(
ks

kb f
+ 2
)
−
(

ks
kb f
− 1
)

φ
. (11)

Here, φ represents the nanoparticles solid volume fraction, where the subscripts b f and s show the
base fluid and the solid nanoparticles, respectively.

Due to the interesting thermophysical properties of metallic nanoparticles and their great potential
applications in nanotechnology, we chose to use silver Ag and copper Cu nanoparticles among those
kind of engineered particles as the dispersed solid phase in a specified base fluid (e.g., water) for
obtaining Ag–water and Cu–water nanofluids, whose thermophysical properties of their constituents
are clearly outlined in Table 1.

In order to get the dimensionless form of the governing partial differential equations, it is more
suitable in this investigation to use the following similarity transformations [11]:

ξ =

(
uo

νb f

)0.5

r, g′(ξ) =
us(r, s)

uw
, g(ξ) = − 1(

uoνb f

)0.5

(
r∗

R

)
ur(r, s),

θ =
T − Tb

Tw − Tb
, P(ξ) =

1
ρb f u2

os2 p, κ = R

(
uo

νb f

)0.5

,

(12)

where κ denotes the curvature parameter.
By substituting the dimensionless variables shown above into Equations (1)–(4), and putting

A1 =
σn f

σb f
, A2 = (1− φ)2.5, A3 = (1− φ) + φ

(
ρs

ρb f

)
, A4 = (1− φ) + φ

(
ρcp
)

s(
ρcp
)

b f
, A5 =

kn f

kb f
, (13)

We obtain, after some rearrangement,
∂P
∂ξ

=
A3

h
g′2, (14)

2κ

A3h
P =

1
A2 A3

(
g′′′ +

g′′

h
− g′

h2

)
+

κ

h
gg′′ +

κ

h2 gg′ − κ

h
g′2 − A1M

A3
g′, (15)

A5

A4Pr
(1 + εθ)

(
θ′
′
+

θ′

h

)
+

εA5

A4Pr
θ′

2
+

 κ
h (gθ′ − 2g′θ) + Ec

A2 A4

(
g′ ′ − g′

h

)2
+

A1EcM
A4

g′2

 = 0 , (16)

Here, the prime denotes the derivative with respect to ξ and

h(ξ) = ξ + κ . (17)

Accordingly, the boundary conditions given by Equations (5) and (6) are then written in
dimensionless form as follows:

g(0) = 0, g′(0) = 1, θ(0) = 1, (18)
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g′(ξ → ∞)→ 0 , g′′ (ξ → ∞)→ 0 , θ(ξ → ∞)→ 0. (19)

Furthermore, the different dimensionless parameters shown in Equations (15) and (16) are defined as

Ec =
ρb f u2

w(
ρcp
)

b f (Tw − Tb)
(Eckert number),

M =
B2

o σb f

uoρb f
(magnetic parameter),

Pr =
νb f

αb f
(Prandtl number).

(20)

Here, νb f and αb f are the thermal diffusivity and kinematic viscosity of the base fluid, respectively.
After derivation of Equation (15) with respect to ξ, the pressure gradient term ∂P/∂ξ appearing

in the resulting equation can be eliminated and replaced by its expression A3 g′2/h shown in
Equation (14). Hence, the dimensionless momentum equation becomes

g′′′′ +
2
h

g′′′ − g1g′′ + g2g′ +
A2 A3κ

h

(
gg′′′ +

g
h

g′′ − 1
h

g′2 − g′g′′ − g
h2 g′

)
= 0, (21)

where
g1 =

1
h2 + A1 A2M, (22)

g2 =
1
h3 −

A1 A2M
h

. (23)

From the engineering point of view, the very important physical quantities of interest are the local
skin friction coefficient C fs and the local Nusselt number Nus, which are given formally by

Re0.5
s C fs =

1
A2

(
g′′ (0)− 1

κ
g′(0)

)
, (24)

Re−0.5
s Nus = −A5

(
θ′(0) + εθ′

2
(0)
)

. (25)

Here, Res(= uws/νb f ) represents the local Reynolds number.
Upon making use of the following key transformations

ξ = f (η),
g(ξ) = g( f (η)) = G(η),
h(ξ) = h( f (η)) = H(η),
θ(ξ) = θ( f (η)) = Θ(η),

