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Abstract: In the present work, we describe a facile and general method of fabricating fluorescent
inorganic nanoparticles with diverse shapes for cell imaging application. The hematite (α-Fe2O3)
nanoparticles (HNPs) with three different shapes (i.e., spindle shape, ellipsoidal shape and
quasi-spherical shape) were first prepared as model systems in consideration of good biocompatibility
and the controllable morphology of α-Fe2O3. Three fluorescent HNPs with different shapes
were readily achieved via one-pot sol-gel reaction of AIE luminogen-functionalized siloxane
(AIEgen-Si(OCH3)3) and TEOS in the presence of PVP-stabilized HNPs. Due to the fluorescence
originating from the thin AIEgens-contained SiO2 shell around the HNPs, their photoluminescent
intensities can be tuned by changing the concentrations of TEOS and AIEgen-Si(OCH3)3 in feed
prior to the sol-gel reaction. When the as-prepared fluorescent products were dispersed in water,
they gave intense green light emission upon excitation at 360 nm with relatively high fluorescence
quantum yield. Further, fluorescent HNPs exhibited low cytotoxicity and excellent photostability
and, thus, were used as optical probes to preliminarily explore the effect of nanoparticle shapes on
their cellular uptake behaviors. This work should open a facile way to prepare various fluorescent
inorganic nanoparticles with specific morphology for various biological applications.
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1. Introduction

Since the clinical application of nanoparticles (NPs) for cancer drug delivery was approved in
1995, various NP-based delivery platforms were developed to break through the biological barrier
to achieve drug delivery effectively. In the process, it was demonstrated that NP shape has a great
influence on their interaction with biological systems, including cellular uptake, plasma circulation,
and organ distribution and so on [1–4]. At present, the popular materials for fabrication of NPs for
biological applications mainly include inorganic materialsre [5–13], polymers [14,15], viruses [16]
and bacteria [17] etc. Among them, various inorganic materials, for example, Au [5,6], silica [7–10],
iron oxide [11,12] and titanate [13] have received intense attention due to relative ease of synthesis,
controllable morphologies and good biocompatibility. Hence, inorganic NPs should be an ideal model
system to investigate the relationship between NPs’ shape and their interaction with biological systems.
However, it is difficult to conduct these researches directly and visibly because most of inorganic NPs
themselves are non-luminescent. Recently, fluorescence probes have shown their unique advantages
including low-cost, high sensitivity, and high temporal and spatial resolution, which are especially
suitable for in vivo bio-imaging [18–20]. So, the development of a facile and general method for
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preparing fluorescent inorganic NPs with different shapes is highly desired for understanding the role
of their shapes in the interactions with biological species in a non-intrusive and visual ways.

Many efforts have been made to construct fluorescent inorganic NPs with controlled size and
morphology, good colloidal stability, high monodispersity and high fluorescence quantum yield in
a physiological environment [19]. Among these pioneering studies, various organic dyes such as
rhodamines [21–23], fluoresceins [24,25], BODIPYs [26,27] and coumarins [28], etc. have been doped
into inorganic NPs to provide desired fluorescence for cellular labeling or imaging. These hybrid NPs
generally gave rather weak emission because of the significant quenching caused by the aggregation of
dyes in the solid state. To address this problem, luminogens with the feature of aggregation-induced
emission (AIEgens), were introduced into the fabrication of fluorescent inorganic NPs via non-covalent
or covalent binding, leading to enhanced fluorescence brightness and superior photostability [29–34].
For example, Prasad et al. firstly reported AIEgens functionalized SiO2 NPs via a physical doping
method [29]. Tang et al. prepared AIEgens-doped composite SiO2 nanospheres which contained
aggregates of several smaller magnetite NPs via the sol-gel reaction [32]. Yu’s group synthesized
(AIEgens)-functionalised mesoporous silica nanoparticles through post grafting AIEgens onto
mesoporous silica nanoparticles [35,36]. They also used the AIEgens (tetraphenylethylen-containing
organosilica precursor) as a silicon source to fabricate fluorescent mesoporous silica. Then, the
cyclodextrin-modified CuS was assembled onto the AIEgen-containing mesoporous silica nanoparticles
to act as a cell imaging agent and photothermal agent [37].

