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Abstract: La-based perovskite-type oxide is a new type of supercapacitor electrode material with
great potential. In the present study, LaMnO3/MnO (LMO/MnO) nano-arrays supported by carbon
cloth are prepared via a simple one-step electrodeposition as flexible supercapacitor electrodes.
The structure, deposit morphology of LMO/MnO, and the corresponding electrochemical properties
have been investigated in detail. Carbon cloth-supported LMO/MnO electrode exhibits a specific
capacitance of 260 F·g−1 at a current density of 0.5 A·g−1 in 0.5 M Na2SO4 aqueous electrolyte solution.
The cooperative effects of LMO and MnO, as well as the uniform nano-array morphology contribute
to the good electrochemical performance. In addition, a symmetric supercapacitor with a wide
voltage window of 2 V is fabricated, showing a high energy density of 28.15 Wh·kg−1 at a power
density of 745 W·kg−1. The specific capacitance drops to 65% retention after the first 500 cycles due to
the element leaching effect and partial flaking of LMO/MnO, yet remains stable until 5000 cycles. It is
the first time that La-based perovskite has been exploited for flexible supercapacitor applications, and
further optimization is expected.

Keywords: perovskite-type LaMnO3/MnO; supercapacitor flexible electrode; electrochemical properties;
carbon cloth; electrodeposition

1. Introduction

In recent years, new energy storage devices represented by supercapacitors and lithium-ion batteries
have gained significant attention for the sustainable development of resources and environment [1–3].
Supercapacitors are identified as the bridge between lithium-ion batteries and conventional dielectric
capacitors [4]. They exhibit higher power density and longer cycle life than lithium-ion batteries, while
possessing higher energy density and smaller size by comparison to traditional dielectric capacitors,
leading to the gradual emergence in many high-tech fields as promising energy storage devices [5,6].

Actually, the performance of the electrode material plays an important role to determine the
energy storage characteristics of supercapacitors. Carbon-based materials, conducting polymers,
and transition metal oxides/sulfides have been extensively researched as electrode materials for
supercapacitor [2,7]. Among them, transition metal oxides/sulfides have attracted public attention on
account of their higher special capacitance compared with carbon-based materials as well as preferable
cycling stability compared with conducting polymers. However, the application of transition metal
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oxides/sulfides (MnO2, Fe2O3, ZnO, Ni-Co-S, etc.) is seriously restricted by low electrical conductivity,
limited cycling stability, or narrow potential windows [8–11]. Consequently, it is significant to develop
a new type of material that can intrinsically optimize the electrochemical parameters.

La-based perovskite oxides LaBO3 (B = Mn, Ni, Co, etc.) have been regarded as prospective
materials for protective coatings in solid oxide fuel cells (SOFCs) owing to their structural and chemical
stability at high temperature, as well as the high electrical conductivity [12,13]. The special crystal
structure and physicochemical properties also indicate their great potential as supercapacitor materials
for fast energy storage applications. In 2014, Mefford et al. [14] put forward the anion-intercalation
mechanism of LaMnO3 perovskite as electrode material of supercapacitors for the first time, and
the oxygen-vacancy tailored redox process is also initially proposed for fast energy storage. Since
then, a series of researches on the electrochemical behavior of perovskite oxides have been conducted
successively [15–17]. As a new kind of promising supercapacitor material, La-based perovskite
oxides show numerous advantages, such as improved electrical conductivity, wide voltage window
(larger than 1 V), and good cycling stability. For ABO3 perovskite oxides, the electrical conductivity
and the corresponding electrochemical properties depend strongly on the contained oxygen-vacancy,
which can be adjusted by partial displacement of A-site and/or B-site cations in perovskite structure.

