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Abstract: To realize a high response and high selectivity gas sensor for the detection dissolved gases
in transformer oil, in this study, the adsorption of four kinds of gases (H2, CO, C2H2, and CH4) on
Pd-graphyne was investigated, and the gas sensing properties were evaluated. The energetically-
favorable structure of Pd-Doped γ-graphyne was first studied, including through a comparison
of different adsorption sites and a discussion of the electronic properties. Then, the adsorption of
these four molecules on Pd-graphyne was explored. The adsorption structure, adsorption energy,
electron transfer, electron density distribution, band structure, and density of states were calculated
and analyzed. The results show that Pd prefers to be adsorbed on the middle of three C≡C bonds,
and that the band gap of γ-graphyne becomes smaller after adsorption. The CO adsorption exhibits
the largest adsorption energy and electron transfer, and effects an obvious change to the structure
and electronic properties to Pd-graphyne. Because of the conductance decrease after adsorption of
CO and the acceptable recovery time at high temperatures, Pd-graphyne is a promising gas sensing
material with which to detect CO with high selectivity. This work offers theoretical support for the
design of a nanomaterial-based gas sensor using a novel structure for industrial applications.
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1. Introduction

At present, 2D materials are attracting much attention after the successful synthesis of graphene
by micromechanical exfoliation in 2004 [1]. Because of the excellent physical and chemical properties
of graphene, including high surface area and activity, high thermal conductivity, good heat dissipation,
sensitive light response, and gas/ion response, graphene has found broad application value and
development space [2–4]. Nonetheless, the difficulty of operating the zero value of the band gap
restricts its wide use in industrial processes. Based on this, several emerging 2D materials have
been exploited, including transition metal dichalcogenides (TMDs) [5,6], isomers of graphene [7],
metal carbides and nitrides [8], 2D metal-organic frameworks [9], etc. Because of their more flexible
band structures, these materials could have more promising applications in the field of optical and
electronic devices.

Among numerous 2D carbon allotropies, graphyne (GY) remains one of the most popular
monolayer materials [10–12]. The two most popular structures, γ-graphyne (γ-GY) and graphdiyne
(GDY), both have sp2- and sp-hybridized carbon atoms. The difference is that in γ-GY, only one C-C
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triple bond is present between two hexagonal carbon rings, while two triple bonds occur between
the two rings in GDY [10–12]. Previous studies using theoretical methods have shown that several
structures of graphyne are physically and chemically stable, such as α-graphyne (α-GY), β-graphyne
(β-GY), 6,6,12-graphye [11], etc. In contrast to graphene and graphite, C≡C triple bonds appear in all
types of graphyne. The ratio of bond type of the acetylenic linkages of α-GY, β-GY, and γ-GY is different.
α-GY has 100% acetylenic linkages, while β-GY and γ-GY have 66.67% and 33.33%, respectively [13].
Different types of GY also have different band structures. For α-GY and β-GY, the valence band and
conduction band cross to one point, while γ-GY has a direct band gap of about 0.471 eV, as measured
using the generalized gradient approximation (GGA) approach [14]. But graphdiyne (GDY) was the
first one reported to be synthesized in experiment [15]. However, although γ-GY has not been prepared
practically, several theoretical studies have shown that it has promising uses in field of catalysis, energy
storage, gas/ion sensor, and electronic/optical devices. γ-GY may be a promising catalyst for oxygen
reduction reactions (ORRs), nitrogen reduction reactions (NRRs) etc. After the doping of metal or
non-metal atoms, graphyne has excellent catalytic performance, and it may be used as a single-atom
catalytic material in the future [16,17]. As for the adjustment of the physical properties of γ-GY, e.g.,
the electronic and magnetic properties, the introduction of impurities and surface defects is an effective
method [18–21]. The doping of metal atom clusters is also a feasible method to adjust the surface
activity and electronic properties [22–24]. GY is also a promising gas sensing material in many fields.
Pristine GY has been shown to interact weakly with most common gas molecules, e.g., CO, CH4,
CO2, NH3, and NO, among others [25,26]. Doping with Mn can obviously strengthen the chemical
interactions between these molecules and the γ-GY surface [26]. For the gas detection of CO molecules,
to improve the weak response, the substitution doping with B and N makes GY more sensitive to
CO [27]. For the detection of NH3, doping the main group atom, e.g., Si, can significantly reduce the
recovery time [28]. The substitution doping of B can also enhance the gas sensing properties for several
inorganic, small molecules such as NO and NO2, as well as organic molecules [29,30]. The doping of
noble atoms has also been shown to significantly enhance the chemical interactions between CO and
γ-GY [31]. Based on several theoretical studies of GY as a gas sensing material, pristine GY exhibits
weak chemical interactions with most small gas molecules. To enhance the gas sensing properties,
introducing an adatom onto the surface is advisable. And also, choosing the appropriate doping
approach is essential for the selectivity of GY-based sensing materials.