Unlike the reported work, we developed a facile and general way to prepare fluorescent inorganic
nanoparticles with diverse shapes by a strategy of covalently immobilizing AIEgens within a thin SiO2

shell on the surface of inorganic nanoparticles with a special shape for the purpose of studying the
role of nanoparticle shapes on the interaction with living cells, especially cellular uptake behaviors.
In this strategy, hematite nanoparticles were chosen as model systems to provide templates for the
fabrication of their corresponding fluorescent products on account of controllable morphology, easy
surface modification and low-cost. AIEgen-functionalized siloxane (AIEgen-Si(OCH3)3), rather than
other similar derivatives, was used based on its advantage in simple synthesis, adjustable structure,
and facile sol-gel reaction with TEOS to form silica shells with good biocompatibility on the surface
of nanaparticles.

Three fluorescent hematite (α-Fe2O3) nanoparticles (HNPs) with diverse shapes (i.e., spindle
shape, ellipsoidal shape and quasi-spherical shape) were easily prepared by a one-pot sol-gel reaction
of AIEgen-Si(OCH3)3) and TEOS on the surface of PVP-coated HNPs with the purpose of exploring
the role of NP shapes on the interaction with living cells, especially cellular uptake behaviors. Three
hybrid products exhibited intense fluorescence, good colloidal stability, excellent photostability, and
low toxicity in vitro. Time-dependent cell imaging experiments were carried out, respectively, using
three fluorescent HNPs. The results preliminarily demonstrate that NP shape has a significant influence
on cellular endocytosis, and the ellipsoidal HNPs show a higher cellular uptake rate compared to
those of spindle and quasi-spherical ones.

2. Experimental Section

2.1. Materials and Instrument

Ferric nitrate nonahydrate (Fe(NO3)3·9H2O, ≥98.5%), sodium dihydrogen phosphate
(NaH2PO4, >99%) and sodium azide (NaN3, >99%) were purchased from local suppliers.
AIEgen-Si(OCH3)3 was synthesized according to the literature [31]. Polyvinyl pyrrolidone
(PVP, average Mw = 58,000), 3-chloropropyltrimethoxysilane (98%) were provided by Alfa Aesar.
1,1,2,2-tetrakis(4-ethynylphenyl)ethene (97%) was provided by Alfa Chem. Co., Ltd. (Zhengzhou,
China). Tetraethyl orthosilicate (TEOS, >98%) and bromotris(triphenylphosphine)copper(I) (98%) were
obtained from Aladdin. Tetrabutylammonium bromide (99%) and super dried acetonitrile (THF and
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DMSO, water ≤30 ppm) were obtained from J&K Chemicals Co. (Beijing, China). All chemicals and
solvents were directly used without further purification unless noted.

1H NMR spectra was recorded on a Bruker AV400 with tetramethylsilane as internal standard.
Fourier transform infrared spectroscopy (FTIR) was collected on Frontier Mid-IR FTIR (Perkin Elmer).
X-ray photoelectron spectra (XPS) were recorded on ESCALAB250Xi (Thermo Scientific, Waltham, MA,
USA). TEM was performed on HITACHI-HT7700 TEM instruments with an accelerating voltage of
100 kV. Dynamic light scattering (DLS) was recorded on Zetasizer Nano ZS90. Fluorescence spectra
were carried out on a F4600 FL (Hitachi, Chiyoda ku, Japan) spectrofluorometer with xenon discharge
lamp excitation. Cells were imaged on a confocal microscope (Olympus FV1000-IX81). All images
were analyzed with Olympus FV1000-ASW.