Powder samples prepared by sol–gel approach are commonly used to investigate the electrochemical
properties of perovskite oxides, such as La0.85Sr0.15MnO3 [15,18,19] and La1−xCaxMnO3 [20]. However,
powder samples are prone to agglomerate, reducing the specific surface area of the material, which
in turn affects the electrochemical properties. Numerous efforts have been made to prevent the
aggregation of perovskite powders, and various morphologies with increased surface area were obtained.
An urchin-like La0.8Sr0.2MnO3 perovskite oxide with a high specific surface area of 48 m2

·g−1 has
been synthesized via a co-precipitation method [21]. Highly porous LaMnO3 particles were prepared
with polyvinylpyrrolidone (PVP) as a structure directing agent, showing a specific surface area of
47.13 m2

·g−1 [22]. In addition, a series of perovskite oxides with fiber morphology have been prepared
by electrospinning process, displaying great potential as electrode materials of supercapacitors [23,24].
Nevertheless, the methods mentioned above involve multistep processes which are complicated and
time-consuming. Moreover, conductors (acetylene black, graphite, etc.) and binders (polyvinylidene
fluoride PVDF, polytetrafluoroethylene PTFE) are necessary during the electrode preparation, which
surely have a non-negligible influence upon the electrochemical characterization of active materials.
Meanwhile, the coating process also makes a difference to the electrochemical properties and cycle
stability. Therefore, it should be an important issue to explore new structural morphology of perovskite
oxides by alternative methods for energy storage applications.

Nowadays, flexible supercapacitors have gradually approached to people’s attention with the
rise of portable energy devices. Generally, one of the most valid ways to prepare flexible electrode
is to load the active materials on a flexible conductive support [10,25,26]. Carbon cloth, as a novel
conductive support, has drawn a large amount of attention due to the low-cost, chemical inertness,
robustness, and large specific surface area. For instance, Ni-Co-S nanosheet arrays have been deposited
on flexible carbon cloth, and an exceptional energy storage performance is obtained in the prepared
flexible electrode [27]. In fact, electrodeposition is a promising approach to prepare various metal
oxides, including perovskite oxides [12,28,29]. Moreover, the physicochemical properties suitable for
their specific applications can be tailored by changing the deposition parameters (pH and composition
of bath, deposition potential/current, time, temperature, etc.).

Herein, we design carbon cloth-supported LaMnO3/MnO nano-arrays by a facile electrodeposition
method and develop their application as flexible supercapacitor electrodes. The structure, deposit
morphology, and the corresponding electrochemical properties have been systematically investigated.
The present work provides a new structural morphology (two-dimensional nanostructure) of perovskite
oxides as electrodes for supercapacitors. The use of La-based perovskite for the application of flexible
supercapacitors by electrodeposition has rarely been reported before and is of research value and
practical significance.
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2. Materials and Methods

2.1. Materials

Lanthanum nitrate hexahydrate (La(NO3)3·6H2O, 99.9%), 50% manganese nitrate solution
(50% Mn(NO3)2), anhydrous sodium sulfate (Na2SO4, ≥ 99.9%), and sodium hydroxide powder
(NaOH, ≥99.9%) were purchased from Aladdin Co., Ltd. (Shanghai, China) and used without
further purification.

2.2. Materials Preparation

The flexible carbon cloth-supported LaMnO3/MnO (denoted in the following as LMO/MnO)
electrode was prepared by electrodeposition method. Firstly, carbon cloth (CeTech Co. Ltd., Taiwan.
WOS1009, about 12 mg·cm−2, 1.5 cm × 1.5 cm) was immersed in nitric acid for 12 h before deposition.
Then, the carbon cloth was successively ultrasound (KQ-400KDE, Kunshan, China) with ethanol and
deionized water for 1 h, respectively, followed by 6 h drying in a vacuum at 60 ◦C. The processed
carbon cloth was used as the working electrode, while Ag/AgCl electrode and platinum electrode
were respectively set as the reference electrode and the counter electrode. The electrodeposition bath
solution was prepared by dissolving nitrites in 60 mL of deionized water: La(NO3)3·6H2O in 2 M
concentration and Mn(NO3)2 in different concentrations (0.1 M, 0.01 M and 0.005 M) in order to obtain
different deposit morphologies. The pH of electrodeposition solution was adjusted to about 6.9 by
adding appropriate 0.5 M NaOH. Then, electrodeposition was carried out at 50 ◦C in a three-electrode
system with a constant current of 0.5 mA·cm−2. An electrochemical workstation (CHI660E, Shanghai
Chenhua, China) was the power supply. The as-obtained sample was washed with deionized water
repeatedly, and then was dried for 12 h in a vacuum. Finally, it was annealed at 800 ◦C for 4 h under
N2 atmosphere and the mass loading of electrode was about 0.5 mg.

