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Abstract: The main objective of this work was to evaluate the potential of Montmorillonite 
nanoclay (Mt), readily and inexpensively available, for the simultaneous adsorption (and removal) 
of two classes of pollutants: metal ions and dyes. The attention was focused on two “model” 
pollutants: Ce(III) and crystal violet (CV). The choice is due to the fact that they are widespread in 
wastewaters of various origins. These characteristics, together with their effect on human health, 
make them ideal for studies on water remediation. Moreover, when separated from wastewater, 
they can be recycled individually in industrial production with no or simple treatment. 
Clay/pollutant hybrids were prepared under different pH conditions and characterized through 
the construction of the adsorption isotherms and powder X-ray diffraction. The adsorption 
behavior of the two contaminants was revealed to be significantly different: the Langmuir model 
reproduces the adsorption isotherm of Ce(III) better, thus indicating that the clay offers a unique 
adsorption site to the metal ions, while the Freundlich model proved to be the most reliable for the 
uptake of CV which implies heterogeneity of adsorption sites. Moreover, metal ions do not adsorb 
at all under acidic conditions, whereas the dye is able to adsorb under all the investigated 
conditions. The possibility to modulate the adsorption features by simply changing the pH 
conditions was successfully employed to develop an efficient protocol for the removal and 
separation of the different components from aqueous solutions mimicking wastewaters. 
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1. Introduction 

The disposal of wastewaters from various origins represents a serious environmental issue due 
to the simultaneous presence of different types of pollutants [1–4]. Dyes and metals are widely used 
and often jointly released in large quantities from industrial activities such as dye manufacturing, 
the textile and leather tannery industries, pulp and paper processing, battery production [5–11]. 

Owing to their toxic potential and their recalcitrant capacity, discharge of metal ions and dyes 
effluents can cause potential hazards to environment and human health [12–24]. 

All conventional methods applied for the treatment of dyes and/or heavy metals [25–32] have 
peculiar limitations related to cost, efficiency and operational difficulties [11,33–36]. Among them, 
adsorption was revealed as one of the most effective methods due to its simple operation, versatility, 
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high-treatment efficiency and low cost, and it is therefore widely applied for the treatment of 
wastewaters [37–48].  

Several kinds of natural or chemically modified materials including activated carbons, carbon 
nanotubes, zeolites and clays [8,49–58], were investigated to remove contaminants from effluents. In 
recent years, there has been growing interest in clay minerals which are green, inexpensive and 
effective adsorption substrates [5,59–65]. 

Aside from their large surface area, the adsorption properties of clay minerals are mostly 
related to the negative charges generated by isomorphic substitutions. Generally, these negative 
charges are neutralized by exchangeable ions thus allowing the adsorption of positively charged 
cations through cation exchange processes. For these reasons clay minerals display a strong 
attraction to cationic species, such as dyes and metal ions [55,66–70].  

Specifically, montmorillonite (Mt), whose structure consists of ~1 nm thick alluminosilicate 
layers, was largely employed in remediation due to its noteworthy properties, including large 
specific surface area and presence of nano-pores, high cations exchange capacity, presence of several 
types of active sites on the surface, easy availability, eco-friendliness and non-toxicity [71–78].  

In this context is inserted the present work where Mt mineral clay was employed for the 
treatment of water samples containing two “model” pollutants. The organic dye crystal violet (CV) 
and the Ce(III) metal ions were chosen as models for dye metals because they are both in the cationic 
form in a wide range of pH, they are widespread in wastewaters of various origin, and have a toxic 
effect on human health, making them ideal for a study on water remediation. Moreover, when 
separated from wastewater, they can be recycled individually in industrial production [79]. 

In more detail, crystal violet is largely employed in textile and paper industries, in veterinary 
pharmacology and in bacteriology as Gram stain [79]. In spite of the great range of applications, 
crystal violet is a mutagen, carcinogenic and mitotic poison [80,81] and therefore the disposal of 
effluents is an important environmental issue.  