(26)

Equations (16) and (21) with the boundary condition (18) and (19) can be rewritten in the form

LG(G) + NG(G, Θ) = 0, (27)

LΘ(Θ) + NΘ(G, Θ) = 0, (28)

G(η) = 0, G′(η) =
ξ∞

2
, Θ(η) = 1, at η = −1, (29)

G′(η)→ 0 , G′ ′(η)→ 0 , Θ(η)→ 0 , as η → 1. (30)

Here,

f (η) =
ξ∞(η + 1)

2
, (31)
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 g(n)(ξ) =
(

2
ξ∞

)n
G(n)(η),

θ(n)(ξ) =
(

2
ξ∞

)n
Θ(n)(η),

(32)

where ξ∞ is the asymptotic value of the boundary layer thickness and n denotes the integer-order
derivative with respect to the spatial variables ξ (i.e., for g and θ or η (i.e., for G and Θ). In view of
Equations (27) and (28), the linear and nonlinear parts LG(G), LΘ(G), NG(G, Θ) and NΘ(G, Θ), arising
from Equations (16) and (21), are expressed explicitly as follows:

LG(G) = G′′′′ +
ξ∞

H
G′′′ − ξ2

∞
4

(
1
H2 + A1 A2 M

)
G′′ +

ξ3
∞

8H

(
1
H2 − A1 A2 M

)
G′, (33)

LΘ(Θ) =
ξ2

∞ A5
4A4Pr

Θ′′ +
ξ3

∞ A5
8A4PrH

Θ′, (34)

NG(G, Θ) =
ξ∞ A2 A3κ

2H

(
GG′′′ +

ξ∞G
2H

G′′ − ξ∞

2H
G′2 − G′G′′ − ξ2

∞G
4H2 G′

)
, (35)

NΘ(G, Θ) =


ξ2

∞εA5
4A4Pr Θ′2 + ξ3

∞εA5Θ
8A4PrH Θ′ + ξ2

∞εA5
4A4Pr ΘΘ′′ + ξ3

∞κG
8H Θ′ − ξ3

∞κΘ
4H G′+

Ec
A2 A4

G′′ 2 − ξ∞ Ec
A2 A4 H G′G′′ + ξ2

∞ Ec
4

(
1

A2 A4 H2 +
A1
A4

M
)

G′2

. (36)

By virtue of the transformations considered in Equation (26), the engineering quantities Re0.5
s C fs and

Re−0.5
s Nus can be reduced in the following dimensionless form

Re0.5
s C fs =

2
ξ∞ A2

(
2
ξ∞

G′′ (−1)− 1
κ

G′(−1)
)

, (37)

Re−0.5
s Nus = −

2A5

ξ∞

(
Θ′(−1) +

2ε

ξ∞
Θ′2(−1)

)
. (38)

3. Analysis of Entropy Production

The expression for entropy generation
.
E
′′′

G in a nanofluid flow over a curved shape surface by
incorporating the effects of variable thermal conductivity, and frictional and Ohmic heating, takes the
following form [51]:

.
E
′′′

G =
.
E
′′′

GT +
.
E
′′′

GF +
.
E
′′′

GM. (39)

Here,
.
E
′′′

GT shows the entropy production by virtue of heat transfer,
.
E
′′′

GF represents the entropy
production by virtue of frictional heating, and

.
E
′′′

GM characterizes the contribution of the magnetic
field, where [51]

.
E
′′′

GT = kn f
ω(T)

T2

(
∂T
∂r

)2
, (40)

.
E
′′′

GF =
µn f

T

(
∂us

∂r
− us

r∗

)2
, (41)

.
E
′′′

GM =
σn f B2

o

T
u2

s . (42)

By considering the following characteristic entropy generation

.
E
′′′

GC =
kb f uo

νb f
, (43)

then, the dimensionless form of entropy generation Ns takes the following form:

Ns =

.
E
′′′

G
.
E
′′′

GC
= A5

(1 + εθ)θ′2

(θ + λ)2︸ ︷︷ ︸
Thermal contribution

+
EcPr
A2

(
g′′ − g′

h(ξ)