2.3. Phase and Structural Characterization

The phase composition and crystal structure of LMO/MnO were identified by an X-ray
diffractometer (XRD, Bruker AXS D8-discover, Karlsruhe, Germany), which was conducted directly on
the deposited sample. The excitation light source was CuKα radiation with λ = 0.154056 nm, and the
scan rate was 2◦·min−1 at the 2θ range of 10◦–90◦. Samples were cut into small pieces (3 mm × 3 mm),
and stick to a sample stage with conductive adhesive for surface morphology observation, which was
performed by field emission scanning electron microscopy (FE-SEM) (ULTRA-55, Zeiss, Oberkochen,
Germany). Samples for transmission electron microscopy (TEM) were prepared by dissolving
LMO/MnO in acetone and dispersing the suspension onto a holey carbon 200 mesh TEM grid. TEM
investigations were performed on 200 kV electron microscopy (Tecnai G2 F20 S-TWIN, FEI Co.,
Hillsboro, OR, USA) equipped with an X-ray spectrometer (EDAX Analyzer (DPP-Π), Edax Inc.,
Mahwah, NJ, USA) for energy dispersive spectroscopy (EDS) analysis. The surface electronic states were
characterized by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher, Waltham,
MA, USA) in the range of 0 eV to 1350 eV, with a binding energy resolution of 0.1 eV.

2.4. Electrochemical Measurements

Electrochemical characterization of samples by using a three-electrode system on the same
electrochemical workstation (CHI660E, Shanghai Chenhua, China), and the cycling stability was
studied making use of a LAND battery system (CT2001A, Wuhan). 0.5 M Na2SO4 neutral solution
was chosen as the aqueous electrolyte. The prepared LMO/MnO electrode was taken as the working
electrode, the platinum electrode and a saturated calomel electrode (SCE) acted as the counter electrode
and the reference electrode, respectively. Cyclic voltammetry (CV) was performed at various scan rates,
ranging from 5 mV·s−1 to 100 mV·s−1, within a potential range of 0 to 1V. Galvanostatic charge-discharge
(GCD) was tested at different current densities (0.5, 1, 2, 3, 4 A·g−1) to analyze charge/discharge times
in a potential window from 0 to 1 V. Electrochemical impedance spectroscopy (EIS) test was performed
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with a frequency range of 10−2 Hz to 105 Hz. In addition, a symmetric supercapacitor cell was also
fabricated, separating two LMO/MnO electrodes about 0.5 cm, and the electrochemical performance
was characterized as before.

The mass specific capacitance of the single electrode can be calculated from CV or GCD
measurement on the basis of Equations (1) and (2), respectively [30,31].

Csingle =

∫ V2

V1
idV/(2m × s × ∆V) (1)

Csingle = (I × ∆ t)/(m × ∆V) (2)

where i (or I) is the measured current (A), m is the mass of the active materials, s is the potential scan
rate (V·s−1), ∆V is the potential range, and ∆t is the discharge time (s).

The mass specific capacitance of symmetric supercapacitor cell can be calculated according to
equation [32]:

C = I/[m(dU / dt)] (3)

Here C (F·g−1) represents mass specific capacitance, m (Kg) is the total mass of active material,
dU/dt is the slope of the entire discharge curve form GCD.

Accordingly, the mass energy density E (Wh·kg−1) and power density P (W·kg−1) of supercapacitor
cell can be expressed according to Equations (4) and (5) [32]:

E =

∫ t2

t1
IVdt = 0.5C(V1 + V2)(V2−V1) (4)

P = E/∆t (5)

where V1 and V2 are respectively the charging end voltage and discharge end voltage from GCD curve,
(V2−V1) should be the specific voltage window of the capacitive behavior of the supercapacitor
device, ∆t is the discharge time (s).