As for the Ce(III) species, it represents the most abundant element of rare earth metals and has 
several applications in engineering, agriculture, catalysis, nuclear energy, metallurgy, 
pharmaceutical, and removal from radioactive wastes [82–88]. Cerium compounds are considered to 
be moderately toxic [89–92] with their tendency to accumulate in the bones, liver, heart and lung and 
to react with enzyme and phospholipids [93,94]. Moreover, cerium in forms of nitrate and chloride 
could induce chromosomal breaks [95] and intensifying the cardiac effects of magnesium deficiency 
[96], respectively. Due to the toxic effect and the simultaneous technological importance of Ce(III), 
separation and recovery of these metal ions from effluents has a significant environmental and 
economic impact.  

The removal of both Ce(III) and CV from aqueous solutions through adsorption onto various 
substrates, including clay minerals, was investigated by various authors [20,24,34,81,83,97,98]. 
However, a systematic study aimed to develop an efficient procedure for their simultaneous 
removal and separation is still lacking.  

In the light of the above considerations, the aim of this work was to exploit the adsorption 
features of Mt clay for the treatment of aqueous solutions containing crystal violet and Cerium(III) as 
models for dyes and metals. Although different works concerning multicomponent adsorption were 
performed [99,100] in order to better clarify the adsorption mechanism and to propose a separation 
protocol, the adsorption behavior of the two contaminants separately was investigated here. Batch 
adsorption experiments were performed under different pH conditions and the adsorption 
isotherms were constructed in order to elucidate the adsorption mechanism and establish the nature 
of the interactions. The sites of interactions of the clay surface were proposed on the basis of the XRD 
results. Then, based on the information obtained, two different procedures were developed to 
remove simultaneously and separate the metal ions and dyes from the effluent. 

2. Materials and Methods  

2.1. Materials 
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All the reactants, i.e. K10-Montmorillonite (Mt), hydrochloric acid (HCl), sodium hydroxide 
(NaOH) standard solutions, Ce(III) nitrate hexahydrate (Ce(III)) and crystal violet (CV, C25H30ClN3, 
Mw = 407.99 g mol−1, water solubility = 50 mg mL−1 at 27 °C, Kow = 0.51) were purchased from Sigma 
Aldrich and used as received. The structural formula of K10-Mt is reported as follows:  

(K0.25Na0.118Ca0.022)(Al1.06Fe0.206Mg0.166)(Si7.39Al0.61)O20(OH)4. 

The BET (Brunauer-Emmett-Teller) surface area is 220 m2/g, the CEC is 119 meq/100 g, the total 
pore volume is 0.3 cm3/g and the average pore size is 6.25 nm. Pore size distribution (PSD) curves 
reveal that 80% of pores have a diameter <25 nm with a peak at 4.04 nm [101]. 

Zeta potential measurements reported in literature for K10-Montmorillonite [78] showed that it 
does not present isoelectric point, being the clay surface negatively charged at all pH values.  

Deionized water from reverse osmosis (Elga, model Option 3), having a specific resistance 
higher than 1 MΩ cm, was used to prepare all solutions. 

2.1. Samples Preparation 

Aqueous HCl and NaOH solutions at the desired pH were prepared by proper dilution of the 
corresponding standard solution.  

Pollutant stock solutions and Mt suspensions were prepared by weighing the proper amounts 
of the components and dissolving them with the aqueous solutions at the required pH, according to 
the procedure already reported in the literature [72]. When necessary the pH of the aqueous 
solutions/dispersions were adjusted to the desired value by adding microvolumes of either HCl or 
NaOH standard solution. The clay dispersions were stirred for about 2 h before use.  

In order to construct the adsorption isotherms, appropriate aliquots of the metal or dye 
solutions were added to the Mt dispersion at room temperature (25 °C). The pollutant concentrations 
were changed in the range from (2.0 ± 0.1) × 10−4 to (4.0 ± 0.2) × 10−3 g dm−3, while the amount of Mt 
was kept constant at 0.40 ± 0.02 g dm−3. The mixture was stirred at 100 rpm for 24 h, a stirring time 
which ensures that the adsorption processes reaches the equilibrium, as demonstrated by 
preliminary kinetic experiments. At the end of the adsorption process the pH of the obtained 
dispersions was checked. No significant changes were observed. The dispersion was then 
centrifuged 1 hour at 10,000 rpm by means of a Centra MP4R IEC centrifuge (Thermo Fisher 
Scientific, Waltham, MA, USA). The supernatant was separated from the solid, which was air-dried 
at room temperature, crushed in an agate mortar and employed for X-ray diffraction (XRD) 
characterization.  