2.2. Synthesis of HNPs with Different Shapes

Spindle HNPs were prepared according to our previous work [38]. Typically, Fe(NO3)3·9H2O
(4.04 g, 0.01 mol) was dissolved in 250 mL distilled water. Under stirring, 1 M NaOH were added
to above solution until pH was about 10.5–10.8. Then the supernatant was removed and washed by
distilled water several times until pH was about 9.3. After that, 200 mL distilled water was added to
the solution. Under stirring, 1 M HCl (20 mL) and 0.1 M NaH2PO4 (2.25 mL) were added to above
200 mL solution. Then the mixture was transferred into 500 mL flask and added water to 500 mL. The
system was placed in an oil bath for 2–3 days at 100 ± 2 ◦C until solution changed into brick-red color.
The mixture was centrifuged and precipitate was washed with distilled water for three times. Elliptical
and quasi-spherical α-Fe2O3 nanoparticles (named as ENP and QSNP, respectively) were prepared by
the similar procedure except adding different amounts of 0.1 M NaH2PO4 (1 mL for elliptical ones,
and 0.1 mL for quasi-spherical ones, respectively).

2.3. Adsorption of PVP

Polyvinyl pyrrolidone (PVP) (7.2 g) were dissolved into 130 mL distilled water under sonication.
The HNPs (0.6 g) were then dispersed in above solution and sonicated for 20–30 min. The mixture was
stirred for 24 h at room temperature with mechanical stirring for the rotate speed with 400 rpm. The
nanoparticles were centrifuged and precipitate was washed with distilled water for three times.

2.4. Fabrication of Fluorescent HNPs

Fluorescent HNPs were prepared via a typical sol-gel method. Generally, 10 mg PVP-coated
HNPs as above were dispersed in a solution of ethanol (32 mL), ammonium hydroxide (1 mL) and
distilled water (8 mL) and the mixture was sonicated for 20 min. AIEgen-Si(OCH3)3 (10 mg) was
dissolves in DMSO (0.2 mL) in a small centrifuge tube, then 1 mL ethanol and 0.05 mL of TEOS
was added into the above solution. The mixed solution was added to PVP-coated HNPs suspension
drop by drop. Then the mixture was stirred for 24 h at room temperature. The nanoparticles were
centrifuged and precipitate was washed with distilled water and ethanol each for three times.

2.5. Cell Viability

The cell cytotoxicity of fluorescent HNPs were assessed in HeLa cells using a standard
3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. In details, the cells were
seeded in 96-well plates at a density of 7 × 103 cells/well in a 5% CO2 incubator at 37 ◦C. After
overnight, the cells were incubated with 20, 40, 60, 100, 160 µg/mL fluorescent HNPs for 24 h; 10 µL of
MTT (5 mg/mL) dye was added to each well and incubated for 4 h at room temperature. Then the
upper solution was carefully removed and 150 µL of DMSO was added to each well. The plate was
gently shaken for 30 min and analyzed with a plates reader (Spectra MAX 340PC). The absorbance of
purple formazan at 492 nm was monitored.
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2.6. Cell Imaging

HeLa cells were seeded onto six-well plates at a density of 2.5 × 105 cells/well in a 5% CO2

incubator at 37 ◦C. Then 2 mL fluorescent HNPs at a concentration of 10 µg/mL in cell culture medium
(DMEM + fetal bovine serum (FBS) + Penicillin-Streptomycin (v/v/v = 100:10:1)) was added to the well
and incubated for various times at 37 ◦C. Then the cells were washed thrice with PBS (pH 7.0–7.2) to
remove free fluorescent HNPs and directly observed by CLSM. Cells images were obtained by confocal
laser scanning microscope (Olympus FV1000-IX81) with the excitation and emission wavelength of
405 and 490–550 nm, respectively.