3. Results and Discussion

3.1. Phase Structure and Morphology

Electrochemical synthesis is a convenient and inexpensive way for the preparation of perovskite
oxide coating. However, for La-based perovskites LaBO3 preparation, the greatest weakness lies in
the nonparticipation of La ions in any redox process reaction during the reaction. Thus, bath solution
with a high La/B ratio is necessary for the steady electrodeposition of LaBO3 [29]. In addition, BOx can
strengthen the adhesion between the substrate and the active layer. BOx penetrates into the carbon
fiber along the grain boundary and acts as a “pinning” to enhance the compatibility, which is beneficial
to improve the life and stability of the electrode [12,28]. Therefore, for the LMO/MnO composite
material obtained in the present work by cathodic deposition and annealing, the presence of MnO
can increase the adhesion of LMO to the substrate. A schematic diagram showing the fabrication of
LMO/MnO on a flexible carbon cloth is shown in Figure 1. A precursor film composed of mixed metal
hydroxide is firstly obtained on the carbon cloth after electrodeposition. Then the precursor transforms
into LMO/MnO composite material after a thermal treatment. The electronic photograph in Figure S1
shows the excellent flexibility of the obtained carbon cloth-supported LMO/MnO electrode.

Figure 2a shows the XRD patterns of carbon cloth-supported LMO/MnO electrode, where the
phase composition and structures are confirmed. The broad peak around 25◦ corresponds to the
carbon cloth, coincides with some previous reports which contain active materials grown on carbon
cloth [33,34]. From XRD patterns, LMO is indexed to be orthorhombic with the space group of
Pnma (JCPDS 89-2472), and MnO exhibits a cubic structure with Fm3m space group (JCPDS 75-0257).
The corresponding crystal planes are indexed in Figure 2a. According to the space group, the crystal
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structure of the orthorhombic perovskite LMO is drawn by VESTA software as shown in Figure 2b.
The distortion of [MnO6] octahedron along the c-axis is attributed to the Jahn-Teller effect of Mn3+

(3d4) [35–37].
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Figure 2. (a) XRD pattern of LMO/MnO electrode prepared from bath with 2 M La(NO3)3 and 0.1 M
Mn(NO3)2; (b) the crystal structure of LMO.

Deposit morphology also plays an indispensable role in optimizing the electrochemical properties
of materials. The uniformity and thickness of LMO/MnO nano-arrays can be controlled by adjusting
the La/Mn ratio of the electrodeposition solution. Figure 3 shows the deposit morphology of LMO/MnO
electrode with the La/Mn ratio of 20:1 in bath solution. It can be seen that short rod-like interwoven
nanoarrays are uniformly deposited on the bare carbon cloth fiber with the average deposition thickness
of about 150 nm. The loose structure with increased specific surface area surely will provide more
effective ion transfer channels and facilitate the electrochemical dynamic process, thereby improving
the specific capacitance. Meanwhile, SEM images of the electrodeposited LMO/MnO electrode in
bath solution with different La/Mn ratios (200:1 and 400:1) are shown in Figure S2. The nonuniform
morphology may lead to the interruption of ions transport and weak adhesion to carbon cloth, adversely
affecting the electrochemical properties, which will be discussed later. Considering the optimum
morphology is obtained with the La/Mn ratio of 20:1, the following discussions are mainly focused on
the optimum LMO/MnO electrodes.
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TEM analysis in Figure 4 shows more detailed information both in morphology and structure.
The bright field image in Figure 4a shows the dissolved LaMnO3 and MnO particles are nanosized,
consistent with the morphology observed in Figure 3b. In order to determine the distribution of
LaMnO3 and MnO, detailed analysis has been conducted in the selected area marked by the red
rectangle. The magnified HRTEM image of the designated area is shown in Figure 4b, the contrast
between region A and region B is apparent. The lattice spacing of the region A is about 0.275 nm, which
corresponds to the (121) plane of the orthorhombic LMO [38]. While the lattice spacing of 0.15 nm in
region B is associated with the (220) interplanar spacing of MnO [39]. The structural analysis from TEM
observations is in good agreement with XRD analysis. The results of scanning TEM microscopy (STEM)
and EDS elemental analysis (Figure 4c) show a good spatial distribution of La, Mn, and O elements
throughout the designated area. It can be found that La element mainly distributes in region A, but is
barely observed in region B. Slight errors may exist during the mapping because prolonged exposure
to the electron beam may result in slight sample drift. A linear component analysis through the
designated area has also been conducted (Figure S3), leading to the same conclusion that region A
is LMO and region B represents MnO. It can also be speculated that LaMnO3 and MnO distribute
randomly during electrodeposition.
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The results of XPS analysis presented in Figure 5 show the chemical valence and elemental
composition of LMO/MnO electrode. Figure 5a shows a measurement scan of C(1s), La(3d), Mn(2p),
O(1s) in the LMO/MnO electrode in the range of 0 eV to 1350 eV, indicating that no impurities are
present. As shown in Figure 5b, the La 3d spectrum shows two spin-orbital components of La 3d5/2