)2

(θ + λ)︸ ︷︷ ︸
Frictional contribution

+ A1MEcPr
g′2

(θ + λ)︸ ︷︷ ︸
Magnetic contribution

, (44)
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where λ = Tb/(Tw − Tb) denotes the temperature difference parameter.
By applying the previously recommended transformations, the entropy generation Ns becomes

Ns =
4A5(1 + εΘ)Θ′2

ξ2
∞(Θ + λ)2 +

EcPr
ξ4

∞ A2(Θ + λ)

(
4G′′ − 2ξ∞

G′

H

)2

+
4A1MEcPrG′2

ξ2
∞(Θ + λ)

. (45)

4. Solution Methodology

As demonstrated in the last section, the physical model proposed in this investigation, for studying
the boundary layer flow of a nanofluid, is described by a set of nonlinear ordinary differential equations
(i.e., Equations (27) and (28)). Indeed, as we have already mentioned, the resulting ordinary differential
equations (ODEs) can be regarded, from the mathematical point of view, as a highly nonlinear system,
and closed form solutions of this problem are almost impossible, except in certain limiting cases,
in which the problem can be solved analytically using a suitable method.

Additionally, the studied problem can be handled analytically for the case where φ = ε = 0 and
κ = ∞ by employing the Laplace transform and using the confluent hypergeometric function. In this
special limiting case, the exact solutions for g(ξ) and θ(ξ) are expressed formally as follows [52]:

g(ξ) =
1− exp(−βξ)

β
, (46)

θ(ξ) = −nW2(ξ) +
W1−m(ξ)

(
1 + nW2(0)

)
F1,1(−(m + 1); 2−m;−W(ξ))

W1−m(0)F1,1(−(m + 1); 2−m;−W(0))
, (47)

where
β = (1 + M)0.5, (48)

W(ξ) =
Prexp(−βξ)

β2 , (49)

n =
Ec(2M + 1)

2(2−W(0))W(0)
, (50)

m = 1−W(0). (51)

Furthermore, the integral form of the Kummer confluent hypergeometric function F1,1 used above
is defined as

F1,1(a; b; z) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0
ta−1(1− t)b−a−1exp(zt)dt. (52)

Here, Γ represents the Gamma function, where

Γ(x) =
∫ ∞

0
tx−1exp(−t)dt. (53)

From the physical point of view, the curvature shape of the scratched surface (i.e.,κ 6= ∞) and the
linear temperature dependence of the thermal conductivity (i.e., ε 6= 0) introduce further nonlinear
terms in the governing equation of the problem, which made it more complex to be investigated
analytically, in order to obtain closed form solutions as those described previously in Equations (46)
and (47). Consequently, for reducing the complexity encountered in this problem, it is more useful to
adopt a suitable numerical procedure to construct the solutions of Equations (27) and (28). To achieve
this objective, the resulting ODEs are implemented numerically by discretizing the present boundary
layer equations using the Chebyshev–Gauss–Lobatto spectral method (CGLSM), which was developed
and well explained by Trefethen [53] and Canuto et al. [54], based on the Chebyshev polynomial
interpolation and the following non-uniform grid points
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ηi = cos
(

πi− π

N − 1

)
. (54)

Here, 1 ≤ i ≤ N and ηN ≤ ηi ≤ η1, where η1 = 1 and ηN = −1.
Following this numerical method, the derivatives of the functions G(η) and Θ(η) with respect to

the variable η at a collocation point ηi are given by
G(n)(ηi) =

N
∑

j=1
d(n)ij G

(
ηj
)
=

N
∑

j=1
d(n)ij Gj ,

Θ(n)(ηi)=
N
∑

j=1
d(n)ij Θ

(
ηj
)
=

N
∑

j=1
d(n)ij Θj .

(55)

Here, d(n)ij are the elements of the nth-order Chebyshev differentiation matrix and N is the total number
of collocation points considered in this investigation, where i and j are integers varying from 1 to N.

According to Canuto et al. [54], the elements d(1)ij of the first-order Chebyshev differentiation
matrix are given by

d(1)ij =



2N2−4N+3
6 , for i = j = 1,
ηi

2(η2
i −1)

, for i = j 6= 1,

(−1)i+jci
cj(ηi−ηj)

, for i 6= j,
−2N2+4N−3

6 , for i = j = N,

(56)

where

ci =

{
2 , for i = 1 , N,
1 , for i 6= 1 , N.

