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Abstract: We describe here an Nd3+-sensitized upconversion fluorescent sensor for epirubicin (EPI)
detection in aqueous solutions under 808 nm laser excitation. The upconversion fluorescence of
nanoparticles is effectively quenched in the presence of EPI via a fluorescence resonance energy
transfer mechanism. The dynamic quenching constant was 2.10 × 104 M−1. Normalized fluorescence
intensity increased linearly as the EPI concentration was raised from 0.09 µM to 189.66 µM and the
fluorometric detection limit was 0.05 µM. The sensing method was simple, fast, and low-cost and was
able to be applied to determine the levels of EPI in urine with spike recoveries from 97.5% to 102.6%.
Another important feature of the proposed fluorescent sensor is that it holds a promising potential for
in vivo imaging and detection due to its distinctive properties such as weak autofluorescence, low
heating effect, and high light penetration depth.
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1. Introduction

Epirubicin (EPI), an anthracycline antibiotic, is a highly effective antineoplastic agent, and is
widely used for the treatment of various cancers including breast cancer, hepatocellular carcinoma,
gastric cancer, lymphoma, and leukemia [1–7]. At an appropriate level, it can achieve the maximum
therapeutic effect with minimal toxicity. However, the accumulation of EPI in the human body can
be highly toxic and could have severe adverse effects, such as cardiotoxicity, myelosuppression, and
hypoalbuminemia, potentially causing irreversible damage to organs [4,8–10]. To optimize cancer
therapy, sensitive and selective detections of EPI are required to monitor the EPI concentration in
biological samples.

Traditional techniques for the detection of EPI in biological fluids include liquid chromatography
(LC), capillary electrophoresis (CE) and electrochemical methods [11]. Liquid chromatography
generally requires pretreatment of biological samples using solid phase or liquid–liquid extractions
and is coupled with additional detection approaches including ultraviolet (UV), fluorometry, or mass
spectrometry (MS) [12–21]. LC-based methods, which benefit from an enriched target concentration
after extractions, are very sensitive and accurate. Capillary electrophoresis is an alternative separation
technique and is commonly coupled with laser-induced-fluorescence detection (LIF) [22–24]. However,
these detection strategies are usually costly, time-consuming, or involve sophisticated instruments.
Electrochemical sensors convert the interactions between the target analyte, EPI, and electrodes into
an electrical signal and have fast response time and relatively high sensitivity [25–29]. Moreover, the
sensitivity and selectivity can be further improved by modifying the electrode surface using carbon
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nanotubes, nanoparticles, and DNA [30–34]. Nonetheless, issues such as non-specific binding, the
reproducibility of measurements, long term stability of sensors, and complex processes required to
modify the electrode still need to be addressed [35].

In recent years, fluorescent sensors have attracted a great deal of attention because they are
relatively simple, fast, low cost, and sensitive and have been widely used in various biological
applications [36–40]. However, as far as we know, no fluorescent sensors have been reported for
EPI detection. Available fluorescence probes, including quantum dots and organic dyes have been
developed for detecting other anthracycline antibiotics including doxorubicin, daunorubicin, idarubicin,
and mitoxantrone [41–47]. These down-conversion fluorescence probes generally require the use of
ultraviolet or visible light as the excitation source, which causes many problems, such as a low signal
to noise ratio, possible damage to cells and organs, and a low light penetration depth. In contrast,
lanthanide doped upconversion nanoparticles (UCNPs), which transform the near infrared irradiation
to a shorter wavelength fluorescence (e.g., visible light), circumvent these aforementioned problems
and have inherently distinctive advantages, including weak autofluorescence, good biocompatibility,
a narrow emission peak, and high photochemical stability [48–51]. To advance the in vivo applications
of UCNPs, the excitation wavelength has been altered from 980 nm to ~800 nm by doping Nd3+

ions, which minimize the laser-induced heating effect due to significant reductions in the absorption
coefficient of water [52–55].