(833.81eV and 837.36 eV) and La 3d3/2 (850.11 eV and 854.01 eV) in the scan range of 830 eV to 855 eV.
The observation is similar to those of La-based perovskite materials reported previously [19], and
indicates the existence of La3+ ions [40]. The Mn 2p spectrum (Figure 5c) shows two peaks at 640.53 eV
and 652.43 eV with a binding energy separation of 11.9 eV, corresponding to Mn 2p3/2 and Mn 2p1/2,
respectively [20]. The two peaks of the Mn 2p spectrum within the scanning range of 633 eV to 659
eV are fitted with Mn ions of three valence states: Mn2+, Mn3+, and Mn4+. Peaks which appear at
641.2 eV and 652.3 eV are related to Mn2+, peaks at 642.4 eV and 654.0 eV correspond to Mn3+, while
peaks at 644.0 eV and 655.5 eV represent Mn4+. The relative concentrations for Mn2+, Mn3+, and Mn4+

are shown in the inset of Figure 5c. It has been proven that the coexistence of Mn4+ and Mn3+ can
improve the conductivity of LMO, thus an optimized electrochemical performance can be expected.
The O1s spectrum has two peaks in the range of 526 eV to 540 eV (Figure 5d), which are binding
energies of 529.04 eV and 530.14 eV, respectively, corresponding to lattice oxygen Olatt (O2−) and
oxygen absorption Oads (O−, O2

− or O2
2−), respectively [41,42]. A high Oads concentration of 56.50% is

obtained in the present work, indicating the stronger adsorption capacity of OH−, which accelerates
the surface redox reaction kinetics and improves the electrochemical performance.
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3.2. Electrochemical Performance

In order to reflect the real electrochemical performance of LMO/MnO composite active materials,
the electrochemical behavior of the bare carbon cloth in 0.5 M Na2SO4 solution has also been investigated.
Figure S4 shows CV curves of the carbon cloth supported LMO/MnO electrode and bare carbon cloth
at 50 mV·s−1. It is obvious that the bare carbon cloth shows a relatively low double-layer capacitance,
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and its contribution to the LMO/MnO electrode is negligible, thus the electrochemical performance
of the active material can be truly reflected. Figure 6a shows CV curves of the deposited LMO/MnO
electrode in 0.5 M Na2SO4 aqueous electrolyte at different scan rates from 5 mV·s−1 to 100 mV·s−1 with
a potential range of 0 to 1 V. The CV curves in this Figure show two redox couples with the oxidation
peaks at 0.36 V and 0.91 V and the reduction peaks at 0.2 V and 0.78 V. As XPS analysis demonstrates
three different oxidation states of Mn, these peaks correspond to the transformations between different
oxidation states of Mn ions. Peaks at 0.36 V and 0.2 V correspond to the oxidation and reduction of
Mn2+ and Mn3+, while peaks at 0.91 V and 0.78 V represent the redox of Mn3+ and Mn4+. According to
the anion-intercalation mechanism, the redox reaction of perovskite LMO during the charge/discharge
process can be expressed as following [10,15,43]:

La
[
Mn2+

2δ ; Mn3+
1−2δ

]
O3−δ + 2δOH− ↔ LaMn3+O3 + 2δe− + δH2O (6)

LaMn3+O3 + 2δOH− ↔ La
[
Mn4+

2δ ; Mn3+
1−2δ

]
O3+δ + 2δe− + δH2O (7)
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and 0.1 M Mn(NO3)2 in 0.5 M Na2SO4 solution: (a) CV curves at different scan rates; (b) GCD curves
at different current densities; (c) dependence of specific capacitance vs. current density; and (d)
Nyquist plot at open circuit potential; the inset in Figure 6d shows the proposed equivalent circuit with
components discussed in the text.