(57)

In addition, the other elements d(n)ij corresponding to the nth-order Chebyshev differentiation
matrix are computed using the following recurrence relation

d(n)ij =
k=N

∑
k=1

d(n−1)
ik dkj. (58)

Here, 1 ≤ i, j ≤ N and n ≥ 2.
Therefore, after discretization of the studied problem, the dimensionless modified unknowns

G(η) and Θ(η) are accurately approximated in each collocation point ηi by Gi (i.e., G(ηi)) and Θi
(i.e., Θ(ηi)), respectively. According to Wakif et al. [49], the discretized form of Equations (27) and (28),
together with the boundary conditions (29) and (30), are written as follows

(S) :



N
∑

j=1
d(1)1j Gj = 0,

N
∑

j=1
d(2)1j Gj = 0,

LGi (Gi) + NGi (Gi, Θi) = 0 , for 3 ≤ i ≤ N− 2,
GN = 0,
N
∑

j=1
d(1)Nj Gj − ξ∞

2 = 0,

Θ1 = 0,
LΘi (Θi) + NΘi (Gi, Θi) = 0 , for 2 ≤ i ≤ N− 1,
ΘN − 1 = 0.

(59)
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Here,

LGi (Gi) =



(
N
∑

j=1
d(4)ij Gj

)
+ ξ∞

Hi

(
N
∑

j=1
d(3)ij Gj

)
− ξ2

∞
4

(
1
H2

i
+ A1 A2M

)(
N
∑

j=1
d(2)ij Gj

)
+

ξ3
∞

8Hi

(
1
H2

i
− A1 A2M

)(
N
∑

j=1
d(1)ij Gj

)
 , (60)

LΘi (Θi) =
ξ2

∞ A5

4A4Pr

(
N

∑
j=1

d(2)ij Θj

)
+

ξ3
∞ A5

8A4PrHi

(
N

∑
j=1

d(1)ij Θj

)
, (61)

NGi (Gi, Θi) =
ξ∞κA2 A3

2Hi



Gi

(
N
∑

j=1
d(3)ij Gj

)
+ ξ∞Gi

2Hi

(
N
∑

j=1
d(2)ij Gj

)
−

ξ∞
2Hi

(
N
∑

j=1
d(1)ij Gj

)(
N
∑

j=1
d(1)ij Gj

)
−(

N
∑

j=1
d(1)ij Gj

)(
N
∑

j=1
d(2)ij Gj

)
− ξ2

∞Gi
4H2

i

(
N
∑

j=1
d(1)ij Gj

)


, (62)

NΘi (Gi, Θi) =



ξ2
∞εA5

4A4Pr

(
N
∑

j=1
d(1)ij Θj

)(
N
∑

j=1
d(1)ij Θj

)
+ ξ3

∞εA5Θi
8A4PrHi

(
N
∑

j=1
d(1)ij Θj

)
+

ξ2
∞εA5

4A4Pr Θi

(
N
∑

j=1
d(2)ij Θj

)
+ ξ3

∞κGi
8Hi

(
N
∑

j=1
d(1)ij Θj

)
−

ξ3
∞κΘi
4Hi

(
N
∑

j=1
d(1)ij Gj

)
+ Ec

A2 A4

(
N
∑

j=1
d(2)ij Gj

)(
N
∑

j=1
d(2)ij Gj

)
−

ξ∞Ec
A2 A4 Hi

(
N
∑

j=1
d(1)ij Gj

)(
N
∑

j=1
d(2)ij Gj

)
+

ξ2
∞Ec
4

(
1

A2 A4 H2
i
+ A1

A4
M
)(

N
∑

j=1
d(1)ij Gj

)(
N
∑

j=1
d(1)ij Gj

)



, (63)

where

Hi =

(
κ +

ξ∞

2

)
+

ξ∞

2
cos
(

πi− π

N − 1

)
. (64)

Finally, the dimensionless governing equations with their associated boundary conditions (i.e.,
Equations (27)–(30)) have been transformed into an algebraic nonlinear system (S) of 2N equations,
which are solved iteratively using the Newton—Raphson method to obtain more precise results, in
which the numerical results are given with an absolute accuracy of the order of 10−8.

