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Abstract: The fiber-type dye-sensitized solar cell (FDSSC) with flexible and dim-light workable
features is one of the promising energy generation devices for soft electronics. A novel TiO2 nanotube
(TNT) growth and removal technique is proposed in this study to enhance the contact area of the
Ti wire substrate using anodization and ultrasonication processes. Smaller and denser imprints of
TNT on the surface of Ti wire are obtained when a smaller voltage was applied for anodization.
The thickness of the TiO2 nanoparticle layer coated on the Ti wire is also optimized by varying
the dip-coating layers. With the smallest diameter and densest distribution of TNT imprints on
the Ti wire, the FDSSC with the TiO2/TNT-printed Ti wire photoanode, prepared using 30 V as the
anodization voltage, shows the highest photon-to-electricity efficiency of 2.37% as a result of the
rough surface of Ti wire substrate, which provides more contact, as well as the suitable thickness
of the TiO2 nanoparticle layer, which promotes charge generation and transportation. The smallest
charge-transfer resistance and the highest electron collection efficiency are also obtained in this case, as
examined using the electrochemical impedance spectroscopy and intensity modulated photocurrent
spectroscopy/intensity modulated photovoltage spectroscopy. This facile TNT growth and removal
technique is expected to be able to be applied to other fields for enhancing the contact area of the
titanium substrate and promoting the generation of electrochemical reactions.

Keywords: anodization; fiber-type dye-sensitized solar cell; intensity modulated photocurrent
spectroscopy/intensity modulated photovoltage spectroscopy; TiO2 nanotube; Ti wire

1. Introduction

Soft electronics are developed intensively nowadays to facilitate safer and more comfortable
lives for modern people [1–3]. Hence, the energy supply of soft electronics of great significance for
determining the sustainability and feasibility of devices in real applications. The dye-sensitized solar
cell (DSSC), with its low cost and non-toxic properties, has been considered as one of the promising
energy generation devices for soft electronics [4–6]. Good operational ability under dim-light and
indoor conditions promotes the application of DSSC for soft electronics which are required to be used
in indoor conditions [7–9].
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The photoanode of the DSSC plays the most important role in light absorption, charge generation,
and transportation [10–13]. The surface area of the current collector is highly important for determining
the contact between the substrate and semiconductor as well as the transfer of charge [14–16]. Hydrogen
peroxide has been widely used to increase the surface area of metal substrates. Tsai et al. applied
H2O2 pretreatment on Ti foils to form networked TiO2 nanosheets to enhance the surface area of the Ti
foil [16]. Lee et al. prepared a sponge-like and conformal TiO2 underlayer by using hydrogen peroxide
oxidation [17]. An et al. prepared a TiO2 nanoforest underlayer on a Ti substrate using acid and H2O2

treatments for improving the photovoltaic performance of a Ti substrate-based DSSC with higher
surface roughness of substrate and better electrical contact between Ti substrate and TiO2 nanoparticles
(TNP) [18]. Linnemann et al. used a HNO3 treatment to increase the electrochemically active surface
area of the TiO2 layer on Ti foil. The photovoltaic performance of the pertinent DSSC was hence
improved [19]. Bialuschewski et al. applied a femtosecond laser structuring technique on titanium
substrate to enhance surface area, and overall photoelectrochemical water splitting performance was
improved with the treated titanium substrate [20]. Zahran et al. used different amounts of hydrofluoric
acid to etch titanium substrates and studied surface area enhancements [21]. However, extra TiO2

nanomaterials should be coated on the current collector and, hence, more interfaces could be developed
to increase charge-transfer resistance. In our previous work, the current collector was modified
using the TiO2 nanotube (TNT) growth-removal process [22,23]. The TNT can also be used as the
dye-adsorbing layer in other works [24,25]. The modified Ti foil was applied for sputtering Pt as the
counter electrode for the normal-type DSSC. Due to the larger surface area of substrate for the counter
electrode, a better catalytic ability for redox reactions in electrolyte was achieved and, hence, higher
power conversion efficiency was obtained for the resulting DSSC. Based on this concept, the surface
area of Ti wire and hence contact between the TNP layer and the Ti wire substrate are expected to be
enhanced by using the unique TNT growth-removal technique for facilitating charge transfer.

In this work, the Ti wire was treated using the TNT growth-removal process and then used
as a substrate for depositing TNP via the facile dip-coating process. Different anodization voltages
were applied to fabricate different sizes of TNT imprints on the Ti wire surface. Electrochemical
impedance spectroscopy and intensity modulated photocurrent spectroscopy/intensity modulated
photovoltage spectroscopy (IMPS/IMVS) were also applied to analyze charge-transfer resistance and
collection efficiency of fiber-type dye-sensitized solar cell (FDSSC) to further understand effects of the
TNT-growth-removal treatment on the photovoltaic performance of FDSSCs.