3. Results and Discussion

3.1. Preparation of HNPs with Different Shapes

The α-Fe2O3 nanoparticles (HNPs) with three different shapes, i.e., spindle shape, ellipsoidal
shape, and quasi-spherical shape, can be easily obtained via a conventional hydrothermal method
under appropriate temperature and pH as reported in the literature [39,40]. Figure 1 shows TEM
images of the as-prepared HNPs. From Figure 1, it was observed that the spindle shape HNPs had
narrow size distribution with measured dimensions of 354 ± 70 nm for the longer axis and 56 ± 8 nm
for the shorter axis with an aspect ratio of 5.92–6.63 (Figure 1a,b). The long axis of the ellipsoidal HNPs
was 160 ± 10 nm and the short axis was 70 ± 8 nm with an aspect ratio of 2.20-2.42 (Figure 1c,d),
respectively. The average diameter of quasi-spherical HNPs is about 84 ± 10 nm.
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Figure 1. TEM images of α-Fe2O3 nanoparticles (HNPs) with three different shapes. (a,b) spindle
shape; (c,d) ellipsoidal shape; (e,f) quasi-spherical shape. (b,d,f) are TEM images at high magnification
of (a,c,e), respectively.
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3.2. Reaction Condition Optimization

The synthetic route of fluorescent HNPs was illustrated in Scheme 1 taking the spindle
one (SNP) as an example. The functionalized AIEgen derivatives (AIEgen-Si(OCH3)3) was first
synthesized by copper-catalyzed click reaction of 3-azidopropyltrimethoxysilane with 1,1,2,2-tetrakis(4-
ethynylphenyl)-ethene to produce AIEgen-Si(OCH3)3 with a five-membered heteroatom spacer [31].
FTIR spectra was used to monitor the formation of AIEgen-Si(OCH3)3. As shown in Figure S1,
both the strong band at 2100 cm−1 assigned to –N≡N– group of 3-azidopropyltrimethoxysilane
and the characteristic bands at 3294 cm−1 and 2114 cm−1 corresponding to stretching vibrations of
C≡C–H and C≡C groups in the AIEgen, respectively, disappeared in the spectra of AIEgen-Si(OCH3)3

(c line), indicating complete reaction of four C≡C in the AIEgen to produce the target compound,
AIEgen-Si(OCH3)3.
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Scheme 1. Representative preparation route of fluorescent HNPs taking the spindle one (SNP) as
an example.

Before the sol-gel reaction, polyvinyl pyrrolidone (PVP) was adsorbed onto HNPs’ surfaces to
enhance their stability and dispersion in aqueous solution [41]. Subsequently, AIEgen-Si(OCH3)3 and
TEOS with given ratios were added into the mixture of ethanol, ammonium hydroxide and distilled
water in the presence of PVP-coated HNPs. After the so-gel reaction, fluorescent HNPs was achieved
by capturing AIEgens inside thin SiO2 shells around HNPs. Due to the high brightness and good
photostability of fluorescent NPs being of importance for bio-imaging application, reaction conditions
for preparation of fluorescent HNPs were carefully optimized by adjusting the concentrations of
AIEgen-Si(OCH3)3 and TEOS in feed. Table 1 summarizes the reaction conditions and the properties
of the as-prepared fluorescent HNPs. The corresponding TEM images are also shown in Figure 2. The
chemical compositions of the resultant products were determined by FTIR and XPS spectra as shown
in Figures S2 and S3.

Table 1. Screening of reaction conditions and the properties of the fluorescent α-Fe2O3 NPs a.

Entry Sample
Name

TEOS
(mL)

AIEgens
(mg)

Thickness of SiO2
Shell (nm) b

Aspect
Ratio b λem

c ΦF
d (%)

1 SNP-1 0.05 10 26 3.51–3.76 520 3.12
2 SNP-2 0.10 10 32 3.41–3.71 514 4.74
3 SNP-3 0.20 10 54 2.68–2.89 504 6.42
4 SNP-4 0.10 4.5 30 3.18–3.53 506 2.56
5 SNP-5 0.10 20 40 3.35–3.75 518 9.94

a AIEgen-Si(OCH3)3 and TEOS was added into the mixed solution of ethanol (32 mL), ammonium hydroxide (1 mL)
and distilled water (8 mL) in the presence of 10 mg of PVP-coated HNPs. b Determined by TEM. c Excitation
wavelength = 360 nm. d Determined by using rhodamine B (Φ = 0.73, in ethanol) as the fluorescence standard.
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conditions listed in Table 1 (Entries 1–5).