Consequently, after computing the accurate discrete set of solutions {(Gi, Θi)/1 ≤ i ≤N},
the dimensionless quantities Re0.5

s C fs and Re−0.5
s Nus, shown in Equations (24) and (25), can be deduced

numerically as follows

Re0.5
s C fs =

4
ξ2

∞ A2

(
N

∑
j=1

d(2)Nj Gj

)
− 2

ξ∞ A2κ

(
N

∑
j=1

d(1)Nj Gj

)
, (65)

Re−0.5
s Nus = −

2A5

ξ∞

(
N

∑
j=1

d(1)Nj Θj

)
− 4A5ε

ξ2
∞

(
N

∑
j=1

d(1)Nj Θj

)(
N

∑
j=1

d(1)Nj Θj

)
. (66)

Under the above key considerations, the entropy generation Ns, shown in Equation (45), can be
computed at each point ηi by the following formula
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Ns(ηi) =



4A5(1+εΘi)

ξ2
∞(Θi+λ)2

(
N
∑

j=1
d(1)ij Θj

)(
N
∑

j=1
d(1)ij Θj

)
+

EcPr
ξ4

∞ A2(Θi+λ)

[
4

(
N
∑

j=1
d(2)ij Gj

)
− 2ξ∞

Hi

(
N
∑

j=1
d(1)ij Gj

)]2

+

4A1 MEcPr
ξ2

∞(Θi+λ)

(
N
∑

j=1
d(1)ij Gj

)(
N
∑

j=1
d(1)ij Gj

)


. (67)

5. Analysis of Results

The combined effects of variable thermal conductivity and magnetic dissipation on nanofluid
heat transfer enhancement and entropy generation in a dissipative medium are performed numerically
in this investigation for water-based nanofluids with silver Ag and copper Cu nanoparticles
(i.e., Newtonian metallic nanofluids). As mentioned previously in this paper, the exact solutions of the
reduced set of governing equations with the considered boundary conditions are not possible due to
the high nonlinearity of the studied boundary layer flow problem. Therefore, the numerical scheme
knows as Chebyshev–Gauss–Lobatto spectral method (CGLSM) were used carefully to simulate the
present problem, in order to obtain very good approximate numerical results in terms of accuracy
and computational cost. For this purpose, several numerical tests were carried out in this analysis, in
which our findings are clearly illustrated in Tables 2–4, in order to show the validity and the efficiency
of our numerical code via various limiting cases.

Table 2. Validation of our numerical results obtained by Chebyshev–Gauss–Lobatto spectral method
(CGLSM) for −Re0.5

s C fs with those of the closed form exact solution, in the case where ε = φ = 0 and
κ = ∞, when N = 100.

M ξ∞ Present Numerical Results Present Exact Results

0 21 1.0000000000 1.0000000000
0.25 35 1.1180339887 1.1180339887

1 24 1.4142135623 1.4142135623
2.25 38 1.8027756377 1.8027756377

5 18 2.4494897427 2.4494897427
10 24 3.3166247903 3.3166247903
50 20 7.1414284285 7.1414284285

100 9 10.0498756210 10.0498756211
500 8 22.3830292855 22.3830292856
1000 6 31.6385840390 31.6385840391

Table 3. Validation of our numerical results obtained by CGLSM for Re−0.5
s Nus with those of the closed

form exact solution, in the case where ε = φ = 0 and κ = ∞, when N = 100.

Ec Pr M ξ∞
Present Numerical

Results
Present Exact

Results

0.0

7.0 0.5

14 3.9133020001 3.9133020001
0.3 15 3.1448005650 3.1448005650
0.5 15 2.6324662749 2.6324662749
0.7 16 2.1201319848 2.1201319848

0.1

0.7

0.2

35 1.0090352173 1.0090352173
1.0 24 1.2621850959 1.2621850959
3.0 18 2.3816005234 2.3816005234
7.0 18 3.7598314882 3.7598314882

0.4 3.0

0.0 26 2.2038900906 2.2038900906
1.0 21 1.6226583382 1.6226583382
1.5 21 1.3788073543 1.3788073543
2.0 18 1.1547005383 1.1547005383
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Table 4. Multiple comparison results for −Re0.5
s C fs, when φ = ε = Ec = M = 0, ξ∞ = 10, and N = 29.

