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Abstract: In this paper, we report the first successful demonstration of the direct growth of high-quality
two-dimensional (2D) MoS2 semiconductors on a flexible substrate using a 25-m-thick Yttria-stabilized
zirconia ceramic substrate. Few-layered MoS2 crystals grown at 800 ◦C showed a uniform crystal size
of approximately 50 m, which consisted of about 10 MoS2 layers. MoS2 crystals were characterized
using energy-dispersive X-ray spectroscopy. Raman spectroscopy was performed to investigate the
crystal quality under bending conditions. The Raman mapping revealed a good uniformity with a
stable chemical composition of the MoS2 crystals. Our approach offers a simple and effective route to
realize various flexible electronics based on MoS2. Our approach can be applied for MoS2 growth
and for other 2D materials. Therefore, it offers a new opportunity that allows us to demonstrate
high-performance flexible electronic/optoelectronic applications in a less expensive, simpler, and
faster manner without sacrificing the intrinsic performance of 2D materials.

Keywords: two-dimensional molybdenum disulfide; direct growth; flexible Yttria-stabilized
zirconia substrate

1. Introduction

Two-dimensional (2D) materials such as graphene, transition metal dichalcogenide, and X-enes
including silicene, germanene, and phosphorene have emerged as a new class of materials for flexible
electronics because of their exceptionally stable and robust electrical properties under mechanical strain
conditions [1–10]. Graphene, for example, has a very high strain tolerance, which can be up to 40%; this
is nearly an order of magnitude higher than other low dimensional inorganic crystalline materials such
as silicon nanomembrane [11–13]. Under bending conditions, phosphorene exhibits a wide bandgap
tunability range of about 1 eV with direct bandgap properties [14,15]. Such exceptional mechanical
properties of 2D materials are primarily the result of atomic thinness and a low defect level, as well as
a strong horizontal direction bonding force. Thus, 2D materials became the most promising material
candidates for future flexible electronics such as gas sensors, photodetectors, transistors, wearable
devices, and communication systems. [16–19] While these flexible electronics demonstrated superior
mechanical properties, their electrical performance substantially decreased compared with the rigid
version of the devices. For example, a rigid version of graphene microwave transistors can be operated
up to 400 GHz [20], but a flexible version of graphene transistors only can operate up to 32 GHz [21],
which is similar to or lower than other nanomaterial-based flexible electronics. The threshold voltage
and subthreshold voltage swing of flexible MoS2 transistors are 2.1 V and 250 mV, respectively [22],
which are much worse than their bulk counterparts [23].
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This performance degradation is mainly caused by additionally introduced defects and unwanted
molecules on the surface of 2D materials [24,25]. However, it is inevitable to avoid this degradation
because it is required to create freestanding forms of 2D materials in order to transfer them onto a
flexible substrate such as poly-ethylene terephthalate (PET) or polyimide (PI) substrates. Several routes
such as the wet-etching and scooping method or the mechanical exfoliation method (also known as
the Scotch tape method) have been commonly used to obtain 2D materials from their bulk source
materials [26]. The Scotch tape method uses standard Scotch tape to remove 2D materials from bulk
source materials. The tape is repeatedly folded and unfolded to exfoliate 2D materials, which are then
transferred to a flexible substrate. This method enables us to produce high-quality graphene layers but
obtained 2D materials are typically small, have unpredictable sizes, and are often difficult to reproduce.
The wet-etching-and-scooping method normally uses 2D semiconductors that are grown via chemical
vapor deposition (CVD) technique. CVD method has been proven to be a deterministic approach in
terms of the large-scale production of 2D semiconductors with high quality and low manufacturing
costs [27]. For MoS2, to be more specific, the growth can be divided into vapor sulfurization and vapor
deposition depending on the method of introducing the source materials in the furnace. In the vapor
sulfurization method, Mo precursors e.g., Mo or MoO3 are pre-deposited on the substrate, followed by
sulphurization [28–31]. In contrast, in the vapor deposition method, the source materials such as MoO3

or MoCl5 are evaporated during the growth process [32–34]. Both of these two CVD methods require
high temperature (up to ~800 ◦C) operation, which restricts the substrate selection to high-temperature
tolerance materials [35]. Once 2D semiconductor layers are grown, they will then be separated from
substrate using an etchant and then floating on a water surface. The obtained 2D materials are then
directly scooped from the water surface to a flexible substrate. Because this method involves various
polymers and chemicals, the surface of 2D materials has unwanted contamination caused by excessive
numbers of chemical bonds from the polymer and etchant, which behave as scattering sites [36–39].
In fact, all of these issues can be solved by employing a high thermal tolerance flexible substrate, which
can withstand the temperature requirement for the chemical vapor deposition (CVD) growth and thus
enables us to grow 2D materials directly on the flexible substrate. Then, the benefits of 2D materials,
such as the superior electrical properties with robust mechanical properties, can be fully utilized and
potentially reduce or eliminate a performance degradation in 2D materials on a flexible substrate.