Firstly, the effect of concentration of TEOS in feed on the morphology and optical properties of
α-Fe2O3 NPs was carefully investigated. As shown in Figure 2a–c and Table 1 (entries 1–3), as the
amounts of TEOS increased from 0.05 mL to 0.20 mL in feed, the thickness of the silica shell on the
surface of α-Fe2O3 NPs gradually increased from 26 to 54 nm. The results agreed with those reported
in the literature [42,43]. The aspect ratio of the resultant fluorescent HNPs became smaller, while their
average size became larger compared to the original HNPs (Table 1).

In addition, it was observed that the amounts of AIEgen-Si(OCH3)3 in feed only slightly affected
the sol-gel reactions as shown in Figure 2b,d,e and Table 1 (entries 2, 4–5). From Figure 2b,d,e, it was
obvious that every HNP was uniformly coated by a silica shell layer, but there was no significant change
in thickness of the silica shell on the surface of the resultant fluorescent HNPs when the amounts of
AIEgen-Si(OCH3)3 increased from 4.5 to 20 mg. Moreover, from TEM images, it was interesting to note
that multicore NPs and secondary nucleation of small silica colloids did not occur in the process of
sol-gel reactions, thus, only single HNPs were decorated with AIEgens, which was different from the
case reported by Tang and coworkers [32], where several magnetite Fe3O4 nanoparticles with smaller
size aggregated with each other to form the multiple Fe3O4 cores when the sol-gel reaction was going
on. This result can be explained as follows: Prior to the sol-gel reaction, HNPs were stabilized by
PVP very well, resulting in the silica growing directly onto the adsorbed polymer [41] to prevent the
formation of multinuclear NPs when the hydrolysis reaction occurred.

Figure 3 shows the fluorescence spectra of AIEgens in THF (1 × 10−3 mol/L) and the as-prepared
fluorescent α-Fe2O3 NPs with spindle shape (SNP) dispersed in water with the concentration of
200 µg/mL. From Figure 3, it was observed that AIEgens themselves were almost non-emissive in
solution due to non-radiative energy loss caused by the rotational and vibrational motions of their
phenyl rings. Once they were captured into the SiO2 shell on the surface HNPs, they exhibited
strong fluorescent emission centered at about 510 nm upon excitation at 360 nm. Furthermore, it
was noted that the thicker the silica shell, the higher the fluorescence quantum yield (Φ) of AIEgens
inside them (entries 1–3, Table 1), which should be attributed to the restrictions of intramolecular
rotations of AIEgens in the aggregate state [44]. In addition, the fluorescence quantum yield (Φ)
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significantly increases with the increase of AIEgens amounts in feed when TEOS content is constant
(entries 2, 4, 5, Table 1). Clearly, the fluorescence quantum yields of all tested samples are relatively
low compared with those of silica hybrid nanoparticles, in which 1,1,2,2-tetraphenylethene derivatives
were covalently immobilized (Φ is about 10~40%) [30,31]. These results should be attributed to the thin
silica shell on the surface of α-Fe2O3 nanoparticles which could not effectively inhibit the rotational
and/or vibrational motions of AIEgens within it, resulting in non-radiation energy consumption.
However, rather than common organic dyes, the fluorescence quantum yields of our samples are very
competitive and could meet the requirements of biological imaging. Since the purpose of preparing
fluorescent inorganic NPs in this work is to address the relationship between their morphology and the
interaction with living cells, both maintained original morphology of nanoparticles as far as possible
and the suitable fluorescence brightness was desired. Along this line, the reaction conditions with
0.1 mL of TEOS and 10 mg AIEgens were chosen for the subsequent preparation of other fluorescent
HNPs with different shapes.
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Figure 3. Fluorescence spectra of AIEgens in THF (concentration: 1 × 10−3 mol/L) and fluorescent
HNPs with spindle shape (SNP) dispersed in water (concentration: 200 µg/mL). Excitation wavelength:
360 nm. SNP samples were prepared according to the reaction conditions listed in Table 1.

