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Abstract: Construction of a suitable hybrid structure has been considered an important approach to
address the defects of metal sulfide anode materials. V3S4 nanosheets anchored on an N, S co-coped
graphene (VS/NSG) aerogel were successfully fabricated by an efficient self-assembled strategy. During
the heat treatment process, decomposition, sulfuration and N, S co-doping occurred. This hybrid
structure was not only endowed with an enhanced capability to buffer the volume expansion, but
also improved electron conductivity as a result of the conductive network that had been constructed.
The dominating pseudocapacitive contribution (57.78% at 1 mV s−1) enhanced the electrochemical
performance effectively. When serving as anode material for lithium ion batteries, VS/NSG exhibits
excellent lithium storage properties, including high rate capacity (480 and 330 mAh g−1 at 5 and
10 A g−1, respectively) and stable cyclic performance (692 mAh g−1 after 400 cycles at 2 A g−1).
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1. Introduction

Lithium ion batteries (LIBs) are the dominant energy storage device in the field of mobile devices.
A high capacity, high rate, long cyclic life, and safety are the critical elements for their large-scale
application [1]. Traditional graphite anodes, on the other hand, could not meet the above requirements.
Numerous novel candidates, such as transition metal oxide, sulfide, alloy, and silicon, have been
explored to replace the commercial graphite anode material.

Among these anode materials, the earth-abundant and high capacity and transition of multiple
valence vanadium-based materials are considered as the most promising candidate for the advanced
LIBs [2]. V2O3 [3,4], VO2 [5], V6O13 [6], and other metal vanadium oxide composites [7–10] have
been reported in previous works. However, inferior electric conductivity is a common drawback for
these vanadium oxides, resulting in insufficient rate performances [2]. For vanadium sulfides, the
moderate V–S bond would decrease the electrochemical polarization and benefit the intercalation and
deintercalation of Li+ or other alkali metal ions, which would further result in improved electrochemical
properties [7]. However, bulk metal sulfides usually suffer from large volumetric expansion (resulting
in the obvious capacity fading) and sluggish electron transport kinetics (the cause of the inferior
rate property) [8,9]. Construction of nanostructures and composites with conductive substrates are
considered an efficient route to overcome the drawbacks of bulk vanadium sulfides. For example,
flower-like VS2 nanosheets [10], VS4 microsphere@PANI [11], VS4 nanoparticles@CNTs [12], VS4
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nanowire [13], nanosheets, nanoparticles [14] anchored on graphene, V2S3 microsphere@C [15], and
V5S8–/graphite hybrid nanosheet [16,17] anodes delivered the improved Li+/Na+ storage performances.
According to the above works, VS4 microsphere@PANI delivered a capacity of 755 mAh g−1 at the 50th
cycle under a current density of 0.1 A g−1 [11], and the VS4/graphene composite exhibited a capacity of
954 mAh g−1 at the end of 100 cycles under the same current density [18]. The durable lithium storage
under high current density would not be obtained. Furthermore, toxic thioacetamide and hydrogen
sulfide are always used as sulfide sources in these synthesis processes. The green synthesis route is
still a challenge for the application of vanadium sulfides anode materials.

In this work, V3S4 nanosheets anchored on N, S co-doped graphene have been fabricated through
a facile and green method. NH4VO3 and (NH2)2CS were used as vanadium and sulfide sources,
respectively. V3S4 nanosheets shorten the transmission path of both electron and Li ions. Meanwhile,
the formed N, S co-doped graphene aerogel not only endow the as-prepared anode with the enhanced
capability to buffer the volume expansion but also construct a conductive network to improve electron
conductivity. Moreover, the dominating pseudocapacitive contribution (57.78% at 1 mV s−1) is effective
for improving the electrochemical performances. When serving as an anode material for LIBs, V3S4

nanosheet anchored on N, S-doped graphene exhibits a high rate capacity (480 and 330 mAh g−1 at 5
and 10 A g−1, respectively) and stable cyclic performance at high rate (692 mAh g−1 after 400 cycles at
2 A g−1).

2. Materials and Methods

2.1. Materials Synthesis

Synthesis of V3S4/N, S-rGO (reduced graphene oxides) nanosheets. In a typical synthesis, 2.5
mmol NH4VO3 and 1.4 g (NH2)2CS were dissolved in 20 mL formed GO (graphene oxides) aqueous
solution (5 mg mL−1) at 60 ◦C. Then, the mixed solution was transferred into a 25 mL Teflon-lined
stainless-steel autoclave and heated at 180 ◦C for 20 h in an oven. After hydrothermal treatment, the
formed hydrogel was freeze-dried and annealed at 600 ◦C for 5 h under Ar atmosphere to obtain the
final samples (denoted as VS/NSG).