High voltage equipment has been widely used in power stations, transformer substations, and
power distribution stations. To guarantee the operational status of equipment such as transformers
using oil-paper insulation or gas-insulated switchgears (GISs) using SF6 as an insulating medium,
detecting impurity gases using gas sensors has been widely studied. For the detection of SF6

decomposition, several 2D materials have been explored, and surface modification including doping
transition metal atoms or metal oxides are feasible to enhance the chemical interactions between the
SF6 decompositions and the sensing materials [32–41]. Several impurity gases, such as CO, H2, C2H2,
CH4, C2H6, and C2H4, will be generated and dissolve in the oil in the transformer after insulation faults
occur. So, a dissolved gas analysis (DGA) method is essential for equipment inspection. In view of this,
several materials have been studied to detect these kinds of molecules, including metal oxides [42–47]
and TMDs [46–48]. However, the selectivity and the enhancement of the sensitivity should be further
considered. In this regard, due to the high surface activity of γ-GY, and the emerge active sites caused
by the introduction of Pd [42,44,45], in this study, we propose a DFT study of four typical dissolved
gases in transformer oil (H2, CO, C2H2, and CH4) which are adsorbed onto Pd-doped γ-GY. Firstly, the
adsorption of one Pd atom on γ-GY was discussed, and the most energetically-favorable structure
of Pd-GY was found. Then, the adsorption of gas molecules onto the Pd-GY was investigated and
the adsorption energy, electron transfer, and electronic properties were studied in detail. Finally, the
different responses to these gases were evaluated. We believe that this study may provide a theoretical
basis for graphyne-based nanomaterials to detect dissolved gases in oil, and guidance for the future
development of nanomaterial-based gas sensors in many fields.
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2. Methods

All the adsorption of Pd and gas molecules on γ-GY are calculated in the Dmol3 module [49].
The Perdew-Burke-Ernzerhof function (PBE) approach by generalized gradient approximation (GGA)
was chosen for correction of the exchange-correlation function [50,51]. The total energy, band
structure, and density of states (DOS) were also calculated using the GGA-PBE approximation method.
The double numerical plus polarization (DNP) method was considered as the basis set for all the
calculations, and the DFT semi-core pseudopotential (DSSP) was selected to handle the electrons,
that is, a norm-conserving pseudopotential was applied to calculate the core electrons to improve the
calculation efficiency. The long-range interactions derived from the Van der Walls force was calculated
using the DFT-D2 method, as proposed by Grimme [52]. A cutoff radius of 4.5 Å was set, and this
value remained unchanged in this study. All geometric optimizations between the two steps were
carried out using a convergence criterion of 1×10−5 Ha for energy convergence, 0.002 Ha/Å for force
convergence, and 0.005 Å for displacement convergence. A k-point sample in the Monkhorst-Pack
grid of 4×4×1 was used for geometric optimization, while a more accurate k-point was considered in
the electronic properties with a Gaussian smearing of 0.005 Ha [53]. The binding energy (Eads) was
calculated using the following equation:

Ebind = EPd−graphyne − Egraphyne − EPd atom (1)

where EPd-graphyne, Egraphyne, and EPd atom are the total energy of Pd-graphene, pristine graphyne
monolayer, and isolated Pd atom. After the adsorption of one Pd atom, the electron transfer was
obtained using the Hirshfeld analysis method [54]:

Q = −

∫ (
ρ0(r)∑
ρ0′(r)

)
•

(
ρ(r) −

∑
ρ0
′(r)

)
dr (2)

where ρ(r) is the total electron density of the selected structure, and ρ0(r) represents the electron density
of every atom if separated.

∑
ρ0′ (r) is the sum of ρ0(r).

The adsorption sites of Pd are shown in Figure 1; considering all the structures of the different
adsorption sites, the structure with the largest binding energy was chosen for gas adsorption.
The adsorption energy of one gas molecule on Pd-graphyne is defined as:

Eads = EPd−graphyne/gas − EPd−graphyne − Egas (3)

where EPd-graphyne/gas, EPd-graphyne, and Egas are the total energy of the structure of the gas molecules
adsorbed onto Pd-graphene, Pd-graphyne before the adsorption, and isolation of the gas molecule.
All the electron transfers between the gas molecule and Pd-graphyne were also clarified based on
the Hirshfeld analysis method. When the electron transfer of QT is negative, it indicates that the
gas molecule extracts electrons from the Pd-graphyne, while if QT is positive, it indicates that the
gas molecule transfers electrons to Pd-graphyne. To gain a deeper understanding of the electron
transfer, the electron density difference between the molecule and the Pd-graphyne can be obtained
after calculating the electron density as follows:

∆ρ = ρPd−graphyne/gas −
(
ρPd−graphyne + ρgas

)
(4)

where ρPd-graphyne/gas, ρPd-graphyne and ρgas are the total electron density of Pd-graphyne after adsorbing
the molecule, that of Pd-graphyne before adsorption, and that of the isolated molecule, respectively.
The purple and red regions are the electron accumulation regions, while the green and blue regions
represent electron depletion.

The band structure, the total density of states (TDOS), and the partial density of states (PDOS)
were also compared before and after gas adsorption
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3. Results and Discussion

3.1. The Structure of Pd-Graphyne and Dissolved Gas in Transformer Oil

The calculated lattice parameter of γ-GY in this study is 6.89 Å × 6.89 Å, which is consistent with
the former results [13,29]. We built a 2 × 2 super cell and put one Pd atom on the surface with different
adsorption sites. The stoichiometric proportion of Pd and C is 1:48. The adsorption sites of Pd on the
γ-GY surface are shown in Figure 1, including two hollow sites (H1, H2) and three bridge sites (B1, B2,
and B3). The initial five structures of Pd-graphyne are fully geometrically optimized. The optimized
structures are shown in Figure 2, and the summary of the binding energy and electron transfers are
listed in Table 1. According to a comparison of the binding energy, adsorption on the H1 site exhibits
the largest energy, indicating that one Pd atom on γ-GY has the most energetically-favorable structure.
In Figure 2a, the Pd atom is located in the middle of three C≡C bonds. The distance between Pd and
one hybridized C atom is about 2.10 Å. It is important to note that the Pd atom is not totally in the
plane of the γ-GY, but rather, it extrudes from the surface by about 0.057 Å. The binding energy of the
Pd on the H1 site is −2.45 eV, with an electron transfer from Pd to γ-GY of +0.363 e. The adsorbed Pd
atom is positively charged. The adsorption on the B3 site exhibits the second largest adsorption energy,
while other adsorption energies are smaller. Based on a comparison of the binding energy, we will
focus solely on the structure with the largest binding energy for further discussion, i.e., electronic
properties and gas adsorption.
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Figure 1. Geometric structures of: (a) pristine graphyne with different adsorption sites; (b) H2; (c) CO;
(d) C2H2; (e) CH4.