In this work, we have designed and synthesized a ligand-free Nd3+-sensitized upconversion
fluorescence sensor (NaYF4:Yb/Er/Nd@NaYF4:Nd) for measurements of EPI under 808 nm laser
excitation. UCNPs acts as an energy donor while EPI works as an energy acceptor. Owing to the
overlap between the emission band of UCNPs and the absorption band of EPI, the fluorescence intensity
of UCNPs can be effectively quenched in the presence of EPI through a fluorescence resonance energy
transfer (FRET) process (Figure 1). The proposed sensing method is operationally convenient, fast,
and cost effective and its overall performance is comparable to conventional methods employing
sophisticated equipment or requiring tedious sensor preparations. The application of the sensing
system was demonstrated by detecting the EPI levels in urine.
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Yttrium(III) acetate hydrate (99.9%), ytterbium(III) acetate hydrate (99.9%), erbium(III) acetate 
hydrate (99.9%), neodymium(III) acetate hydrate (99.9%), ammonium fluoride (NH4F, 98+%), 1-
octadecene (ODE, 90%), oleic acid (OA, 90%), epirubicin hydrochloride (EPI, 90+%), and L-cysteine 

Figure 1. Schematic representation of the design principle of the Nd3+-upconversion nanoparticles
(UCNPs) for epirubicin (EPI) detection. Water-dispersible UCNPs are obtained by removing
hydrophobic oleate ligands from the surface of oleic acid coated UCNPs through acid treatment. When
EPI is introduced, the UCNPs will attract EPI by electrostatic interactions. The green upconversion
emission of the UCNPs is quenched due to the fluorescence resonance energy transfer (FRET) process
between EPI and the UCNPS.
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2. Materials and Methods

2.1. Chemicals and Reagents

Yttrium(III) acetate hydrate (99.9%), ytterbium(III) acetate hydrate (99.9%), erbium(III) acetate
hydrate (99.9%), neodymium(III) acetate hydrate (99.9%), ammonium fluoride (NH4F, 98+%),
1-octadecene (ODE, 90%), oleic acid (OA, 90%), epirubicin hydrochloride (EPI, 90+%), and L-cysteine
(L-Cys, 97%) were purchased from Sigma-Aldrich. Histidine (His, 99%) and glucose (Glu, 99%) were
bought from Macklin. Phosphate buffered saline (PBS) was obtained from HyClone. Hydrogen
chloride (HCl), sodium hydroxide (NaOH), potassium chloride (KCl), sodium chlorate (NaCl), calcium
chloride (CaCl2,) magnesium chloride (MgCl2), aluminum chloride (AlCl3), and L-glycine (L-Gly)
were supplied from the China National Pharmaceutical Group Corporation. Cyanidin 3-glucoside,
doxorubicin, and daunorubicin were purchased from Shanghai yuanye Bio-Technology company.
All chemicals and reagents were analytically pure and used without any further purification.

2.2. Characterization

Upconversion fluorescence spectra were recorded on an Edinburgh F96S luminescence
spectrometer (Shanghai Lengguang Technology Co., China) at room temperature with the excitation
of an external 0–2 W adjustable continuous wave semiconductor laser at 808 nm (Changchun Laser
Optoelectronics Technology Co., China). The morphology and size of the UCNPs were determined by
transmission electron microscopy (TEM, Tecnai G2, FEI Company, Hillsboro OR, USA). The crystal
structure and the phase purity of the UCNPs were obtained using an X-ray diffractometer (XRD, Bruker
D8-Discover, Karlsruhe, Germany). Ultraviolet-visible (UV-Vis) absorption spectra were recorded on a
UV-Vis spectrophotometer (Shimadzu UV-1780, Kyoto, Japan). The Fourier transform infrared (FTIR)
spectra were performed using a Nicole iS10 FTIR spectrometer (Thermo Fisher Scientific, Waltham,
USA) from samples in KBr pellets.