2.2. Materials Characterization

X-ray diffraction (XRD, Bruker D8 with Cu Kα radiation, Billerica, MA, USA) analysis was carried
out to determine the crystal structure of the samples. The morphology and the structure of the samples
were investigated by SEM (SEM, Sigma 500, Zeiss, Oberkochen, Germany) and transmission electron
microscopy (TEM, JEOL JEM2100, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS, EscaLab
250Xi, Shanghai, China) was performed to determine the valence state of the products. The graphitic
degree of reduced graphene oxide was investigated by Raman spectrometer with an excitation laser
beam wavelength of 633 nm (HORIBA Jobin-Yvon, LabRAM Aramis, Kyoto, Japan). To investigate the
content of the coating carbon, thermal gravimetric analysis was conducted on a thermal analyzer (SII
TG/DTA6300, Tokyo, Japan) in air at a heating rate of 5 ◦C min−1.

2.3. Electrochemical Measurements

V3S4 nanosheet anchored on N, S-doped graphene was assembled CR2032 half-coin cells to evaluate
its electrochemical performance. The assembly processes were similar to our previous works [19,20].
Typically, the mass loading of active material is about 1.2–1.3 mg cm−2. The charge–discharge processes
were operated at the voltage range of 0.005–3 V using Neware CT3008 (Neware, Shenzhen, China).
Cyclic voltammetry measurements (CV, at the scanning rate from 0.1 to 1.0 mV s−1) and electrochemical
impedance spectroscopy (EIS, in the frequency range from 100,000–0.01 Hz with an AC amplitude of 5
mV) were conducted on the Parstat 4000+ workstation (Princeton Applied Research).
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3. Results

The preparation process is illustrated in Figure 1a. XRD was firstly conducted to investigate the
crystal phase of as-prepared sample. As shown in Figure 1b, most of diffraction peaks of as-prepared
sample can be indexed as the standard monoclinic V3S4 phase (JCPDS no. 65-3745). The low intensity
of diffraction peaks would be ascribed to the crystallinity of the nanosheet and graphene substrate. In
Figure 1c, there is an obvious interlayer spacing along the c-axis, which is convenient for the storage of
lithium ions. The content of graphene substrate was exposed by TG analysis. After the heat treatment
process in air atmosphere, VS/NSG would be decomposed and oxidized to V2O5. In this process, the
change of weight is about −3%. According to the results of TG analysis (Figure S1), the content of
graphene substrate is about 38 wt %. As shown in Figure S2, VS/NSG exhibits two typical D and
G bands at around 1360 and 1585 cm−1, corresponding to sp3-type disordered carbon and sp2-type
ordered graphitic carbon [21,22]. The intensity ratio of G and D band (IG/ID = 1.08) suggests the more
graphitic carbon in the graphene substrate.

Figure 1. (a) Schematic illustration of preparation process of VS/NSG; (b) XRD pattern of as-prepared
VS/NSG; (c) the structure of V3S4 along the c-axis.

SEM and TEM were used to characterize the detail morphology and structure of VS/NSG. In the
panoramic SEM image (Figure 2a), VS/NSG exhibits morphology typical of nanosheet and graphene
composites. Numerous V3S4 nanosheets anchor onto the graphene substrate to ensure their electronic
conductivity. As shown in the magnified SEM image (Figure 2b), the grown nanosheets display a
smooth surface with particles of about 500–1500 nm in diameter and only 70–80 nm in width. The
composite structure of VS/NSG can be further observed in Figure 2c. The HRTEM (high-resolution
transmission electron microscopy) image (Figure 2d) selected from the blue box in Figure 2c displays
the clear lattice fringes. Assisted by the fast Fourier transform patterns (FFT, inset of Figure 2d)
calculated from the white box region, the interplanar distance can be measured of about 0.567 nm and
assigned to the (002) facet of V3S4.
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Figure 2. (a,b) SEM images of as-prepared VS/NSG at different magnifications; (c,d) TEM image,
HRTEM image, and FFT patterns in the marked white box of VS/NSG.