Table 1. Binding energy and electron transfer of one Pd atom onto a graphyne monolayer.

Adsorption Site Ebind (eV) QT (e)

H1 site −2.45 +0.363
H2 site −1.08 +0.323
B1 site −1.59 +0.344
B2 site −1.52 +0.315
B3 site −1.76 +0.273

The band structures and DOS of pristine γ-GY and Pd-graphyne obtained by the PBE method are
shown in Figure 3. Pristine γ-GY has a direct band structure with a 0.42 eV band gap at the Gamma
point. This value is very similar to that obtained in other studies (0.43 eV in ref. [23] and 0.435 eV
in ref. [55]). The TDOS also shows a gap near 0 eV. It should be noted that the Fermi-level (0 eV) in
Dmol3 module is set at the highest occupied state, and thus, the imaginary line is in the middle of the
highest occupied peak in Figure 3a. So, the non-zero value at 0 eV is mainly because of the broadening
of the peak. After doping the Pd atom, the band structure also shows a direct band gap and the value
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decreases to 0.33 eV. The Pd atom mainly introduces several impurity states near −2.5 eV to 0 eV.
The Pd atom also slightly changes its band distribution near 0 eV, and thus, decreases the band gap.
We will only consider the adsorption of gas molecules on the structure in Figure 2a in the next section.
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Figure 2. Optimized geometric structures of one Pd atom adsorbed on graphyne: (a) H1 site; (b) H2
site; (c) B1 site; (d) B2 site; (e) B3 site.
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Figure 3. (a) Band structure and (b) TDOS of pristine graphyne; (c) Band structure and (d) TDOS of
Pd-graphyne and PDOS of adsorbed Pd atom.

The structure of four kinds of gas molecules are shown in Figure 1b–e. H2 and CO are diatomic
molecules, while the C atoms in C2H2 are sp hybridized and the C atom in CH4 is sp3 hybridized.
The structures conform to the results obtained in our previous study [46–48]. For the initial adsorption
structure, we considered two adsorption directions for H2 onto the Pd atom (H2 parallel to the surface
and vertical to the surface), two adsorption directions of CO over the Pd atom (C atom downward and
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O atom downward), one adsorption direction of C2H2 (the C≡C bond right above the Pd atom), and
two adsorption directions of CH4 (one H atom downward and three H atoms downward). Only the
structures with the largest adsorption energy of each gas molecule were chosen for further study.

3.2. Adsorption of Gas Molecule on Pd-Graphyne

The most energetically-favorable adsorption structures of gas molecules on Pd-graphyne are
shown in Figure 4; the adsorption energy and electron transfers are listed in Table 2. The H2 molecule
prefers to be adsorbed vertically to the surface right above the Pd atom. The adsorption brings only
−0.08 eV adsorption energy and −0.059 e electron transfer. The adsorption distance is 2.58 Å. The Pd
atom remains its former position. The adsorption of CO occurs somewhat differentely. The C atom in
CO prefers to be right above the Pd atom, which moves from the H1 site to the B3 site (between one
C≡C bond). The CO obtains −0.080 e from Pd-graphyne, indicating its role as an electron acceptor.
The adsorption energy of CO on Pd-graphyne reaches −1.11 eV, which is the largest among these four
molecules. The adsorption of C2H2 exhibits only −0.16 eV adsorption energy, with a very small electron
transfer (−0.015 e) compared to other adsorptions. Finally, one sp hybridized C atom is right above the
Pd atom. The CH4 adsorption has −0.13 eV adsorption energy and −0.063 e electron transfer. For the
adsorption of C2H2 and CH4, the adsorption distance is much larger compared to the adsorption of
H2 and CO, and the position of the Pd atom is unchanged. To sum up, only CO adsorption causes a
significant change in the structure of Pd-graphyne, with much larger adsorption energy.
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Table 2. Adsorption energy and electron transfer of H2, CO, C2H2, or CH4 adsorbed on Pd-graphyne.