2.3. Synthesis of Oleic Acid (OA)-Coated NaYF4:Yb/Er/Nd

NaYF4:Yb/Er/Nd nanoparticles were synthesized using the co-precipitation method [56]. Following
the typical procedure, 1 mmol rare-earth acetates (Y/Yb/Er/Nd = 77:20:2:1) were mixed with oleic acid
(10 mL) and 1-octadecene (15 mL) in a 100 mL flask under vigorous stirring. The solution was heated
to 156 ◦C under argon protection and maintained for 1 h to form the lanthanide oleate complexes and
remove the residual water and oxygen. Then, the solution was cooled down to 50 ◦C. A methanol
solution (20 mL) containing NH4F (4 mmol) and NaOH (2.5 mmol) was added into the flask and
incubated for 30 min. The temperature was increased to 70 ◦C to remove the methanol and then
heated to 305 ◦C under an argon atmosphere for 1.5 h, before being cooled down to room temperature.
The resulting nanoparticles were precipitated from the solution by the addition of ethanol and collected
via centrifugation at 6000 rpm. The precipitated nanoparticles were repeatedly washed with ethanol
and cyclohexane and finally redispersed in cyclohexane.

2.4. Synthesis of OA-Coated Core@shell NaYF4:Yb/Er/Nd@NaYF4:Nd

By using the synthesized NaYF4:Yb/Er/Nd core nanoparticles as seeds, an NaYF4:Nd layer
was grown through the epitaxial growth method [56]. A total of 0.5 mmol of rare-earth acetates
(Y/Nd = 70:30) were mixed with oleic acid (10 mL) and 1-octadecene (15 mL) in a flask. The solution
was heated to 156 ◦C under argon flow for 1 h with magnetic stirring and then cooled to 50 ◦C.
Core nanoparticles (1 mmol) in cyclohexane (10 mL) were added along with a methanol solution
(20 mL) containing NH4F (4 mmol) and NaOH (2.5 mmol) into the flask and stirred at 50 ◦C for
30 min. The temperature was increased to 70 ◦C to remove the methanol and then heated to 305 ◦C
under an argon atmosphere for 1.5 h, before being cooled down to room temperature. The resulting
nanoparticles were precipitated out by the addition of ethanol, collected by centrifugation, washed
with ethanol and cyclohexane, and finally redispersed in cyclohexane by ultrasonication.
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2.5. Synthesis of Ligand-Free NaYF4:Yb/Er/Nd@NaYF4:Nd

Ligand-free core@shell UNCPs were prepared using acid treatment. Oleic acid (OA)-coated
core@shell nanoparticles (0.2 mmol) in cyclohexane (1 mL) were added with ethanol. The mixture was
centrifuged at 6000 rpm to precipitate the nanoparticles. The collected nanoparticles were added with
0.1 M HCl solution (1 mL). The reaction was performed with ultrasonication for 1 h at 45 ◦C. During
the reaction, the carboxylate groups of the OA ligand were protonated to form OA. Next, the solution
was mixed with 0.1 mL cyclohexane to remove OA by extraction with cyclohexane. Subsequently, the
ligand-free UCNPs were collected by centrifugation at 14,000 rpm for 0.5 h. The product was washed
repeatedly with deionized water and redispersed in deionized water for further experiments.

2.6. Optimization of Experimental Conditions

The effect of pH on the fluorescence intensity with and without EPI (26.73 µM) was investigated
using solutions containing ligand-free core@shell UCNPs (0.4 M) with pH values adjusted from 4 to 8
by adding HCl or NaOH. Under an optimized pH, the influence of the ligand-free core@shell UCNP
concentration on the quenching efficiency was explored with the addition of EPI (26.73µM). The optimal
reaction time was determined under the optimized ligand-free core@shell UCNP concentration in PBS.