3.3. Preparation of Fluorescent HNPs with Different Shapes

According to the optimized reaction conditions, three fluorescent HNPs with different shapes,
i.e., spindle shape (SNP), ellipsoidal shape (ENP), and quasi-spherical shape (QSNP), were obtained,
respectively. Their TEM images are shown in Figure 4 and the properties are summarized in Table 2.
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Table 2. The properties of the fluorescent α-Fe2O3 NPs with different shapes a.

Sample Thickness of
SiO2 Shell (nm) b

Aspect
Ratio b

Hydrodynamic
Diameter (nm) c

Zeta Potential
(mV) c λem

d ΦF
e (%)

SNP 32 3.41–3.71 258 −24.3 514 4.74
ENP 39 1.65–1.81 221 −26.1 507 5.77

QSNP 43 1.05–1.07 217 −29.6 507 2.87
a AIEgen-Si(OCH3)3 (10 mg) and TEOS (0.1 mL) was added into the mixed solution of ethanol (32 mL), ammonium
hydroxide (1 mL) and distilled water (8 mL) in the presence of 10 mg of PVP-coated HNPs. b Determined by TEM.
c Measured by DLS. d Excitation wavelength = 360 nm. e Determined by using rhodamine B (Φ = 0.73, in ethanol)
as the fluorescence standard.

From Figure 4, it was obvious that the as-prepared fluorescent HNPs maintained the original
shapes of HNP templates except for the decreased aspect ratios for SNP and ENP samples. Besides,
some fluorescent HNPs containing several HNP cores existed in the QSNP sample (Figure 4c). This
phenomenon could be explained as follows: compared with the colloid diameter of the quasi-spherical
HNPs (84 ± 10 nm), the PVP with the average Mw of 58,000, which was coated on the surface of
HNPs prior to the sol-gel reaction appeared to be too large to sufficiently stabilize the HNPs. Thus,
sometimes, some HNPs would aggregate together in the process of StÖber growth, similar to the case
of silica-covered gold NPs reported in the literature [41].

Dynamic light scattering measurements were performed to determine the hydrodynamic
diameters and Zeta potentials of the resultant fluorescent HNPs. As shown in Figure 5 and Table 2,
average hydrodynamic diameters for three samples were 258 nm for SNP, 221 nm for ENP, and
217 nm for QSNP, with the corresponding narrow polydispersity index (PDI) of 0.075, 0.074, and
0.01, respectively. Further, colloidal stability is an important and fundamental parameter for NPs for
their various applications, which can be evaluated by surface charges or zeta potential [45]. From
Figure 5b,d,f and Table 2, the zeta potentials of three fluorescent HNPs with different shapes were
−24.3 mV for SNP, −26.1 mV for ENP, and −29.6 mV for QSNP, respectively. The zeta potentials of
three samples in other mediums containing fetal bovine serum (FBS) were determined according to
the similar method (Table S1 and Figure S4). These results implied good stabilities of three samples in
a physiological environment.

Figure 6a shows the photoluminescence spectra of three fluorescent HNPs dispersed in water with
the same concentration of 200 µg/mL. They exhibited similar spectral shapes and intense fluorescence
emission. To assess the photostability of three samples, photobleaching experiments were carried
out by monitoring their fluorescent intensity at 510 nm in cell culture medium over a period of 600 s
(Figure 6b) using laser as an excitation source. As shown in Figure 6b, the output of the fluorescence
signal was very stable under a continuous 405nm laser beam irradiation for 600 s under confocal
microscope and there was no significant photobleaching for three samples, indicating that these
fluorescent HNPs could be used as probes to long-term-label cells with good photostability.
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Figure 6. (a) Fluorescence spectra of three NPs with different shapes dispersed in water (concentration:
200 µg/mL). Excitation wavelength: 360 nm. (b) Time courses of fluorescent intensities at 510 nm of three
samples. The sample concentration is 10 µg/mL in cell culture medium (DMEM/fetal bovine serum
(FBS)/Penicillin-Streptomycin = 100:10:1, v/v/v). 2 mL of samples were used in the study. λex = 405 nm.