κ
Present Numerical Results

*CGLSM *GDQM *RKFM

5 1.1576312 1.1576312 1.1576312
10 1.0734886 1.0734886 1.0734886
20 1.0356098 1.0356098 1.0356098
30 1.0235310 1.0235310 1.0235310
40 1.0175866 1.0175866 1.0175866
50 1.0140492 1.0140492 1.0140492
100 1.0070384 1.0070384 1.0070384
200 1.0035641 1.0035641 1.0035641

1000 1.0007993 1.0007993 1.0007993

*CGLSM: Chebyshev–Gauss–Lobatto spectral method. *GDQM: generalized differential quadrature method.
*RKFM: Runge–Kutta–Fehlberg method.

In order to check the exactness of our numerical results, we carried out a self-validation of
the present numerical results by computing the engineering quantities −Re0.5

s C fs and Re−0.5
s Nus

numerically using Chebyshev–Gauss–Lobatto spectral method (CGLSM), and analytically through
Equations (46) and (47), as shown in Tables 2 and 3, for the case where φ = ε = 0 and κ = ∞.
As expected, it is observed from Tables 2 and 3 that there is a remarkable equality between our
numerical and analytical findings, indicating the validity of our numerical implementation. Moreover,
to confirm the computational efficiency of the present proposed numerical method, we performed
various numerical comparisons for the values of the engineering quantity −Re0.5

s C fs, obtained
numerically by Chebyshev–Gauss–Lobatto spectral method (CGLSM), generalized differential
quadrature method (GDQM) [55–57], and Runge–Kutta–Fehlberg method (RKFM) [16,38], as displayed
in Table 4 for the case where φ = ε = Ec = M = 0. A thorough quantitative examination of these
numerical results shows, clearly, that there is an excellent agreement among the numerical values
obtained by using three numerical methods. Table 5 shows the comparison of numerical values of
the skin friction coefficients with the existing results in the literature, in which excellent agreement
was found. Hence, the extensive numerical simulation that we have performed demonstrates that the
proposed numerical procedure is powerful, and our numerical results are highly accurate. Furthermore,
to reach the required absolute accuracy, we took, as key technical parameters, ξ = 10 and N = 70 for
all subsequent analyses.

Table 5. Comparison of our numerical values for −Re0.5
s C fs with existing results for different values of

κ, when φ = ε = Ec = M = 0.

κ Rosca and Pop [11] Present Results

5 1.15076 1.1576312
10 1.07172 1.0734886
20 1.03501 1.0356098
30 1.02315 1.0235310
40 1.01729 1.0175866
50 1.01380 1.0140492

