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Table S1. A summary of different starting materials used for synthesis of CDs 

Starting material Synthetic method QY Reference 

Banana juice                        Normal heating, 150 °C, 4 h                  8.95%           [1] 

Sugar cane juice                  Hydrothermal, 120 °C, 3 h                    5.76%             [2] 

Apple juice                                            Hydrothermal, 150 °C, 12 h 4.27%            [3] 

Grape juice                                            Hydrothermal, 180 °C, 12 h 13.5%             [4] 

Coconut water                                                          Microwave treatment 2.8% [5] 

Papaya                                                    Hydrothermal, 200 °C, 5 h 18.98%          [6] 

Lime, NH4HCO3                                                        Hydrothermal, 180 °C, 7 h 39.62%          [7] 

Cabbage                                                 Hydrothermal, 140 °C, 5 h 16.5%             [8] 

Honey                                                     Hydrothermal, 100 °C, 2 h 19.8%            [9] 

Milk                                                       Hydrothermal, 180 °C, 12 h 9.6%            [10] 

Milk                                      Hydrothermal, 180 °C, 8 h                    7.55%           [11] 

Naked oats                                                     Pyrolysis, 400 °C, 2 h 3.0%             [12] 

Flour                                                          Microwave, 180 °C, 20 min 5.4%             [13]     

Gelatin                                  Hydrothermal, 220 °C, 24 h                   31.6%              [14] 

Peanut shells                                               Pyrolysis, 250 °C, 2 h 9.91%              [15] 

Pomelo peel                        Hydrothermal, 200 °C, 3 h                     6.9%                  [16] 

Grass                                                     Hydrothermal, 180 °C, 3 h 6.2%                [13] 

Plant soot                           HNO3 reflux                                            0.72%              [17]           

Egg membrane                                    Microwave                                              14% [18] 

Orange peel                                                         Hydrothermal, 180 °C, 12 h 36% [19] 

Urine                                                                 Carbonization, 200 °C, 12 h 5.3% [20] 



Dried shrimps                                       Hydrothermal, 170 °C, 12 h 54%               [21] 

Glucose, PEI                                           Hydrothermal, 150 °C, 12 h 2.86%           [22] 

Cellulose, 

(NH4)2CO3 

Hydrothermal, 180 °C, 12 h 7.6%              [23] 

Glucose Ultrasonic, 4 h 7% [24] 

Cellulose, urea                                      Hydrothermal, 180 °C, 72 h  21%              [25] 

CMC, urea                           Hydrothermal, 210 °C, 12 h 18%              [26] 

CMC, EDA Hydrothermal, 270 °C, 6 h 22.9%              [27] 

Microcrystalline                       

cellulose, EDA 

Hydrothermal, 240 °C, 12 h 51%              [28] 

Folic acid Hydrothermal, 180 °C, 2 h 23% [29] 

Citric acid, urea                                   Microwave heating, 5 min 14% [35] 

Branched PEI                                                             Hydrothermal, 200 °C,10 h 54.3%                   [30] 

PEG                                                           Microwave, 900 W   16%                 [31] 

Candle soot                                                          HNO3 oxidation 1.9%                  [32] 

Activated carbon                                              HNO3 oxidation 1.6%                   [33] 

Table S2. Optimization of LPEI concentration for the production of N-CDs 

No. Starting materials ratio Quantum yield 

(QY) 

 Carboxymethylcellulose (g) LPEI dosage (g)  

1 0.1 0.05 35.16 

2 0.1 0.1 38.6 

3 0.1 0.15 26.47 

Table S3. Optimization of synthesis conditions for the production of N-CDs 

No. Synthesis temperature (°C) Reaction time (hr) Quantum yield 

(QY) 

1 220 2 25.3 

2 240 2 38.6 

3 260 2 44 

4 260 1 29.5 

6 260 3 32.7 



Table S4. Elemental compositions of the undoped and N-CDs 

Sample C/atomic % O/atomic% N/atomic% 

CDs 54.3 32.6 ND* 

N-CDs 64.6 11.2 19.4 

Note. ND: not detected. 