3.4. Cell Viability

The biocompatibility of fluorescent HNPs is crucial for their biomedical applications [46]. The
cytotoxicity of fluorescent HNPs against Hela cells was examined by a widely used MTT assay. Here,
only the result of spindle fluorescent HNPs (SNP) was presented in Figure 7 as an example, since
three fluorescent samples had the same chemical compositions. From Figure 7, compared with the
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control, the cell viabilities of Hela cells suffered the treatment with the SNP at various concentrations
exhibiting slight changes in the range of 0–100 µg/mL for 24 h. Even when the concentration of SNP
was increased to 160 µg/mL, the cell viability was still higher than 77%. These results demonstrated
the low toxicity of SNP to living cells.
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Figure 7. Cell viability of Hela cells treated with different concentrations of SNP for 24 h.

3.5. Cell Imaging

Three fluorescent HNPs with different shapes, i.e., SNP, ENP, and QSNP were co-cultured with
Hela cells for various times to preliminarily explore the influence of their morphologies on the
interaction with cells. In this experiment, 2 mL of sample with the concentration of 10 µg/mL in
cell culture medium was added to the Hela cells and incubated for various times at 37 ◦C. After
washing the cells with PBS buffer, the cells were directly observed by CLSM. Figures 8–10 show the
representative CLSM images of SNP, ENP, and QSNP at different times, respectively. From Figures 8–10,
three samples could be gradually taken in the cytoplasm with the extension of incubation time, but,
time-dependent cell uptake behaviors for three samples were significantly different (Figure 11). The
average optical density (IOD/area) values were extracted from CLSM images based on 20 cells by
Image-J. From Figure 11, the IOD/area values for three samples were gradually increasing at the
beginning, reaching the maximum, then dropping until to a certain value which was possibly due to
the fluorescent nanoparticles being excluded from cellular internalization altogether when the size of
any particle exceeded 150 nm [47,48]. The larger amount ENP seemed be taken into cells at a similar
rate compared to that of SNP since they had approximate fluorescence quantum yield (Φ) (Table 2). The
IOD/area of ENP sample reached a maximum after incubation with Hela cells for 2 h. This result was
consistent with the case of ellipsoidal mesoporous silica NPs with an aspect ratio of 1.51–2.39 reported
in the literature [10]. In the case of QSNP, the IOD/area peak was reached when the incubation time
was extended to 6 h, implying its lowest cellular uptake rate under the same conditions compared to
those of the other two tested samples with different shapes.
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Figure 10. CLSM images of HeLa cells after incubation with QSNP (10 µg/mL) for different times. The last
one is the bright field image of HeLa cells, corresponding to CLSM images with incubation time of 6 h.
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Figure 11. Variations of the average optical density (IOD/Area) with times. The analyzed number of
cells is 20.

4. Conclusions

In conclusion, we described a facile and general method to fabricate fluorescent inorganic
nanoparticles by decorating AIEgens around non-luminescent nanoparticles. In this method, the
AIEgens were captured into the thin SiO2 layer on the surface of inorganic nanoparticles by the sol-gel
reaction. According to the strategy, three fluorescent α-Fe2O3 nanoparticles with different shapes
were achieved as a proof-of-concept system. They exhibited intense green fluorescence in water upon
excitation at 360 nm with high fluorescence quantum yield. In addition, the as-prepared fluorescent
nanoparticles showed low cytotoxicity against living cells even at concentrations up to 160 µg/mL.
They could be effectively internalized by HeLa cells. The time-dependent CLSM imaging experiments
demonstrated that the shapes of NPs had a great effect on cellular endocytosis, and ellipsoidal NPs
exhibited the highest uptake rate under the same experimental conditions. This work should open
a novel way to fabricate various fluorescent inorganic nanoparticles with specific morphology for
diverse biological applications.
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