XPS measurements were carried out to ascertain the surface chemical characteristics of VS/NSG.
As shown in Figure S3, the survey spectrum exhibits the peaks of V, S, C, N, and O elements. The
high-resolution of V 2p spectrum (Figure 3a) displays four components, corresponding to the V2+

and V3+, respectively [7,23]. In Figure 3b, S 2p spectrum exhibits obvious three peaks, which can
be assigned to the typical M–S (M = metal), C–S, and common S–O bonds [8,9,24,25]. However, the
S 2p spectrum of VS/NSG suggested that the S-doped graphene had been affected by the presence
of sulfides. To address this confusion, the graphene substrate formed by the acid-treated VS/NSG
was also characterized. As shown in Figure S4, the high-resolution S 2p spectrum of acid-washed
sample also displays obvious C–S bonds, confirming that the sulfur had been doped into the graphene.
Impressively, the existence of the C–S bond suggests the presence of sulfur covalently bonded to
graphene in a heterocyclic configuration [26]. As shown in Figure 3c, four peaks represent the graphitic
N, pyrrolic N, pyridinic N, and V–N bond, respectively [27–29]. This result is good verification of
the expectation when alien atoms are doped into graphene. Moreover, the obvious V–N bond peak
located at 397 eV demonstrates the formation of VN on the surface of VS/NSG, which would enhance
the conductivity of as-prepared sample. Moreover, the nitrogen content is about 8.86 at %. The
high content of doped nitrogen would be beneficial regarding the improvement of conductivity. The
presence of C–N and C–S peaks in the C 1s high-resolution spectrum further confirm the conclusion
that N, S co-doped graphene was formed (Figure 3d) [29].
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Figure 3. XPS survey (a) V 2p, (b) S 2p, (c) N 1s, and (d) C 1s of as-prepared VS/NSG.

The lithium storage performances of VS/NSG were evaluated by CR2032 half-coin cells. As shown
in Figure 4a, in the voltage range of 0.005–3 V under 50 mA g−1, VS/NSG electrode delivers the initial
discharge and charge capacity of 1150 and 825 mAh g−1, respectively. The initial coulombic efficiency
(ICE) of V3S4 nanosheet is about 71.7%, which is much higher than that of other transition metal
oxides and sulfides, such as SnO2 [30], CoO [31], Co3O4 [32], V2O3 [4], and VS4 [13]. After the initial
cycle, the overlapped discharge–charge curves suggest the well reversibility of as-prepared VS/NSG.
Cyclic voltammetry (CV) were used to investigate the lithium storage behavior of V3S4 nanosheet.
The cathodic peaks located at 1.29, 0.64, and 0.22 V in the first sweep can be assigned to the behavior
of Li+ insertion into V3S4 interlayer stepwise and formation of solid electrolyte interface (SEI) layer,
respectively [12,13,33]. At the following anodic sweep, the anodic peaks at 1.25, 1.72, and 2.33 V
correspond to the delithiation process of LixV3S4 and formation of V3S4 [7,17]. The overlapped CV
curves at the second and third cycle indicate the good reversibility and cyclic stability of VS/NSG
electrode. As shown in Figure 4c, the cyclic stability of VS/NSG were tested under a current density of
2000 mA g−1. At this high current density, VS/NSG electrode delivers an excellent cycling stability.
After 400 monotonous cycles, as high as 692 mAh g−1 discharge capacity can be retained. The level
of coulombic efficiency, being close to 100%, suggests the high reversibility of VS/NSG during the
monotonous cycles. As shown in Figure S5, the counterpart of VS/NSG, which without the N, S
co-doped graphene substrate delivers the discharge capacity of 856 mAh g−1 with the ICE only about
60.1%. In the following cyclic test, the bare cell exhibits obvious capacity fading. In the following
rate tests, VS/NSG electrode delivers a high reversible discharge capacity from 0.05 to 10 and back
to 0.05 A g−1, which reach 480 and 330 mAh g−1 at 5 and 10 A g−1, respectively. Particularly, in the
subsequent repetition of rate evaluations, the discharge capacity of VS/NSG at low current densities
exhibits an obvious increasing tendency. This phenomenon would be attributed to the increased Li+

storage ability at the enhanced area of electrolyte and electrode interface. When the current density is
back to 0.05 A g−1, a high discharge capacity of 1150 mAh g−1 can be retained, indicating the superior
rate capability of VS/NSG electrode.
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Figure 4. (a) The initial discharge–charge curves of VS/NSG at 0.05 A g−1; (b) CV curves of VS/NSG at
a scan rate of 0.1 mV s−1; and (c) the cyclic stability and (d) rate capability of VS/NSG electrode.