The gathered supernatants were spectrophotometrically analyzed by registering the spectra of 
the aqueous pollutant solutions in the wavelength range 200–700 nm with a diode-array S600 
spectrophotometer (Analytic Jena, Jena, Thuringia, Germany) equipped with thermostated 
compartments for 1 cm × 1 cm × 5 cm cuvettes and an appropriate magnetic stirring apparatus. 
Triplicate experiments were performed and the results are reported as the average value of each 
single measurement.  

The molar adsorption coefficient values (ε) of CV and Ce(III) at two different pH conditions 
were determined by constructing the calibration curves (Table 1) 

Table 1. Molar adsorption coefficient values (ε, M−1 cm−1) of crystal violet (CV) and Ce(III) at pH 3.0 
and 7.0. 

 pH 
conditions 

ε, M−1 cm−1 

CV 
(λ max = 591 nm) 

pH 3.0 42000 ± 800 
pH 7.0 73800 ± 300 

Ce(III) 
(λ max = 253 nm) 

pH 3.0 740 ± 30 
pH 7.0 860 ± 50 

2.2. X-ray Diffraction (XRD) Characterization 
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Powder X-ray diffractometry measurements were performed for the Mt/contaminant hybrids 
and for the clay in the absence of additives. Samples were mounted on aluminum plates and the 
XRD patterns were acquired at room temperature with an STOE D500 (Siemens, Monaco, Germany) 
with Cu Kα radiation, λ = 1.5418 Å, generated at 40 kV and 20 mA, in the range of scattering angles 
2θ = 4°–25° at the rate of 0.01°/s. 

3. Results 

3.1. Effect of pH Solution on Adsorption Efficiency 

Since clay surface is negatively charged at all pH values [78], Mt surface is ideal for the uptake 
of cations. 

In order to compare the amount of the two contaminants adsorbed onto the clay under different 
pH conditions (pH = 3.0, 5.0, 7.0, 9.0), preliminary experiments were performed by mixing 0.04 g 
dm−3 of CV or Ce(III) with 0.4 g dm−3 of Mt. The dispersion obtained was then stirred and centrifuged 
and the supernatants were analysed spectrophotometrically as already described. The results, 
expressed in terms of weight percentage, i.e (mass of adsorbed component/initial mass) × 100%, are 
summarized in Table 2. 

Table 2. Weight percentage of CV and Ce(III) adsorbed onto Mt mineral clay. 

 pH 3.0 pH 5.0 pH 7.0 
CV 73 wt% 78 wt% 95 wt% 

Ce(III) 0 0 50 wt% 
Results are not reported for the highest value of pH (pH = 9.0), since it was observed that the 

stability of the clay suspension is strongly decreased at high pH, thus leading to low reproducibility 
of the experiments. 

Despite the fact that both contaminants are in the cationic form at the investigated pH range 
[102–104], a marked difference in the adsorption behavior between the species is clearly evidenced 
from data in Table 2. In more detail, Ce(III) metal ions do not adsorb onto clay at acidic pH at all, 
while the dye is able to adsorb at the three investigated pH conditions. The higher pH favors 
significantly the uptake of the dye according to what is observed for instance in [76] for the 
adsorption of methyl green dye molecule onto Mt clay. 

As widely reported in the literature [72,105,106] the uptake of cationic species onto Mt clay 
occurs through cationic exchange processes in the clay interlayer and electrostatic interactions with 
the permanent negative charges on the clay surface. Moreover, the effect of the pH-dependent 
charges has to be taken into account: the abundance of H+ ions at acidic pH, imparts a repulsive force 
toward the positively charged species, thus hampering their uptake. The results obtained in the 
present work seem to indicate that electrostatic repulsions are predominant in the case of the 
adsorption of Ce(III) metal ions and less influent in the case of the crystal violet. 