100 1.00687 1.0070384
200 1.00342 1.0035641
1000 1.00068 1.0007993
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From Figure 2a, we observed that rise in the dimensionless radius of curvature reduces the
velocity profile g′(ξ) of both nanofluids, i.e., Cu–water and Ag–water. Further, for fixed values
of κ, the fluid velocity vanished asymptotically. In addition, it was also found that the nanofluid
containing Ag nanoparticles flow with less velocity as compared to the nanofluid containing Cu
nanoparticles, and this is because of the high density of Ag nanoparticles. Figure 2b describes the
influence of dimensionless radius of curvature κ on temperature distribution θ(ξ). The reduction in
temperature θ(ξ) was observed with increasing κ, i.e., with decreasing the bending of the curved
surface. Furthermore, for the fixed value of κ, Cu–water nanofluid has thinner thermal boundary
layer as compared to Ag–water nanofluid. It was observed that entropy generation number Ns has an
inverse relation with κ, as shown in Figure 2c. Further, it was also observed that more entropy was
generated in Cu–water nanofluid as compared to Ag–water nanofluid. Additionally, less entropy was
generated in the flow past over the flat surface, as compared to the flow over a curved surface for
both type of nanofluids. A resistive force known as Lorentz force was generated, due to the applied
magnetic field and, as a result, the nanofluid motion decelerated with increasing values of magnetic
parameter M, as shown in Figure 3a. In addition, the velocity boundary layer thickness is thin for
Ag–water nanofluid in comparison with Cu–water nanofluid. The applied magnetic field caused an
induced current and, due to the flow of the induced current, heat was dissipated (Ohmic heating),
which led to a rise in the temperature of the nanofluid, as depicted in Figure 3b. Due to the high
thermal conductivity of Ag gnanoparticles, the thickness of thermal boundary layer of Ag–water is
thicker than that of Cu–water nanofluid. The effects of the increasing values of magnetic parameter
M on entropy generation Ns is represented in Figure 3c. The plot illustrates that Ns is the increasing
function of M at the surface of curved boundary and its vicinity. Further, after a certain value of the
similarity variable ξ, the opposite effects are observed. An increase in the solid volume fraction of
nanoparticle φ leads to an increase in the density of nanofluid and, as a result, the velocity of nanofluid
decreases as shown in Figure 4a. The significant influence of φ on temperature distribution θ(ξ) is
exhibited graphically in Figure 4b, from which we found that as increases, θ(ξ) increases. Physically,
an increase in φ led to a rise in the thermal conductivity of nanofluid and, consequently, an increase
in the temperature of fluid. For fixed non-zero values of φ, the temperature of nanofluid containing
silver nanoparticles was higher than that of containing copper nanoparticles. An increase in entropy
generation was noticed with rising values of solid volume fraction of nanoparticles. Comparative
analysis revealed that the entropy production in the flow of nanofluid containing copper nanoparticles
was greater than that of containing silver nanoparticles. The temperature field θ(ξ) was enhanced
with the increasing values of variable thermal conductivity parameter ε for both cases, as shown in
Figure 5a. It was observed from Figure 5b that Ns reduces at the surface of stretching boundary, and its
vicinity with increasing values of ε. An opposite effect was found after a certain value of ξ for both type
of nanofluids. Figure 6a exhibits the influence of Eckert number Ec on temperature distribution θ(ξ).
It was evident from the plot that θ(ξ) rises with an increase in Eckert number. This happens because
the friction between the fluid layers enhances with the rising values of Ec, and this led to an increase
in the temperature of both types of nanofluids. The variation of entropy generation Ns with rising
values of Eckert number Ec is elucidated in Figure 6b. From this plot, we found that Ns enhances with
amplifying values of Eckert number. This happens because of the dissipative nature of frictional force
between the fluid layers. Further, the effects were more prominent at the surface of curved boundary,
and this is because of the high thermal and velocity gradients at the boundary. Figure 7 was made
to examine the influence of temperature difference parameter λ on entropy generation Ns. From this
plot, it is found that Ns decreases with the rising values of λ. Less entropy is generated in the flow
of Ag–water nanofluid as compared to Cu–water nanofluid. Further, this plot suggests that entropy
generation can be minimized by reducing the operating temperature (Tw − Tb).

Table 6 shows the variation in local skin friction coefficient −Re0.5
s C fs and Nusselt number

Re−0.5
s Nus with the increasing values of φ, ε, κ, M, and Ec. The rate of increase/decrease in −Re0.5

s C fs

and Re−0.5
s Nus is estimated by using the linear regression model. The positive sign of the slope shows
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that −Re0.5
s C fs is an increasing function of φ and M for both cases. Further, it was found that the

rate of increase in −Re0.5
s C fs dominates for Ag–water nanofluid with rising values of φ. The rate of

increase in −Re0.5
s C fs, with rising values of M, was found to be greater for Cu–water as compared to

Ag–water nanofluid. The zero slope shows that −Re0.5
s C fs does not change with increasing values

of variable thermal conductivity parameter ε and Eckert number Ec From the sign of the slope, it is
evident that Re−0.5

s Nus increases with increasing values of φ and κ. Furthermore, it was also observed
that Re−0.5

s Nus is a decreasing function of ε, M, and Ec.
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Figure 2. Effects of curvature parameter κ on (a) velocity profile g’(ξ), (b) temperature distribution θ(ξ),
and (c) entropy generation Ns(ξ), when M = 0.2, φ = 0.01, ε = 0.2, Ec = 0.3, and λ = 0.5.
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Figure 3. Effects of magnetic parameter M on (a) velocity profile g’(ξ), (b) temperature distribution
θ(ξ), and (c) entropy generation Ns(ξ), when κ = 10, φ = 0.01, ε = 0.2, Ec = 0.3, and λ = 0.5.
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Figure 4. Effects of nanoparticle solid volume fraction φ on (a) velocity profile g’(ξ), (b) temperature
distribution θ(ξ), and (c) entropy generation Ns(ξ), when κ = 10, M = 0.2, ε = 0.2, Ec = 0.3, and λ = 0.5.
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Figure 5. Effects of variable thermal conductivity parameter ε on (a) temperature distribution θ(ξ) and
(b) entropy generation Ns(ξ) when κ = 10, M = 0.2, φ = 0.01, Ec = 0.3, and λ = 0.5.
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Table 6. Impact of the emerging parameters φ, ε, κ, M, and Ec on the engineering quantities −Re0.5
s C fs