Structure Eads (eV) QT (e)

Pd-graphyne/H2 −0.08 −0.059
Pd-graphyne/CO −1.11 −0.080

Pd-graphyne/C2H2 −0.16 −0.015
Pd-graphyne/CH4 −0.13 −0.063

To perform a more advanced analysis of the interactions, the electron density difference (EDD)
was calculated; the results are shown in Figure 5. For the adsorption of H2, an obvious electron
accumulation occurs near the upper H atom and between the H2 and Pd atoms, while the depletion
region is between the two H atoms. However, Pd-graphyne does not show any obvious electron density
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change. The CO adsorption results in an obvious change of the electron distribution. An apparent
electron accumulation occurs between the molecule and the Pd atom, while the depletion is around Pd
and between C and O atoms. The electrons prefer to move between the molecule and the Pd atom,
rather than beneath the Pd. The adsorption of C2H2 causes obvious electron depletion around Pd, and
changes the electron distribution of Pd-graphyne to some extent. As for the adsorption of CH4, only a
slight depletion region can be found around the Pd atom. Given the different isosurface in Figure 5b,
the CO adsorption yields the largest electron redistribution, and the C2H2 adsorption also causes a
considerable change in the electron density of the Pd-graphyne; however, the other two adsorptions
only result in a smaller effect. The relationship of electron transfer and electronic properties after
adsorption will be discussed in the following section.
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3.3. Electronic Properties of Pd-Graphyne and Gas Sensing Evaluation

To investigate the effect upon the electronic properties of the Pd-graphyne, the band structure and
DOS before and after adsorption were compared. The band structures of Pd-graphyne after adsorbing
gas molecules are shown in Figure 6. All the band structures still show a direct band gap, but the gap
values have some differences. The H2 and CH4 adsorptions do not exhibit any obvious change of band
structure. However, the CO adsorption increases the band gap, while C2H2 decreases it. Considering
the electron distribution in Figure 5, only the adsorptions of CO and C2H2 yield obvious changes in
electron distribution and change the electronic properties of Pd-graphyne. As a result, the band gap
changes only after the adsorption of CO and C2H2.
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To further investigate the electronic properties, the TDOS of Pd-graphyne after adsorption and
the PDOS of the adsorbed molecule are shown in Figure 7. For the adsorption of H2 and CH4, the
states near the Fermi level do not exhibit obvious changes. However, the adsorbed CO or C2H2

molecule introduces several impurity states just below the Fermi level; thus, these states change
the electronic properties of the Pd-graphyne near 0 eV. Furthermore, the new band gap has some
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differences compared to the Pd-graphyne before adsorption. Because the CO adsorption has a much
shorter adsorption distance, larger adsorption energy, and significant changes in structure and electron
distribution, the chemical interactions between the Pd atom and CO are explored using the PDOS of
the atomic orbitals of the Pd and C atoms in CO, as shown in Figure 7e. The states between −7 eV
and −6 eV consist of Pd 5s, Pd 4d, and C 2p orbitals. The states between −3 eV and 0 eV are mainly
Pd 4d and 5s orbitals. As for the antibonding orbitals above 0 eV, the states are composed of Pd 4d,
5p, and C 2p orbitals. The obvious hybridizations of peaks near −6 eV and +3 eV between the Pd
and C atomic orbitals show significant chemical interactions between these two atoms. In summary,
the largest adsorption energy (−1.11 eV), largest electron transfer (−0.080 e) of CO compared to other
adsorptions, and the significant state hybridization between the Pd and C atoms provide evidence for
the strong interactions between CO and Pd-graphyne.
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Resistance type gas sensors have attracted much attention for their gas sensing properties.
Electrical conductivity is strongly affected by the band structure of the sensing materials, and the
change of the resistance can be evaluated by the band gap [56]:

σ ∝ e(−Eg/2kBT) (5)
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where σ represents the evaluated conductance of the gas sensor, kB is the Boltzmann constant, and T is
the working temperature of the gas sensor. It can be seen that in a fixed working temperature, a smaller
band gap leads to a larger conductance and vice versa. In this study, the band gap of Pd-graphyne is
0.33 eV, increasing to 0.37 eV when adsorbing CO, while decreasing to 0.31 eV after C2H2 adsorption.
As a result, the conductance rises when detecting C2H2 and falls when adsorbing CO. However,
another point should be also considered: the recovery time of the sensor is an important aspect relative
to its the sensing properties. A very short recovery time can promote the desorption process, but rapid
desorption may lead to a higher limit of detection. So, the recovery time should be kept within an
acceptable range. The recovery time can be evaluated as follows [57]:

τ = A−1e(−Ebar/kBT) (6)

where A denotes the apparent frequency factor, kB is the Boltzmann’s constant, and T is the working
temperature, respectively. Ebar is the energy barrier of the molecule desorption from the surface.
For the adsorption of H2, CO, and C2H2, as shown in Figure 4, during the adsorption process, the
structure of Pd-graphyne shows nearly no change, and no chemical bonds are broken. As a result,
the adsorption does not undergo any endothermic process, and has no energy barrier. Moreover,
these three adsorptions mainly show Van der Waals interactions, and no obvious bond formation nor
bond breakages have been observed. So, the desorption process of these three gas molecules will
not experience a transition state, and the energy barrier of the desorption can be seen as the absolute
value of the adsorption energy. The transition state of the adsorption process for CO is shown in
Figure 8. It can be seen that the value of the energy barrier of the desorption process is only 1.11−0.04
= 1.07 eV. This value is smaller than the adsorption energy of CO (1.11 eV). As a result, the total
energy barrier of desorption is still 1.11 eV, which is the same as that of the adsorption energy. So,
for these four adsorptions, the absolute values of Ebar and Eads are the same. The value of A can be
evaluated as 1012 s−1, which is consistent with results published in other studies [58]. According to
the above precondition, the desorption times of H2, C2H2, and CH4 are 2.25 × 10−11 s, 5.08 × 10−10 s,
and 1.58 × 10−10 s, which are much smaller than that of CO, i.e., 5.92 × 10−6 s at 298K. At room
temperature, CO is hard to desorb from the surface, but much faster desorption of C2H2 may result in
a much higher detection limit. However, if the working temperature reaches 498K, the desorption
time of CO decreases to about 0.171 s; this shorter time is suitable for CO sensing. As a result, the
Pd-graphyne-based gas sensor may have very good selectivity for CO at higher temperatures.
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4. Conclusions

This study discussed the structure and electronic properties of Pd-graphyne, as well as its
adsorption properties for four common dissolved gases in transformer oil (H2, CO, C2H2, and CH4).
Pd atoms prefer to be adsorbed on the H1 site with the largest binding energy (−2.45 eV) and electron
transfer (+0.363 e). The introduction of a Pd atom decreases the band gap and brings in impurity states
just below 0 eV. Among the four types of gases, CO adsorption yields the largest adsorption energy and
electron transfer. Moreover, the Pd atom moves from the H1 site to B3 site, resulting in obvious changes
in the geometric structure and electronic properties of Pd-graphyne. The band gap becomes larger
after CO adsorption, but smaller after C2H2 adsorption. The strong chemical interactions between
Pd-graphyne and adsorbed CO are mainly attributed to the hybridization of the atomic orbitals of the
Pd and C in CO. The recovery properties of the Pd-graphyne-based gas sensor show that the recovery
time is about 0.171 s for CO desorption at 498K. This acceptable result indicates that this approach may
be applied in the realization of a high selectivity gas sensor for CO detection.
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