Catalytic Performance of Ni/CeO₂/X-ZrO₂ (X = Ca, Y) Catalysts in the Aqueous-Phase Reforming of Methanol

Daniel Goma ^{1,2}, Juan José Delgado ^{1,2}, Leon Lefferts ³, Jimmy Faria ³, José Juan Calvino ^{1,2} and Miguel Ángel Cauqui ^{1,2,*}

- ¹ Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real 11510, Spain; dani.gomajimenez@gm.uca.es (D.G.); juanjose.delgado@uca.es (J.J.D.); jose.calvino@uca.es (J.J.C.)
- ² IMEYMAT, Instituto de Microscopía Electrónica y Materiales, Puerto Real 11510, Spain
- ³ Catalytic Processes and Materials group, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; l.lefferts@utwente.nl (L.L.); j.a.fariaalbanese@utwente.nl (J.F.)
- * Correspondence: miguelangel.cauqui@uca.es; Tel.: +34-956012747

Supporting Information

Table S1. Composition from ICP (%w/w) of the fresh and used catalysts.

Catalysts	Before reaction					After reaction				
	Ni	Ce	Ca	Y	Zr	Ni	Ce	Ca	Y	Zr
NiZr	7.0±0.1				60.0±0.6	7.1±0.1				58.0±0.6
NiCeZr	5.9 ± 0.1	12.6±0.2			48.4 ± 0.1	5.6 ± 0.1	13.1±0.2			46.2±0.1
Ni4CSZ	5.0 ± 0.1		1.2 ± 0.1		60.0±0.6	5.2±0.1		1.1 ± 0.1		59.8±0.6
NiCe4CSZ	5.9±0.2	13.0±0.1	1.8 ± 0.1		47.6±0.3	6.1±0.2	14.0 ± 0.1	1.6 ± 0.1		48.4±0.3
Ni8YSZ	5.6±0.2			4.3±0.1	56.4 ± 0.3	5.8±0.2			4.1 ± 0.1	57.2±0.3
NiCe8YSZ	5.5 ± 0.1	12.7±0.1		3.6±0.1	46.1±0.2	5.5±0.1	13.0±0.1		3.9±0.1	48.2±0.2
Ni14CSZ	6.9±0.1		4.9 ± 0.1		53.0±0.3	6.7±0.1		4.6 ± 0.1		57.1±0.3
NiCe14CSZ	5.5±0.2	13.5±0.2	4.0 ± 0.1		43.3±0.6	5.6±0.2	13.2±0.2	3.8 ± 0.1		43.5±0.6

Figure S1. Experimental setup for APR of methanol.

Figure S2. N2 isotherms.

Figure S3. CO₂-TPD profiles showing deconvoluted peaks.

Figure S4. Ce 3d XPS spectra.

Figure S6. HAADF images and EDS maps for individual components: (a) NiZr, (b) Ni4CSZ, (c) Ni8YSZ, (d) Ni14CSZ and (e) NiCe4CSZ