2. Experimental

2.1. Pretreatment of Ti Wires Using the TiO2 Nanotube Growth and Removal Process and Coating of TiO2
Nanoparticles on Ti Wires

Ti wires (diameter = 0.5 mm, 99.5%, Taiwan) were washed using neutral cleaner, deionized water
(DIW), and acetone under sonication in sequence. The neutral cleaner was used to wash the substrate
via removing the organic materials. The pretreatment of the growth and removal process was carried
out by firstly anodizing Ti wire using a power supply with a Pt wire as the counter electrode, and then
removing TNT from Ti wire surface by ultrasonicating the anodized Ti wires in DIW. The TNT-printed
Ti wires were thereby obtained.

The TNP layer was then coated on the as-obtained Ti wire and the TNT-printed Ti wire by using a
dip-coating technique with a withdrawal rate of 100 mm/min. The thickness of the TNP layer plays
an important role in the dye adsorption and charge recombination. Hence, prior to applying the Ti
wires treated with the TNT growth and removal process as the substrate for the photoanode of the
FDSSC, the thickness of the TNP layer on the as-obtained Ti wire was first optimized by using different
dip-coating times. The TNP paste contains 6 g commercial TiO2 (P25, Taiwan), 2 mL acetyl acetone,
and 0.1 mL Triton X-100 (VETEO, Taiwan) in 20 mL ethanol (99.5%, ECEO, Taiwan). The TNP-coated Ti
wire photoanode was then annealed at 450 ◦C for 30 min to improve crystallinity of TiO2 and enhance
contact between the TNP and Ti wire.
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2.2. Assembly of Fiber-Type Dye-Sensitized Solar Cells

The TNP/Ti wire and TNT-printed Ti wire were immersed in 0.3 mM N719 (99%, UniRegion
Bio-Tech, Taiwan) solution with a mixed solvent of dehydrated acetonitrile/tert-butanol mixture solvent
(vol. ratio 1:1) overnight to fabricate dye-coated TNP/Ti wire photoanodes. The FDSSC was assembled
using a dye-coated flexible TNP/Ti wire photoanode and a Pt wire counter electrode which were
put into a glass capillary with electrolyte fully injected. The glass capillary was 1.5 mm in diameter
and of 3 cm long. Both electrodes were flexible but the glass capillary was not. By replacing the
liquid electrode with the gel electrolyte and removing the glass capillary from the device, the whole
device was thus flexible. The electrolyte contains 0.5 M lithium iodide (LiI, 99%, ACROS, Taiwan),
0.05 M iodine (I2, 98%, TCI, Taiwan), 0.5 M 1,2-dimethyl-3-propylimidazolium iodide (DMPII, 98%,
TCI, Taiwan) and 0.5 M 4-tertbutyl-pyridine in dehydrated acetonitrile (TBP, 99%, J.T. Baker, Taiwan).
Finally, hot melt adhesive was used to seal the tubular container at both ends to complete the assembly
of the FDSSC.

2.3. Material Characterizations and Electrochemical Measurements

The photovoltaic performance of FDSSCs was measured using the potentiostat/galvanostat
instrument with an FRA2 module (PGSTAT 204, Autolab, Eco Chemie, the Netherlands) under
illumination of solar simulator (X500, BLUE SKY, Taiwan) with irradiance of 100 mW cm−2 at an
equivalent air mass (AM) of 1.5. All the data were collected using three devices for each anodized
sample. This technique is repeatable and reliable. Electrochemical impedance spectroscopy (EIS)
measurement was conducted at open-circuit potential and with frequencies between 0.01 Hz to 100 kHz.
Intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) were conducted at an
electrochemical workstation with light emitting diodes (LED) driven by a source supply. Field emission
scanning electron microscopy (FE-SEM, FEI Nova230, Taiwan) was applied to observe morphology of
TiO2/Ti wires, and X-ray diffraction patterns (XRD, X’Pert3 Powder, PANalytical, Taiwan) were used to
analyze the composition of TiO2/Ti wires.