The perovskite-type LMO stores energy through the oxygen-vacancy tailored redox
pseudocapacitance, and the ion diffusion along the oxygen octahedral edges confirms the high
diffusion rate and full utilization of the internal structure [44]. In addition, MnO has also been reported
as a negative electrode material with good properties. Studies have shown that MnO nanoparticles
uniformly distributed in the carbon nanoshells can greatly improve the transfer kinetics of charge
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carriers and structural stability during discharge/charge cycle [45]. The redox reaction of MnO in
charging and discharging process can be expressed as following [46]:

Mn2+
↔Mn3+ + e− (8)

Mn3+
↔Mn4+ + e− (9)

The specific capacitance in the present work is attributed to the cooperative effects of LMO
and MnO.

The charge and discharge curve (GCD) is also an important parameter to measure the practicality
of supercapacitors. Figure 6b shows GCD curves of LMO/MnO electrode at different current densities,
all curves are basically triangularly symmetrical, which ensure high rate performance of LMO/MnO
electrode. As the current density increases, the specific capacitance shows a downward trend, due to
the increase of internal resistance. The obtained capacitance for single electrode with the variation of
current density are shown in Figure 6c. According to the discharge curves at current densities of 0.5, 1,
2, 3, and 4 A·g−1, the corresponding capacitances are 260, 242, 236, 222.6, and 220.4 F·g−1, respectively.
Comparatively, the GCD curves of LMO/MnO materials in bath solution with different La/Mn ratios
(200:1 and 400:1) are shown in Figure S5. The specific capacitances are calculated as 76 F·g−1 (0.5 A·g−1)
and 134 F·g−1 (0.5 A·g−1), respectively. It can be concluded that the uniform deposition morphology
is favorable for the optimization of specific capacitance. A typical Nyquist plot of the LMO/MnO
electrode in 0.5 M Na2SO4 solution is shown in Figure 6d. There are three parts make up of this EIS
diagram (see the inset in Figure 6d). At higher frequency, the x-intercept with the initial curve is called
the effective series resistance (Rs) [47,48]. It is commonly used as the bulk resistance of electrochemical
systems, which includes electrolyte and internal resistance of the electrode. The second part is the
semicircle of the intermediate frequency region, and its diameter corresponds to the charge transfer
resistance (Rct) of the electrode/electrolyte interface [49,50]. The third part of the EIS diagram is the
linear portion of the low frequency region, representing the proton diffusion in the active material, as a
Warburg impedance Wo in the equivalent circuit [51]. Impedance spectroscopy has been simulated by
appropriate equivalent circuit diagram. The ohmic resistance (Rs) is calculated as 1.61 Ω, suggesting
ion transport between LMO/MnO electrode and electrolyte is less hindered. Rct is calculated as 0.10 Ω,
indicating that the charge transfer resistance is very low at the open-circuit potential, the electron
activity in the electrode material is high and the conductivity of the material is remarkable. In addition,
ion diffusion impedance Wo (Warburg impedance) characterized in the low frequency region is 1.26 Ω,
suggesting good behavior of the electrode. The determined value of the constant phase element CPE
(instead of double layer capacitance) is 3.02 µF, showing good capacitance behavior. The analysis
of Nyquist diagram indicates the low resistance of LMO/MnO electrode, confirming the excellent
electrochemical capacitance behavior.

To further study the application of LMO/MnO electrode in supercapacitors, a symmetric
supercapacitor has been fabricated in 0.5 M Na2SO4 solution, as shown in Figure 7a. For
the symmetric supercapacitor, the operation voltage window (V) doubles to 2 V, larger than other
supercapacitors reported previously [20,23], and a high energy density (E) is expected, based on the

equation E =
∫ t2

t1 IVdt = 0.5C(V1 + V2)(V2−V1). The deviation of the CV curves from the ideal
shape (Figure 7b) is due to the insufficient time to intercalate/deinsert the active species at each site [31].
The increase of solution resistance results in an obvious voltage drop in charge–discharge curves
(Figure 7c). The specific capacitances of the LMO/MnO symmetric supercapacitor obtained at 0.5, 1, 2, 3,
and 4 A·g−1 are 50.66, 44.43, 39.32, 35.09, and 31.10 F·g−1, respectively. The maximum energy density of
28.15 Wh·kg−1 is obtained when the power density is 745 W·kg−1, and maintains in 17.28 Wh·kg−1, even
when the power density is 6100 W·kg−1. The Nyquist plot in Figure 7d exhibits an increased resistance
of LMO/MnO symmetric supercapacitor, which may originate from the contact impedance between
electrodes. Ragone plots of several recently reported supercapacitors based on perovskite oxides
compared with the present data are shown in Figure 8. The performance of the carbon cloth-supported
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LMO/MnO supercapacitor in the present work is comparability, demonstrating the great potential
toward practical application of supercapacitors.Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 15 
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Figure 8. Ragone plots of some recently reported supercapacitors based on perovskite oxides compared
with the present data.