Kinetic analyses based on the CV curves were carried out to reveal the potential reasons for the
excellent cyclic stability of VS/NSG electrode. At different scanning rates ranging from 0.2 to 1.0 mV
s−1 (Figure 5a), the CV curves displayed a similar and broadened shape. The overall charge storage,
which is revealed by the integral area of CV curve, could be attributed to by the surface-induced
capacitive and diffusion–insertion process [19,34]. Based on the CV curves at different scanning rates
and Equation (1) [35], the charge storage mechanism of electrode materials could be studied.

i(V) = avb (1)
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Figure 5. Kinetic analyses of VS/NSG electrode. (a) CV curves at different scanning rates; (b) log(i)
vs. log (v) plots at different peaks; (c) capacitive contribution (blue region) to the charge storage at 1
mV s−1; (d) the contribution ratio of pseudocapacitive and diffusion-controlled current at different
scanning rates.

According to the previous reports, the value of b in this equation is an indicator to investigate the
mechanism of charge storage [20,35]. As shown in Figure 5b, the value of b based on peak 1 and peak 2
is 0.9034 and 0.9217, respectively, which are fitted by the slopes of logv and logi (v means the scanning
rate and i represents the peak current). These values mean that surface-induced capacitive would be a
dominator in VS/NSG electrode charge storage system. The ratio of surface-induced capacitive in the
whole charge storage can be further calculated using Equation (2).

i(V) = k1v + k2v0.5 (2)

The integral area of k1v and k2v0.5 means the surface-induced capacitive and diffusion–insertion
process, respectively [36,37]. Furthermore, the values of k1 at different potentials are the slope of the
function of i(V)/v0.5~v0.5 in a series of CV analyses. Based on the various k1 at different potential,
the profile of surface-induced capacitive under a certain scanning rate could be depicted. As shown
in Figure 5c, the blue area represents the charge storage contribution of surface-induced capacitive.
The integral area ratio of blue and violet area is 57.78%, meaning the pseudocapacitive contribution
is 57.78% at the scanning rate of 1.0 mV s−1. In addition, the surface-induced capacitive profiles
and pseudocapacitive contributions from 0.2 to 0.8 mV s−1 are depicted in Figure S6 and Figure 5d.
The pseudocapacitive contribution is enhanced gradually with the increasing scanning rate, and the
ratio at 0.2, 0.4, 0.6, and 0.8 mV s−1 is 44.90%, 51.09%, 54.13%, and 56.27%, respectively. Dominant
pseudocapacitive effect at fast scanning rate endow the VS/NSG electrode with excellent cyclic stability
and rate capability. Moreover, Nyquist plots of VS/NSG electrode at the 3rd and 50th cycle are displayed
in Figure S7. Clearly, the smaller semicircle of VS/NSG after 50 cycles, meaning a smaller resistance of
charge transfer (Rst, an indicator to the degree of side reaction [38–40]), reveals better conductivity due
to the increased compatibility of electrode material with electrolyte [41]. The above kinetic analyses
indicate that the V3S4 nanosheets anchored on N, S co-doped graphene would induce the dominating
pseudocapacitive effect and restrain the increasing of Rst.
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4. Conclusions

In summary, the fabrication of V3S4 nanosheets anchored on N, S co-doped graphene by this
universal and green method exhibits excellent rate capability and cyclic stability. At the current density
of 5 and 10 A g−1, the as-prepared VS/NSG delivers a high discharge capacity of 480 and 330 mAh g−1,
respectively. At the end of 400 cycles under 2 A g−1, 692 mAh g−1 also can be retained. The superior
electrochemical performances of VS/NSG benefited by the formed N, S co-doped graphene aerogel,
not only endow it with an enhanced capability to buffer the volume expansion, but also a constructed
conductive network that improves its electron conductivity. Moreover, the dominant pseudocapacitive
contribution at fast scanning rate and the decreasing resistance of charge transfer also guarantee fast
and durable Li+ storage performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/11/1638/s1,
Figure S1: TG curve of V3S4/N, S-rGO nanosheets under air atmosphere, Figure S2: Raman spectrum of VS/NSG
sample, Figure S3: XPS spectrum of as-prepared V3S4/N, S-rGO nanosheets, Figure S4: XPS S 2p spectrum of
VS/NSG treated after acid, Figure S5: (a) Initial discharge-charge curves and (b) cyclic performance of V3S4
counterpart under 0.05 and 0.5 A g-1, respectively. Figure S6: Capacitive current contribution (blue region) to the
charge storage at (a) 0.2, (b) 0.4, (c) 0.6 and (d) 0.8 mV s-1 of V3S4/N, S-rGO nanosheets, Figure S7: Nyquist plots
of V3S4/N, S-rGO nanosheets cell at 3nd and after 50 cycles.
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