3.2. Adsorption Isotherms 

The adsorption isotherms, where the equilibrium amount of pollutant adsorbed into the clay 
(Cs, g g−1) is plotted as a function of the equilibrium concentration in solution (Ce, g dm−3), are 
reported in Figure 1. In the light of the results reported in 3.1, two representative values of pH (pH 
3.0 and pH = 7.0) were taken under consideration. It is worth underlining that, under the applied 
experimental conditions, no Ce(III) precipitation was observed. 
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Figure 1. Adsorption isotherm of (A) CV and (B) Ce(III) onto Mt performed at pH = 7.0 (■) and pH = 
3.0 (□). Lines correspond to the fit by Freundlich and Langmuir models, for CV and Ce(III) 
respectively. 

As already observed the uptake of the dye is lower under the more acidic conditions, while the 
metal ions adsorb onto clay only at the higher pH value. 

The following two models were used for fitting the adsorption isotherms: 
- Langmuir isotherm: 𝐶 𝑞 𝐾 𝐶 1 𝐾 𝐶   

where qm and KL are Langmuir coefficients related to adsorption capacity and adsorption equilibrium 
constant respectively;  

- Freundlich isotherm model:  𝐶 𝐾 𝐶 /   

where KF and n are Freundlich coefficients related to adsorption capacity and adsorption intensity, 
respectively. 

The discrimination between the two models was performed by means of the statistical criteria 
described in [107] based on advanced statistical diagnostics and robust fitting techniques. The 
sorption parameters obtained and the most commonly applied statistics are collected in Table 3. 
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Table 3. Sorption parameters and selected figures of merit of the two applied models, for the 
adsorption isotherms of the contaminants onto the Mt. 

  
Langmuir 𝑪𝒔 = 𝒒𝒎𝑲𝑳𝑪𝒆 𝟏+𝑲𝑳𝑪𝒆 

  qm, g g−1 KL, dm3 g−1 R2 χ2 ESS 

CV pH 3.0 0.155 ± 0.007 480 ± 60 0.969 6.0 × 10−5 1.3 × 10−3 
pH 7.0  0.22 ± 0.02 430 ± 70 0.961 8.8 × 10−5 1.0 × 10−3 

Ce(III) pH 7.0  0.122 ± 0.004 180 ± 20 0.984 1.0 × 10−5 9.2 × 10−5 

  
Freundlich 𝑪𝒔 = 𝑲𝑭𝑪𝒆𝟏/𝒏 

  n KF, (g g−1) (dm3 g−1)1/n R2 χ2 ESS 

CV pH 3.0 2.2 ± 0.1 1.1 ± 0.1 0.985 2.9 × 10−5 6.3 × 10−4 
pH 7.0  2.0 ± 0.1 2.3 ± 0.4 0.967 7.4 × 10−5 8.8 × 10−4 

Ce(III) pH 7.0  2.5 ± 0.3 0.5 ± 0.1 0.923 5.0 × 10−5 4.5 × 10−4 
The Freundlich model proved to be the most reliable for the uptake of CV which implies 

heterogeneity of adsorption sites and/or formation of multilayers [108–111], while the Langmuir 
model better reproduces the adsorption isotherm of Ce(III), indicating that the clay offers a unique 
adsorption site to the metal ions. Adsorption isotherms reported in Figure 1 clearly evidences the 
higher adsorption capacity of CV with respect to Ce(III). However, since the two contaminants 
adsorb through different mechanisms, the adsorption parameters obtained are not suitable for 
comparison.  

As for the dye uptake, KF coefficient is higher at the higher pH, thus confirming that the excess 
of H + ions at the acidic pH hampers the CV adsorption. The Freundlich constant values n > 1.0 
indicate the occurrence of favorable adsorption [78] and do not show significant variation with pH 
within the error bars. The obtained parameters are in line with those reported literature for the 
adsorption of CV onto K10-Montnorillonite [78,112]. Comparison with other adsorbents evidences 
the higher efficiency of Mt [33,113,114]. 