3. Results and Discussion

The thickness of the TNP layer was firstly examined from the SEM images. The side-view
SEM images for the TNP/Ti photoanodes prepared using one, two, three, four and five dip-coating
layers are shown in Figure 1a–e. It was found that a thicker TNP layer could be obtained by
using more dip-coating layers to fabricate the photoanodes. The photovoltaic performance of the
FDSSC with TNP/Ti photoanodes prepared using different dip-coating layers was further evaluated
using linear sweep voltammetry (LSV) curves, as shown in Figure 1f. To compare the photovoltaic
parameters relating to the thickness of the TNP layer more clearly, trends of open-circuit voltage (VOC),
photocurrent density (JSC), and power conversion efficiency (η) of the FDSSC to TNP dip-coating
layers on photoanode was presented in Figure 1g. The VOC and JSC values of the FDSSC increased
with thicker TNP layers and achieved the largest values with three TNP layers. Thicker TNP layer
could be obtained when more TNP layers were coated on the Ti wire using a dip-coating process. The
increases in the JSC value for the FDSSC with thicker TNP layer is attributed to more electron excitation
with more dye molecules adsorbed on thicker TNP layers. More charge could be accumulated in
the conduction band of TiO2 with thicker layers, so the difference between the charge-accumulated
conduction band edge of TiO2 and the redox potential of the electrolyte was larger, leading to increased
VOC values for the FDSSC with the photoanode containing three TNP layers compared to the FDSSC
with the photoanode containing fewer TNP layers. However, further increasing TNP layers on the
photoanodes lead to reductions on both VOC and JSC values. This is due to the TNP layer being thicker
than the charge diffusion length in the photoanode of FDSSC. When the thickness of the TiO2 layer is
greater than the charge diffusion length, serious recombination may occur since photon-generated
charges may be unable to reach such a thick current collector. Based on this optimized thickness of TNP
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layer, modified Ti wires were further applied as the substrate of photoanode for FDSSC. The physical
properties of photoanodes and electrochemical performance of FDCCSs were further analyzed.
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Figure 1. The SEM images for the TiO2 nanoparticles (TNP)/Ti wire prepared using (a) one, (b) two,
(c) three, (d) four, and (e) five layers; (f) the linear sweep voltammetry (LSV) curves and (g) the relation
of the photovoltaic parameters to the number of TNP layers for the fiber-type dye-sensitized solar cells
(FDSSCs) with the TNP/Ti wire photoanodes prepared using different TNP layers.

SEM images for Ti wires and TNP-coated Ti wires were examined, as shown in Figure 2. Figure 2a–d
respectively presents the as-obtained Ti wire and the pretreated Ti wires using anodization voltages of
30, 40, and 50 V. The SEM images for the anodized Ti wire without the TNT removed were inserted
in the corresponding figure in Figure 2b–d. The as-obtained Ti wire shows a smooth surface with
some randomly distributed scratches on surface. The Ti wires treated using the TNT growth and
removal process with different anodization voltages show uniform circular inks on the surface. Since
the TNT has circular open ends, the removal of TNT would leave circular shapes on the Ti wire. Hence,
the term “circular inks” was used to describe the remaining shapes on the Ti wire. The diameter of the
circular inks on the Ti wire surface increased when higher anodization voltages were applied in the
TNT growing process. The average diameter of 91.0, 136.5, and 182.3 nm were respectively obtained
for the circular inks on Ti wire surface prepared using 30, 40, and 50 V for anodization. The size of
circular inks is inferred to be similar to that of the TNT grown on Ti wire. Furthermore, SEM images of
TNP/Ti wires with substrate of the as-obtained Ti wire and the pretreated Ti wires using anodization
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voltages of 30, 40, and 50 V are shown in Figure 2e–h. The high magnifications for the SEM images
are shown in the corresponding figures. Due to the TNP coating, all electrodes show similar images
with several nanoparticles distributed. Based on the similar thickness of TNP layers prepared using
the same dip-coating process, different Ti wire substrates are inferred to mainly influence the contact
between substrate and TNP layer coated on surface of Ti wire. The influence of the Ti wire surface
configuration on charge transfer in the TNP layer far from substrate is considered to be limited.
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Figure 2. The SEM image of (a) Ti wire and the TNT-printed Ti wire prepared using (b) 30, (c) 40, and
(d) 50 V; the SEM image of (e) TNP/Ti wire and the TNP/TNT-printed Ti wire prepared using (f) 30,
(g) 40, and (h) 50 V.