2.7. Assay Conditions for the detection of EPI

A stock solution of 137.94 mM EPI was prepared in deionized water and stored at 4 ◦C. Different
concentrations of EPI were obtained by diluting the stock solution. The concentration of ligand-free
core@shell UCNPs was adjusted to 0.6 M by adding PBS. For the fluorometric detection, various
concentrations of EPI solutions were added into 3 mL of ligand-free core@shell UCNP (0.6 M) solution.
To avoid a change in volume, each addition was 1.5 µL. The final concentration of EPI was varied from
0.09 µM to 258.63 µM. Reactions were performed for 10 min at room temperature before fluorescence
spectrum measurements.

2.8. Real Sample Preparation

The urine sample was collected from a healthy volunteer. The sample was diluted 10 fold before
analysis and no other pretreatments were used.

3. Results and Discussion

3.1. Characterization of UCNPs

Prepared core (NaYF4:Yb/Er/Nd), core@shell (NaYF4:Yb/Er/Nd@NaYF4:Nd), and ligand-free
core@shell (NaYF4:Yb/Er/Nd@NaYF4:Nd) UCNPs were analyzed by TEM. Figure 2a demonstrates that
the synthesized core UCNPs are well-dispersed spherical particles and uniform in size with an average
diameter of ~24.7 ± 1.7 nm (mean ± standard deviation). To enhance the upconversion fluorescence
intensity, an external shell doped with Nd3+ was grown on the surface of the core UCNPs via the
epitaxial growth method. Owing to an overall increase in the doping concentration of Nd3+, this active
shell layer can enhance the harvesting of excitation energy. Additionally, the core-shell structure can
minimize the surface quenching effect of the core and reduce cross relaxation between lanthanide
ions [52]. As illustrated in Figure 2b, the resulting core@shell UCNPs were highly monodispersed
elliptic particles with a length of 32.2 ± 1.4 nm and width of 25.1 ± 1.7 nm. The physical shape and size
of these core@shell UCNPs was consistent with those of reported core@shell UCNPs synthesized using
the same method [56]. To make core@shell UCNPs water-dispersible, the surface of the UCNPs was
modified by removing oleate ligands. Figure 2c shows that the ligand-free core@shell UCNPs disperse
well in water and retain the same narrow size distribution as the core@shell UCNPs. The successful
removal of oleate ligands after acid treatment was also confirmed by Fourier-transform infrared
spectroscopy. As shown in Figure S1, for the spectrum of core@shell UCNPs, peaks at 2927 and
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2853 cm−1 are attributed to symmetric and asymmetric stretching vibrations of C-H, and peaks at 1556
and 1464 cm−1 are caused by symmetric and asymmetric stretching of COO-respectively, which are
all associated with oleate ligands [57]. After surface modifications, these characteristic bands almost
all vanished.
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The crystal structure of the ligand-free core@shell UCNPs (denoted by Nd3+-UCNPs) was
examined by X-ray diffraction (XRD), as shown in Figure 3. It was found that the peak positions
and intensities were in good agreement with the calculated values of the pure hexagonal-phase
structure β-NaYF4 nanocrystals (JCPDS no. 16-0334). In addition, the selected area electron diffraction
pattern (SAED) of the Nd3+-UCNPs (Figure 2d) displays spotty polycrystalline diffraction rings, which
correspond to the (111), (200), (220), and (311) planes of β-NaYF4 lattice. It is noted that β-phase NaYF4

is preferred over α-NaYF4, since it has a much stronger fluorescence intensity and better fluorescent
thermal stability [58].
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(JCPDS no. 16-0334) is also shown.