To the best of the authors’ knowledge, no data related to the adsorption of Ce(III) cations onto 
K10-Mt are available. The adsorption capacity values reported in literature for the uptake onto 
different supports [115–117] are of the same order of magnitude or lower than those obtained in the 
present work. 

Comparable values of adsorption efficiency are achieved with the application of membrane 
separation processes, i.e. micro-, nano- or ultra-filration or reverse osmosis [118–120] in the removal 
of both classes of contaminants. However, although quite effective, these methods are characterized 
by elevated maintenance and operation costs and high energy requirements [118,121] which make 
them unsuitable, especially for small and medium industries.  

Information about the kind of energy that governs the adsorption process was obtained by 
applying the Dubinin–Radushkevich (DR) equation (Figure 2):  

lnCs = lnXm−kε2 (1) 

where 

ε = RT ln (1 + 1/Ce) (2) 

is the Polanyi potential, R (KJ mol−1 K−1 ) is the gas constant, T (K) is temperature, Xm (g g−1) is the 
adsorption capacity of the adsorbent, and k (mol2 KJ−2 ) is the DR isotherm constant related to the 
adsorption energy through the following equation:  

E = 1/√(2k) (3) 
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Figure 2. Dubinin–Radushkevich (DR) adsorption isotherms of (A) CV and (B) Ce(III) onto Mt 
performed at pH = 7.0 (■) and pH=3.0 (□); line corresponds to the fit by DR equation. 

The obtained values of the sorption parameters are reported in Table 4. 

Table 4. Sorption parameters of the Dubinin–Radushkevich model for the adsorption isotherms of 
the contaminants onto the Mt. 

 Xm, g g−1 K, mol2 KJ−2 E, KJ mol−1 R2 

CV pH = 3.0 0.47 ± 0.08 (5.9 ± 0.2) × 10−4 9.2 ± 0.3 0.9599 
pH = 7.0 0.29 ± 0.05 (6.7 ± 0.5) × 10−4 8.6 ± 0.6 0.9349 

Ce(III) pH = 7.0 0.23 ± 0.01 (8.8 ± 0.7) × 10−4 7.5 ± 0.6 0.9377 
As for the dye, the E values obtained were in the range of adsorption energy (8–16 KJ mol–1) 

characteristic for adsorption systems dominated by chemical ion-exchange mechanism [122–124], 
while for the metal ions a borderline value was obtained, thus indicating that occurrence of other 
mechanisms than cation exchange, i.e. direct bonding between metal cations with the surface of clay 
(electrostatic interactions) and/or surface complexation [125]. 

The different modes of adsorption and their dependence on the pH conditions suggest the 
possibility to properly modulate the removal and recovery of effluent contaminants. Therefore, the 
employment of Mt nanoclay as sorbent offer a versatile method for the decontamination and 
valorization of wastewaters containing different types of pollutants.  

3.3. XRD Characterization 

XRD patterns of unmodified and modified Mt samples, registered in the very low angle range, 
are reported in Figure 3. 
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Figure 3. X-ray diffraction (XRD) patterns of pristine Mt (black line), CV/Mt hybrids (red line) and 
Ce(III)/Mt (blue line) at prepared at pH = 3.0 (A) and pH = 7.0 (B). 

Perusal of diffractograms evidences the presence of the peaks characteristic of the hydrated 
montmorillonite k10 clay, i.e., one at 2θ approximately equal to 8.9° (peak 1) which corresponds to 
the basal interlayer, and a reflection peak at a lower 2θ value (~6°) (peak 2), which, according to 
literature [74,126–130], is attributed to the majority of the interlayer spaces being intercalated with 
water molecules as proved by the disappearance of this refection peak after dehydration processes 
[129]. 

Comparison between the XRD patterns of the unmodified Mt hydrated at the pH 3.0 and 7.0, 
reveals that acidic conditions lead to a shrinking of the clay interlayer. This can probably be due to 
exchange processes between H+ and the larger cations placed in the clay structure. 

Hybrid samples have structural characteristics nearly identical to the unmodified Mt, thus 
indicating that the clay structure is maintained during the adsorption processes. 