and Re−0.5
s Nus given by CGLSM for Ag–water and Cu–water nanofluids, when ξ∞ = 10 and N = 70.

φ ε κ M Ec
Ag–Water Nanofluid Cu–Water Nanofluid

−Re0.5
s C fs Re−0.5

s Nus −Re0.5
s C fs Re−0.5

s Nus

0.00
0.2 10 0.2 0.3

1.1846573 1.2160859 1.1846573 1.2160859
0.05 1.4906065 1.4464253 1.4590642 1.4461851
0.10 1.8083488 1.6262670 1.7485023 1.6414604

Slope (Linear Regression) 6.2369150 4.1018110 5.6384500 4.2537450

0.10
0.0

10 0.2 0.3
1.8083488 3.1662365 1.7485023 3.2955617

0.5 1.8083488 0.1863395 1.7485023 0.1001680
1.5 1.8083488 −1.8979797 1.7485023 −2.1188446

Slope (Linear Regression) 0.0000000 −3.1915977 0.0000000 −3.4109482

0.10 0.2
5

0.2 0.3
1.9290412 1.6103249 1.8713011 1.6288812

15 1.7708298 1.6303497 1.7104317 1.6445620
1000 1.7006379 1.6369517 1.6393829 1.6494311

Slope (Linear Regression) −0.0001520 0.0000169 −0.0001542 0.0000129

0.10 0.2 10
0.0

0.3
1.6874096 1.6522005 1.6222921 1.6601904

0.5 1.9707792 1.5674102 1.9166084 1.5918967
1.5 2.4186108 1.2500458 2.3753224 1.2990534

Slope (Linear Regression) 0.4818052 −0.2751404 0.4958336 −0.2481987

0.1 0.2 10 0.2
0.1 1.8083488 1.6617211 1.7485023 1.6571309
0.4 1.8083488 1.5613071 1.7485023 1.5909710
0.7 1.8083488 1.1758866 1.7485023 1.2674579

Slope (Linear Regression) 0.0000000 −0.8097241 0.0000000 −0.6494550

6. Conclusions

Heat transfer analysis and entropy generation in the flow of Ag–water and Cu–water nanofluid
over a curved stretching sheet was studied. In the present model, frictional heating effect was
considered in the energy equation. In addition, the thermal conductivity was assumed to be
temperature dependent and this led to increases in the nonlinearity of the governing equations.
Consequently, it was not possible to obtain the exact closed form solutions. Therefore, we obtained
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numerical solutions using the Chebyshev–Gauss–Lobatto spectral method (CGLSM). The following
are the main outcomes of the present study:

I. The enhancement in dimensionless radius of curvature κ (reducing bending of the curved
sheet), solid volume fraction of nanoparticles φ, and magnetic parameter reduced the velocity
of both types of nanofluids. Furthermore, velocity dominated for Cu–water nanofluid.

II. A rise in temperature was observed with increasing values of magnetic parameter M, solid
volume fraction of nanoparticles φ, variable thermal conductivity parameter ε, and Ecker
number Ec. Moreover, the temperature inside the boundary layer containing silver
nanoparticles was high, as compared to copper nanoparticles.

III. Decrement in the temperature distribution θ(ξ) was observed with decreasing bending in the
curved surface (i.e., increasing κ).

IV. The thermal boundary layer thickness dominated for Ag–water nanofluid due to high effective
thermal conductivity.

V. One can reduce the entropy generation Ns by decreasing the operating temperature difference
(Tw − Tb) and curvature of the curved boundary (i.e., by increasing the dimensionless radius
of curvature κ).

VI. Entropy generation Ns was enhanced with rising values of Eckert number Ec and magnetic
parameter M.
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