3.2. Principle of Detection

The principle of the fluorometric detection of EPI using Nd3+-UCNPs is illustrated in Figure 1.
The detection is based on the fluorescence resonance energy transfer process between Nd3+-UCNPs
and EPI, where Nd3+-UCNPs works as an energy donor and EPI acts as an energy acceptor. Upon
808 nm excitation, the Nd3+ ions doped in the shell layer absorb and transfer the excitation energy
to nearby Yb3+ ions in the nucleus and subsequently to the luminescent Er3+ center, which yields
the upconversion emission. As shown in Figure 4, the Nd3+-UCNPs exhibit two emission bands
in the green parts of the visible region. The emission bands at around 523 nm and 541 nm are
due to 2H11/2-4I15/2, 4S3/2-4I15/2 transitions of Er3+, respectively [59]. The absorption spectrum of
EPI (26.73 µM) in neutral pH conditions (pH = 7) was measured using a UV-Vis spectrophotometer.
Figure 4 demonstrates that EPI has absorption peaks at 480 nm and 497 nm, which are close to the
emission peaks of Nd3+-UCNPs. The absorption band of EPI (~400 nm–~600 nm) matched well with
the emission band of Nd3+-UCNPs; therefore, they work as a donor and acceptor pair. Furthermore,
the distance between the donor and the acceptor plays a critical role in affecting the rate of energy
transfer [54]. It has been reported that the surface of Nd3+-UCNPs is negatively charged in neutral
and alkaline solutions, while EPI is positively charged because of protonated amino nitrogen [60,61].
Therefore, EPI and Nd3+-UCNPs would interact via electrostatic attractions to form a new complex
and quench the fluorescence intensity, as displayed in Figure 4. Notably, the maximum emission of
Nd3+-UCNPs is located at ~541 nm. Therefore, the emission at 541 nm was used as the quantitative
signal in the further experiments.
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Figure 4. The emission spectrum of Nd3+-UCNPs without (green line) and with EPI (green dashed
line), and the UV absorption of EPI at pH = 7.4 (red line).

3.3. Optimization of Experimental Conditions

To achieve high sensitivity and precision, several experimental conditions were optimized
including the pH of the system, concentration of Nd3+-UCNPs, and reaction time. The effect of pH on
the detection system was investigated with 0.4 M EPI (Figure S2). Considering that EPI may undergo
hydrolysis in alkaline solutions (pH > 7.4), PBS (pH = 7.4) for the detection system was selected for
further experiments to attain a low detection limit (Figure S2) [62].

The effect of the concentration of Nd3+-UCNPs on the quenching efficiency was explored.
The fluorescence intensity of Nd3+-UCNPs with and without the addition of EPI were denoted by
I and I0, respectively. Figure 5a demonstrates the quenching efficiency, computed by (I0 − I)/I0,
with the concentration of Nd3+-UCNPs varying from 0.13 to 0.8 M. It is seen that the quenching
efficiency reaches the maximum when the concentration of Nd3+-UCNPs reaches ~0.6 M. Hence, the
concentration of Nd3+-UCNPs was fixed at 0.6 M for the following experiments.
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Figure 5. (a) Quenching efficiency, (I0 − I)/I0, versus the concentration of Nd3+-UCNPs in phosphate
buffered saline (PBS) (I0 and I are the upconversion fluorescence intensity of Nd3+-UCNPs monitored
at 541 nm in the absence and presence of 26.73 µM EPI, respectively); (b) Time-dependent upconversion
fluorescence response of Nd3+-UCNPs in PBS with the addition of 26.73 µM EPI.
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The reaction time also plays an important role in the detection. Figure 5b shows the temporal
evolution of the quenched fluorescence intensity of Nd3+-UCNPs at 541 nm upon the addition of EPI
(26.73 µM). The fluorescence intensity decreases sharply in the first several minutes, and reaches a
steady state after a reaction time of 10 min. Furthermore, the fluorescence intensity remains stable for
about 1 h, which demonstrates good stability of the detection system. Therefore, the reaction time was
set to 10 min in all experiments.