The long-term cycling stability is also a key parameter to characterize the electrochemical
performance of supercapacitors. The cycling stability of LMO/MnO symmetric supercapacitor with
the current density of 2 A·g−1 is investigated and shown in Figure 9a. Interestingly, the specific
capacitance drops to 65% retention after the first 500 cycles, and remains stable until 5000 cycles. For
perovskite oxides, an important factor that weakens the cyclic stability is the element leaching effect
into electrolyte, which may cause the damage of perovskite structure [18,52]. The EDS analysis before
and after cycles in Figure S6 shows the significant reduction of La element after 5000 cycles, indicating
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the element leaching phenomenon in the present work. On the other hand, the morphology of active
material also has impact on the cycling stability. Figure 9b shows the SEM image of the electrode
morphology after 5000 cycles. It can be obviously found that LMO/MnO active materials partially flake
from carbon cloth after cycles, as the flaking area is marked with yellow square. The decrease of active
materials and the effective contact of the electrolyte with the active material may lead to the drop of
specific capacitance at first 500 cycles. However, the remaining active materials adhere firmly, and the
short rod-like interwoven morphology (Figure 3) changes to the hierarchical flower-like morphology.
Various materials with the similar flower-like morphology have been reported, showing excellent
electrochemical performance with superior cycling stability [53–55]. Thus, the newly formed flower-like
morphology inhibits the deterioration of the specific capacitance. In the process of repeated charge and
discharge, the original diffusion channels are destructed and new channels are reconstructed, leading
to the small fluctuations of the specific capacitance. After 5000 cycles, 65% of the original capacitance
is retained. The enhancement of the adhesion strength between substrate and active materials may
improve the cycling stability of the present electrode.
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4. Conclusions

In this work, carbon cloth supported perovskite-type LaMnO3/MnO (LMO/MnO) electrode has
been prepared via a simple one-step electrodeposition method. The phase structure, deposition
morphology, and the corresponding electrochemical properties of LMO/MnO electrode have been
investigated. LMO/MnO electrode exhibits a high specific capacitance (260 F·g−1 at 0.5 A·g−1) and
excellent rate performance in an aqueous electrolyte. The specific capacitance is attributed to the
cooperative effects of LMO and MnO, as well as the uniform nano-array morphology. In addition,
a wide operation voltage window of 2 V is obtained in the LMO/MnO symmetric supercapacitor,
which shows a high energy density of 28.15 Wh·kg−1 at a power density of 745 W·kg−1. The specific
capacitance drops to 65% retention after the first 500 cycles because of the element leaching effect and
partial flaking of LMO/MnO, yet remains stable until 5000 cycles due to the formation of the flower-like
morphology. The present work provides a new structural form of perovskite oxides as electrodes for
supercapacitors, and demonstrates the great potential of La-based perovskites in the field of rapid
energy storage.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/12/1676/s1,
Figure S1: Electronic photograph of LMO/MnO electrode material prepared from bath with 2 M La(NO3)3 and
0.1 M Mn(NO3)2; Figure S2: SEM images of LMO/MnO electrode with different La/Mn ratios (a) La/Mn = 200:1
(b) La/Mn = 400:1; Figure S3: Relative elements content in STEM-EDS line scanning across LMO/MnO electrode
prepared from bath with 2 M La(NO3)3 and 0.1 M Mn(NO3)2; Figure S4: CV curves of carbon cloth and LMO/MnO
electrode material (prepared from bath with 2 M La(NO3)3 and 0.1 M Mn(NO3)2) at 50 mV·s−1; Figure S5: GCD
curves at different La/Mn ratios of LMO/MnO electrode (a) La/Mn = 200:1 (b) La/Mn = 400:1; Figure S6: The EDS
analysis before and after the cycles.
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