The preparation of Ti wires using the TNT growth and removal technique was further examined
from the XRD pattern (Figure 3a). Pure titanium metal signal was observed in the pattern of as-obtained
Ti wire. After carrying out the anodization process for Ti wire, the anodized Ti wire shows anatase
TiO2 peaks in the pattern, indicating formation of TNT on the surface of the Ti wire. Removal of
TNT was conducted by sonicating anodized Ti wires in the DIW and the peaks of anatase TiO2 totally
disappeared in the XRD pattern. This phenomenon suggests the successful removal of TNT from the
surface. Further coating the TNP layer on the sonicated anodized Ti wire leads to the appearance
of anatase TiO2 peaks, which is attributed to the TNP layer. The result of the XRD pattern implies
the successful fabrication of pure Ti wire substrate using the TNT growth and removal technique,
since there are no extra peaks of titanium metal for the sonicated anodized Ti wire. Furthermore,
the composition of TNP/Ti electrodes was examined from the XRD pattern in Figure 3b, where the
standard pattern of anatase TiO2 was also shown for comparison. The as-obtained Ti wire is indicated
as Ti (0 V) in this figure. Again, the pure titanium peaks were observed in this pattern. With the coating
of the TNP layer, the TNP/Ti (0 V) shows consistent peaks of anatase TiO2 owing to the anatase phase
nature of the TNP layer.

The photovoltaic performance of FDSSC with TNP/Ti wire and TNP/TNT-printed Ti wire
photoanodes was further analyzed from LSV curves, as shown in Figure 4. Photovoltaic parameters
were listed in Table 1 for clearer comparison. The as-obtained Ti wire without anodization is indicated
as Ti (0 V) in this figure. VOC values are similar for all FDSSCs, suggesting the recombination rate is
similar for the FDSSC with different substrates for photoanodes. The higher JSC values were obtained
for the FDSSC with the TNP/TNT-printed Ti wire photoanodes compared to that for the cell with the
TNP/Ti wire photoanode, owing to the TNT imprints on the substrate of the photoanode providing
better charge transfer and larger surface area for dye adsorption [22]. The FF values are also higher
for the FDSSC with TNP/TNT-printed Ti wire photoanodes, indicating the reduced charge-transfer
resistance for these cases with modified substrate for photoanodes. On the other hand, among the
FDSSC with TNP/TNT-printed Ti wire photoanodes, the highest JSC of 4.66 mA/cm2 and η of 2.37%
were achieved for the cell with photoanode substrate anodized with 30 V. It is inferred that the smallest
diameter for the TNT imprints prepared using 30 V could provide the largest surface area for TNP
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deposition and more routes for transferring charges [22]. Therefore, the best photovoltaic performance
was obtained for the FDSSC with the photoanode prepared using substrate pretreated with the smallest
anodization voltage. The variation of the anodization voltage cannot only influence the diameter but
also the depth of TNT inks. When using an anodization voltage smaller than 30 V, almost no inks can
be observed in the SEM images. Therefore, 30 V is the smallest acceptable anodization voltage to create
TNT inks on the Ti wire in this study.
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Figure 4. LSV curves for the dye-sensitized solar cells (DSSCs with TNP/Ti wire and TNP/TNT-printed
Ti wire photoanodes.