Proposed chemical formation of as-prepared N-CDs 

Until now, there is no clear explanation to the possible chemical reactions 

occurring for the formation of N-CDs. However, the schematic representation of 

the possible formation mechanism of N-CDs is outlined in Figure S1. based on the 

vast findings characterized in this study and the literature reports of HTC of 

polysaccharides and N- doping source [34][35][36][37][38][39]. The mechanism 

shows that at long-time HTC process, decomposition of CMC into glucose 

monomer is occurred. At the same time, the amino species of LPEI can react with 

the aldehyde of glucose molecule to form glucosamines. Thus, 

hydroxymethylfurfural (HMF) is generated through multiple dehydration and 

fragmentation reactions of amino ketones or Amadori compounds [40]. 

Additionally, HMF could be formed through the decomposition products of 

vitamin C [41]. 
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Fig. S1. Fundamental understanding of the N-CDs formation pathway 

Soluble organic acids such as levulinic and formic acid were formed via 

rehydration of HMF (the main reaction intermediate in HTC). Various soluble 

polymers may be formed as a result of fragmentation, substitution, aldol 

condensation, reversion, and/ or dehydration processes of the acid reaction 

processes with each other and with some monomers [42]. According to Lamar 

model, aromatization and carbonization take place by nuclear growth of these 

aromatic groups. This leads to the formation of polar soluble oxygen/nitrogen 

containing groups, like -OH, -COOH, CN- and -NH that can be attached to the 

surface of CDs, as supported by FTIR and XPS spectra. On the other hand, N 

atoms, including pyridinic -N and graphitic -N (denoted by red and blue ball, 

respectively) were also introduced into the polyaromatic structure through long-

time HTC process [42]. It is believed that the incorporation of pyridinic and 

graphitic nitrogen atoms could play the major role for fluorescent enhancement by 



introducing defect states in the hexagonal ring system of the N-CD core [43][44]. 

On the other hand, the existence of oxygen/nitrogen containing groups over the 

N-CDs surface may induce the energy gaps by creating energy traps, leading to 

the enhancement of PL structure of N-CDs through radiative recombination of 

localized electron-hole pairs [43][45]. 

  

Fig. S2. PL intensity as a function of (a) illumination time irradiated with UV 

light (365 nm) and (b) NaCl concentration, (c) KCl concentration and (d) 

temperatures 
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Fig. S3. (a) Digital images showing N-CDs in ambient light (right) and N-CDs 

and water (middle and left, respectively) under UV-lamp after six months at 

room temperature and (b) effect of storage time on the fluorescence intensity of 

the N-CDs (0-6 months) at 25 °C 

 

 

Fig. S4. The effect of (a) sensing time and (b) pH value on the relative 

fluorescence quenching of N-CDs before and after addition of 50 μM of copper 

ions 

 

Fig. S5. DLS size distribution of N-CDs after the addition of 700 μM Cu (II) 
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Fig. S6. Zeta potential of N-CDs after the addition of 700 μM Cu (II) 

 

Fig. S7. PL spectra of N-CDs solution and N-CDs-PVA film showing (a) 

excitation and (b) emission maxima 
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Fig. S8. FT-IR spectra of the as-synthesized N-CDs (red line) and PVA/N-CDs 

film (black line) 

 

Table S5. Quantum yield calculation of N-CDs-PVA film 

Sample                     Integrated  

emission intensity 

(I) 

Optical density (OD) ɳ Quantum yield 

(QY) 

Quinine sulfate 35828.9 0.033 1.33 54% (known) 

N-CDs-PVA 

film 

37799.1 0.04 1.33 47% 
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Fig. S9. Photostability of N-CDs-PVA composite film 
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