3.4. Fluorometric Detection of EPI

A series of fluorescence spectra of Nd3+-UCNPs in the presence of various concentrations
of EPI were recorded under the optimized experimental conditions, as illustrated in Figure 6a.
The fluorescence intensity decreases monotonously with the increase in EPI concentrations. Figure 6b
plots the fluorescence intensity ratio, I0/I, (monitored at 541 nm) against the concentration of EPI
(0–258.63 µM). A good linear relationship occurs (R2 = 0.994) when the concentration of EPI is in the
range of 0.09 µM to 189.66 µM. Quantified analysis can be performed using the Stern-Volmer equation,
which is given by,

I0/I = 1 + Ksv × [Q] (1)

where Ksv is the Stern-Volmer quenching constant and [Q] is the concentration of the quencher, EPI. Ksv

was computed to be 2.10 × 104 M−1 using a linear least square fit. The Ksv of the order 104 demonstrates
that EPI is an efficient quencher. The detection limit was determined to be 0.05 µM, which was
calculated by 3σ/K, where σ represents the standard deviation of the blank signal and K is the slope of
the linear curve. To compare with other methods, Table 1 summarizes the detection limit and the linear
range of other techniques for EPI detection. The detection limit of this method is comparable to that of
electrochemical methods [28–31], which is sufficiently sensitive for practical applications. Furthermore,
this detection system has a wider linear range than that of other methods [13,16,20,22,28–30].
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Figure 6. (a) The emission spectra of Nd3+-UCNPs after the addition of various concentrations of EPI,
a–l: 0, 0.09, 0.17, 0.86, 1.72, 6.90, 12.07, 17.24, 51.73, 120.69, 189.66, and 258.63 µM in PBS; (b) Normalized
fluorescence intensity, I0/I, plotted against EPI concentration (0.09–258.63 µM).
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Table 1. Comparison of previous methods for EPI analysis. LOD, limit of detection; HPLC/UV, high
performance liquid chromatography coupled with ultraviolet; HPLC/MS/MS, high performance liquid
chromatography coupled with mass spectrometry; CE/LIF, capillary electrophoresis coupled with laser
induced fluorescence; UCNP, upconversion nanoparticle.

Methods LOD (µM) Linear Range (µM) Refs.

HPLC/Fluorometry 0.00129 0.0043–4.311 [13]
HPLC/UV 0.05 0.172–86.2 [16]

HPLC/MS/MS 0.00017 0.00034–0.0069 [20]
CE/LIF 0.017 0.086–0.862 [22]

Electrochemical/bare electrode 0.126 0.86–70.0 [29]
Electrochemical/nanoparticles 0.01 0.04–450 [31]

Electrochemical/carbon nanotube 0.02 0.05–10 [28]
Electrochemical/DNA 0.04 0.07–21 [30]