Furthermore, the charge-transfer resistance in the photoanode of the FDSSC with the TNP/Ti wire
and TNP/TNT-printed Ti wire photoanodes was examined using a Nyquist plot, as shown in Figure 5a.
The equivalent circuit for fitting charge-transfer resistances of the FDSSC was also included in this
figure. The charge-transfer resistance at the interface between electrolyte and dye/TiO2/Ti wire (Rct2)
which was evaluated by fitting a semicircle in the middle frequency region was also listed in Table 1.
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The largest Rct2 value of 155 Ω was obtained for the FDSSC with TNP/Ti wire photoanode, probably
due to the lack of TNT imprints on the current collector reducing contact between the substrate and
TNP layers. On the other hand, the Rct2 value decreases for the FDSSC with the TNP/TNT-printed Ti
wire photoanode prepared using smaller voltages for anodization. The smallest Rct2 value of 97 Ω
was obtained for the FDSSC with the TNP/TNT-printed Ti wire photoanode prepared using 30 V for
anodization. Since the smaller diameter of the TNT imprints can be obtained on the Ti wire anodized
using smaller voltage, the smallest diameter of the TNT imprints for the Ti wire anodized using 30 V is
favorable for providing the most contacts between substrate and TNP. In addition, the electron lifetime
in the FDSSC with TNP/Ti wire and TNP/TNT-printed Ti wire photoanodes was examined by from
Bode plot, as shown in Figure 5b. The electron lifetime is inversely proportional to the frequency
for the peak at low frequency regions. The FDSSC with the TNP/TNT-printed Ti wire photoanode
prepared using 30 V for anodization shows the smallest frequency, indicating the longest electron
lifetime for this case. Similarly, the most contacts between current collector and TNP can provide the
most sites for charge transfer from the electron generating points to the outer circuit. The longest
electron lifetime for the FDSSC with the TNP/TNT-printed Ti wire photoanode prepared using 30 V
for anodization is due to the smallest TNT imprints on Ti wire with the most contacts with TNP for
providing the most chances for transporting charges. The smallest charge-transfer resistance and the
longest electron lifetime for the FDSSC with the TNP/TNT-printed Ti wire photoanode prepared using
30 V are consistent with its highest η value as analyzed from LSV curves in Figure 4. This result suggests
that treatments of anodization and ultrasonication for fabricating TNT imprints are beneficial for
enhancing the transportation of charges and prolonging the survival of charges in the FDSSC during the
illuminating process. Last, electron transfer behavior of the FDSSC with the TNP/Ti wire photoanode
and the TNP/TNT-printed Ti wire prepared using 30 V was further analyzed from IMPS and IMVS
spectra, as respectively shown in Figure 6a,b. By evaluating electron transport time and electron
lifetime, the electron collection efficiency for the FDSSC with the TNP/Ti wire and TNP/TNT-printed Ti
wire photoanodes was calculated [26], as shown in Figure 6c. A higher electron collection efficiency
was obtained for the FDSSC with TNP/TNT-printed Ti wire photoanode, as compared with that for
the FDSSC with the TNP/Ti wire photoanode, due to more contact between the substrate and TNP
layer to promote electron collection in the former cases. The higher electron collection efficiency of
84% was obtained for the TNP/TNT-printed Ti wire photoanode prepared using 30 V for anodization,
while the cell with TNP/Ti wire photoanode only presented an electron collection efficiency of 60%.
This result is again due to the smallest diameter of TNT imprints on Ti wire anodized using the
smallest voltage of 30 V for providing more contact points for collecting charges. To more clearly
explain the enhanced contact points for charge transfer for the Ti wire treated with anodization and
ultrasonication, Scheme 1a,b respectively presents illustration of the charge transfer in FDSSC with
the photoanode based on the as-obtained Ti wire and the Ti wire treated with the TNT growth and
removal process. With TNT imprints on Ti wire, more contacts between current collector and TNP
layer could be obtained and hence more efficient charge transfer could also be achieved for this case.
TNT imprints are verified to play important roles on charge transfer in photoanode, and the smaller
diameter of TNT imprints is inferred to be more preferable for enhancing contact points between Ti
wire and TNP. The study on the design of TNT imprints is expected to further develop to achieve better
photovoltaic performance of the FDSSC with flexible Ti wires as the photoanode substrate.

Table 1. The photovoltaic parameters, charge-transfer resistance and collection efficiency for the FDSSC
with TNP/Ti wire and TNP/TNT-printed Ti wire photoanodes.

Photoanode VOC (V) JSC (mA/cm2) FF η (%) Rct2 (Ω)

TNP/Ti (0 V) 0.70 3.86 0.68 1.83 154.52
TNP/Ti (30 V) 0.70 4.66 0.76 2.37 97.12
TNP/Ti (40 V) 0.68 4.00 0.77 2.10 107.45
TNP/Ti (50 V) 0.71 3.92 0.74 2.07 126.84
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Scheme 1. The illustration for the charge transfer in the FDSSC with the photoanode based on (a) the
as-obtained Ti wire and (b) the Ti wire treated with the TNT growth and removal process.

4. Conclusions

The TNT growth and removal process was firstly proposed to enhance surface area of Ti wire as a
substrate for the photoanode of FDSSC. Different anodization voltages were applied for developing
TNT imprints on Ti wire with different diameters. The FDSSCs with the photoanode composed
of TNT-printed Ti wire substrate show better photovoltaic performances compared to the cell with
untreated Ti wire as its photoanode substrate. The highest η value of 2.37% along with the VOC value
of 0.70 V, JSC value of 4.66 mA/cm2, and FF of 0.76 were obtained for the FDSSC with the optimized
TNT-printed Ti wire as photoanode substrate prepared using 30 V as anodization voltage, owing to
the smallest diameter of TNT imprints, in this case providing the most contact points between the
substrate and TNP layer and to promote charge transfer. The smallest charge-transfer resistance,
longest electron lifetime, and highest electron collection efficiency of 84% were also obtained for the
FDSSC with the photoanode substrate prepared using 30 V as the anodization voltage. This work
proposed a simple method to improve contact between the current collector and semiconductor layer
of the photoanode of FDSSC. More effective substrates are expected to be developed by carefully
designing an anodization program for creating TNT imprints on Ti wire with more efficient contact
between subtracts and dye-adsorption layers.
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