Supporting Information

Single-Source Vapor-Deposited Cs₂AgBiBr₆ Thin Films for Lead-Free Perovskite Solar Cells

Ping Fan, Huan-Xin Peng, Zhuang-Hao Zheng, Zi-Hang Chen, Shi-Jie Tan, Xing-Ye Chen, Yan-Di Luo, Zheng-Hua Su, Jing-Ting Luo, and Guang-Xing Liang *

Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; fanping@szu.edu.cn (P.F.); P2385284535@163.com (H.-X.P.); zhengzh@szu.edu.cn (Z.-H.Z.); chen798491170@126.com (Z.-H.C.); 2017171042@email.szu.edu.cn (S.-J.T.); ymt_0198@163.com (X.-Y.C.); lyandidi@163.com (Y.-D.L.); zhsu@szu.edu.cn (Z.-H.S.); luojt@szu.edu.cn (J.-T.L.)

* Correspondence: lgx@szu.edu.cn

Fig. S1. SEM image of Cs2AgBiBr6 crystal with typical octahedral morphology.

Fig. S2. Thermogravimetric analysis of Cs2AgBiBr6 powder.

Fig. S3. SEM surface morphology of Cs2AgBiBr6 film thermally annealed at 350 °C for 30 min.

Fig. S4. XRD pattern of Cs₂AgBiBr₆ film thermally annealed at 350 $^{\circ}$ C for 30 min. The positions of reflections labeled by circle (•) and diamond (•) indicate the additional phases of CsAgBr₂ and Cs₃Bi₂Br₉ respectively.

Fig. S5. The diffraction peak intensity of (220), (400) and (440) planes of Cs₂AgBiBr₆ films as a function of annealing temperature, respectively.

Fig. S6. The diffraction peak intensity of (220), (400) and (440) planes of Cs₂AgBiBr₆ films as a function of annealing time, respectively.

Fig. S7. Steady-state photoluminescence spectrum of Cs₂AgBiBr₆ crystal.

Fig. S8. The statistical box charts of open-circuit voltage (V_{oc}), short-circuit current density (J_{sc}) and fill factor (FF) of solar cells assembled with Cs₂AgBiBr₆ films (297 nm) annealed at 250 $^{\circ}$ C and 300 $^{\circ}$ C for different times respectively. The values were obtained from 16 individual devices per annealing condition.

Table S1. Device performance of $Cs_2AgBiBr_6$ films with different annealing time and temperatures.

Sample	Jsc (mA/cm ²)	Voc (V)	FF	PCE (%)
Cs₂AgBiBr₀ (250℃-30min)	0.75 ± 0.09	0.85 ± 0.03	0.60 ± 0.06	0.25 ± 0.06
Cs2AgBiBr6 (300°C-5min)	0.63 ± 0.15	0.85 ± 0.03	0.61 ± 0.05	0.17 ± 0.07
Cs₂AgBiBr6 (300℃-15min)	0.82 ± 0.05	0.89 ± 0.01	0.53 ± 0.03	0.40 ± 0.03
Cs₂AgBiBr6 (300℃-30min)	0.67 ± 0.08	0.87 ± 0.02	0.53 ± 0.03	0.31 ± 0.05

Fig. S9. The statistical box charts of open-circuit voltage (V_{oc}), short-circuit current density (J_{sc}) and fill factor (*FF*) of solar cells based on Cs₂AgBiBr₆ films with various thin film thickness. The values were obtained from 16 individual devices per annealing condition.

Table S2. Parameters of solar cell devices with different Cs2AgBiBr6 film thicknesses.

Sample	Jsc (mA/cm ²)	Voc (V)	FF	PCE (%)
Cs2AgBiBr6 (167 nm)	1.12 ± 0.12	0.87 ± 0.02	0.60 ± 0.06	0.53 ± 0.10
$Cs_2AgBiBr_6$ (238 nm)	1.22 ± 0.08	0.89 ± 0.02	0.61 ± 0.05	0.60 ± 0.05
Cs2AgBiBr6 (297 nm)	0.82 ± 0.05	0.89 ± 0.01	0.53 ± 0.03	0.40 ± 0.03

Fig. S10. SEM surface morphology of $Cs_2AgBiBr_6$ film annealed at 300 °C for 15 min. The film thickness is approximately 167 nm. The areas marked by yellow circles indicate pinholes in the $Cs_2AgBiBr_6$ film.

Fig. S11. J-V curves of Cs₂AgBiBr₆ solar cell, measured by backward scan and forward scan. The Cs₂AgBiBr₆ film was prepared at 300 $\,^{\circ}$ C for 30 min.