Fluorescence/Nd3+-UCNPs 0.05 0.09–189.66 This work

3.5. Selectivity for the Detection of EPI

The interference of some metal ions and biomolecules that are normally present in biological fluids
on the detection of EPI by the Nd3+-UCNPs probe was examined. As shown in Figure 7, except for 3
fold cyanidin 3-glucoside, the quenching efficiency when 17.24 µM EPI was added was not affected by
a coexisting substance including 500 fold K+, 500 fold Na+, 500 fold Al3+, 300 fold Ca2+, 200 fold Mg2+,
1000 fold L-glycine, 500 fold L-cysteine, 500 fold histidine, or 300 fold glucose. The addition of cyanidin
3-glucoside would attenuate the upconversion fluorescence intensity, because cyanidin 3-glucoside
has similar absorption spectra to that of EPI [63]. To gain a clear picture of the interference effect
of cyanidin 3-glucoside, the quenching efficiency was measured with the concentration of cyanidin
3-glucoside varied from 0.1724 µM to 34.48 µM, as demonstrated in Figure S3a. It was found that
the quenching efficiency was insensitive to variations in the concentration of cyanidin 3-glucoside
when its concentration was low (less than 8.62 µM). Since normally the concentration of anthocyanin
metabolites in urine is very low, their interference effects on the determination are minimal [63]. Even
if a large anthocyanin dose is consumed, concentrations of anthocyanin metabolites in urine at 24 h are
reduced to levels of ~0.01 µM [63]. In this case, their interference effects could be effectively eliminated
by waiting sufficiently long time before the investigation. Furthermore, most potential interferences
can be largely eliminated by simple dilution. Additionally, we performed experiments to investigate
the interference effect in the presence of other anthracycline antibiotics including doxorubicin and
daunorubicin. As shown in Figure S3b, the quenching efficiency was affected by the presence of
doxorubicin or daunorubicin, especially when their concentrations were large. The current nanoprobe
is limited to detecting EPI without the presence of some anthracycline antibiotics, whose molecular
structure is similar to that of EPI. However, generally, EPI is not combined with other anthracycline
antibiotics in actual treatment. To further improve the specificity, the UCNP surfaces would need
to be modified with aptamer or molecularly printed polymers, which can interact specifically with
EPI [30,64]. This will be investigated in future work.
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Figure 7. The relative fluorescence quenching efficiency of the detection system in the presence of
other interfering molecules and ions in coexistence with EPI. I0 represents the fluorescence intensity of
Nd3+-UCNPs while I denotes the fluorescence intensity of Nd3+-UCNPs with the addition of EPI and
other interfering species.

3.6. Sample Analysis

For practical applications, the proposed Nd3+-UCNPs sensor was employed to detect EPI in
human urine. The detection of EPI was performed by spiking a specified concentration of EPI in 3 mL
urine sample containing Nd3+-UCNPs (0.6 M) using the standard addition method. As shown in
Table 2, the recovery for the sample was in the range of 97.5–102.6%, with a relative standard deviation
(RSD) from 4.7% to 6.1%. This result confirms the feasibility of using Nd3+-UCNPs for EPI detection in
human urine samples.

Table 2. Recovery experiments of EPI in urine samples.

Sample Added (µM) Found (µM) Recovery (%, n = 5) RSD (%, n = 5)

Urine 1 5 4.9 98.2 4.7
Urine 2 10 10.3 102.5 6.1
Urine 3 20 23.2 97.5 5.8

4. Conclusions

In summary, a simple and selective Nd3+-UCNPs fluorescent sensor for rapid and reliable detection
of EPI in aqueous solutions has been proposed. Water-dispersible Nd3+-UCNPs are prepared by simply
removing the oleic ligands from the core@shell UCNPs through acid treatment. The absorption of
EPI onto the Nd3+-UCNP surface effectively quenches the upconversion fluorescence intensity via the
FRET process. This sensing method is fast and sensitive and has a wide linear range. The interference
from common ions and biomolecules is minimal. Urine sample testing demonstrates that the detection
strategy is applicable for real sample analysis. Finally, we would like to point out that the Nd3+-UCNPs
sensor is an excellent emitter with low autofluorescence and a high penetration depth to biological
samples, which holds great potential for applications in biological and analytical fields such as in vivo
imaging, sensing, and therapy.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/12/1700/s1,
Figure S1: FTIR spectra of (a) OA-coated core@shell UCNPs, and (b) ligand-free core@shell UCNPs, Figure S2: (a)
Upconversion fluorescence responses of Nd3+-UCNPs in the absence and presence of 26.73 µM EPI at different
pH values, (b) UV absorption spectra of EPI for a pH from 4 to 8, Figure S3: The fluorescence quenching efficiency
of the detection system in the presence of (a) cyanidin 3-glucoside, (b) doxorubicin or daunorubicin in coexistence
with EPI. I0 represents the fluorescence intensity of Nd3+-UCNPs while I denotes the fluorescence intensity of
Nd3+-UCNPs with the addition of EPI (17.24 µM) and other interfering species.
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