As for the positions of the peaks, no changes are detected in the presence of the metal Ce(III), 
which means that the clay interlayer was not affected by Ce(III) exchange reactions. This behavior is 
consistent with the results of the adsorption isotherms previously described and it is in line with the 
study of [131] that suggested that metal cations were fixed solely on the outer surfaces of the clay. 

By contrast, the adsorption of CV leads to a small shift in the peaks positions. In more detail, 
peak 1 moves towards higher 2θ values, at both investigated pH values, thus indicating a 
contraction of the basal interlayer. The lower interplanar distance after dye adsorption could be 
taken as an indication of the occurrence of cation exchange processes which displace cations from 
the interlayer spaces as already observed in (Bromberg et al., 2011; Calabrese et al., 2017; Cui et al., 
2008).  

A perusal of the position of peak 2 reveals that the entrance of CV at pH 3.0 leads to an 
enlargement of the interlayer spaces intercalated with water molecules from d = 14.5 Å to d = 15.0 Å, 
while at pH 7.0 the dimension of the clay interlayer is already d = 15.0 Å and no changes are 
detected.  

It is worth to underline that the different behavior of metal and dye is in accordance with the 
results of the adsorption isotherms and it corroborates the hypothesis that the dye adsorbs onto Mt 
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clay through both exchange processes and interaction with the outer surface, while metal ions do not 
enter the clay interlayer.  

3.4. Protocol for the Removal and Separation of Pollutants  

The information obtained about the different behavior of the two pollutants on varying pH was 
exploited to develop a procedure for the removal and separation of the two species from a solution 
mimicking an effluent containing the same amount of the two contaminants (~8 × 10−2 g dm−3). 

The solution was treated, according to the method already developed in the first part of the 
present work, with a suspension of Mt (2.0 g dm−3) at pH 3.0 in order to remove only the CV. The 
ultraviolet–visible (UV–vis) spectrum of the supernatant obtained from the centrifugation of the 
obtained dispersion was registered (see Figure 4), then pH was brought to 7.0 and treated again with 
Mt, in order to remove the metal ions from the solution.  

 
Figure 4. Ultraviolet–visible (UV–vis) spectrum of a mixture containing ~8 × 10−2 g dm−3 of CV and 
Ce(III) after the treatment with Mt at pH 3.0 (black line) and after the subsequent with Mt at pH 7.0 
(red line). 

The spectrum of the pollutant’s mixture after the treatment with Mt at pH 3.0 (black line) 
reveals the presence of a peak corresponding to ~8 × 10−4 g dm−3 of CV (λ = 591 nm) indicating the 
removal of the 99% of the dye, and a peak corresponding to ~8 × 10−2 g dm−3 of Ce(III) (λ = 253 nm) 
indicating that the applied procedure does not remove the metal from the solution at all. The 
subsequent treatment at pH 7.0 (red line) leads to the total removal of both the contaminants. 

In the light of the results obtained it can be concluded that the proposed protocol can be 
efficiently applied for the separation and removal of the two different kinds of pollutant, if 
simultaneously present in a wastewater sample. Although, at this stage, experiments on the 
regeneration of the clay were not still performed, the results obtained open up the possibility to 
recover and re-use the two contaminants 

Experiments were also performed where a solution containing the same amount of Ce(III) and 
CV (8 × 10−2 g dm−3) at pH 7.0 was treated with 2.0 g dm−3 of Mt. It was observed that the procedure 
allows the removal of both contaminants and can be applied efficiently when the separation of the 
contaminants is not required. 

4. Conclusions 
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The performance of montmorillonite clay in the decontamination of aqueous solutions 
containing different types of contaminants were verified here. Crystal violet and Cerium (III) were 
chosen as models for dyes and metals. The adsorption process from effluents containing the two 
pollutants separately was first investigated at pH 3.0 and pH = 7.0, thus revealing significant 
differences in the behavior of the two species under the different experimental conditions. 
Adsorption isotherms and XRD measurements were performed in order to characterize the system. 
Then, based on the information obtained, a procedure was proposed and successfully applied to 
remove simultaneously and separate the metal ions and dye from wastewaters containing both 
contaminants. 

These results can be helpful for further studies in scale-up processes using real effluents 
characterized by the presence of different types of pollutants.  
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