In this paper, we used a 25 µm thick Yttria (Y2O3)-stabilized zirconia (YSZ) ceramic [40] as a
substrate for a 2D materials growth and successfully grew few-layered molybdenum disulfide (MoS2)
directly on flexible YSZ substrate. To evaluate the crystal quality of directly grown MoS2, we have
performed a quantitative study to evaluate the quality of MoS2 under bending conditions. Raman
spectroscopy study revealed that the directly grown MoS2 crystals have good crystal uniformity
and chemical composition. Furthermore, a Raman shifting rate of the E1

2g and A1g peaks in MoS2

crystals under strain conditions is in good agreement with other results [41], suggesting that the quality
of directly grown MoS2 crystals is similarly good compared to MoS2 crystals that are grown on a
rigid substrate.

2. Materials and Methods

A YSZ is a ceramic that has received a lot of attention due to its exceptional thermo-mechanical
properties such as a high degree of hardness, a high dielectric constant, chemical inertness, and a
high ionic conductivity at elevated temperatures. As shown in Figure 1a, we have employed 25 µm
thick flexible YSZ substrates (3 mol% Y2O3-stabilized tetragonal zirconia ceramic produced by ENrG
Inc. (Buffalo, NY, USA) as a flexible substrate for direct MoS2 growth [40]. As shown in Figure 1b,
Rigaku D/max-2500 diffractometer with Cu Kα radiation (λ = 1.5418) was used for X-ray diffraction
(XRD) characterization to investigate the quality of the flexible YSZ substrate before and after multiple
bending (>20 times). During the bending test, the flexible YSZ substrate experienced a high degree
of tensile and compressive strain (>1% of strain) and high-temperature annealing (800 ◦C for 5 min
in nitrogen ambient). No peak shifting or broadening was observed from XRD spectra, suggesting
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excellent mechanical stability of the flexible zirconia substrate. In addition, the energy-dispersive X-ray
spectroscopy (EDX) analysis shown in Figure 1c represents the stable chemical composition of flexible
YSZ substrate after multiple rounds of thermal annealing. The results also indicate that the flexible
YSZ substrate offers good comparability with the conventional CVD system for MoS2 growth.
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Figure 1. (a) a bent image of flexible Yttria-stabilized zirconia ceramic (YZS) substrate, (b), X-ray
diffraction (XRD) spectra of a YZS substrate (red) a bare condition, (orange) after 20 times of bending,
(blue) after the annealing at 800 ◦C for 5 min. (c) energy-dispersive X-ray spectroscopy (EDX) spectrum
and (d) secondary electron microscopy (SEM) image of SiO2 coated YZS substrate. Atomic force
microscopy (AFM) images of (e) a bare YZS substrate, (f) a 50 nm thick SiO2 coated YZS substrate.

After the completion of a basic thermomechanical test, we performed MoS2 growth directly on
flexible YSZ substrate. The details of the MoS2 growth can be found in reference 42. Briefly, the YSZ
substrate was firstly spin-coated with water-soluble solution of ammonium heptamolybdate (AHM)
and sodium hydroxide (NaOH). Then the pre-coated YSZ substrate was loaded into the center of
a 2-inch tube furnace. In the meantime, 200 mg of S pellets were placed at the downstream and
heated up to 210 ◦C. The temperature was varied from 750 to 850 ◦C and maintained for 10 min
for the growth. Compared to common ammonium thiomolybdate which needs to be dissolved in
polar organic solvents, we chose AHM as a precursor since it can dissolve in water, which introduces
less contamination [27]. In addition, spin coating of AHM has advantages of speed, simplicity, and
requiring no equipment beyond a standard spin coater. During the growth process, AHM is converted
to MoO3 above 300 ◦C [41] as the Mo precursor, and reacts with Na to produce sodium molybdate
(Na2MoO4) compounds, followed by MoS2 growth on the YSZ substrate after S vapor injection with
500 sccm of N2 gas as a carrier gas. Although flexible, YSZ substrate has good thermomechanical
properties, the first direct MoS2 growth on the flexible YSZ substrate was unsuccessful because of a
rough surface. A MoS2 growth failure (see Figure S1 in Supplementary Information) is explained both
by the secondary electron microscopy (SEM) image and atomic force microscopy (AFM) image of the
surface of a flexible YSZ substrate, as shown in Figure 1d,e. The average surface roughness of the
bare YSZ substrate was measured to be 25 nm, which was a much higher value than that of the 2D
MoS2 crystals. Thus, it was difficult to nucleate and continue to grow as a 2D film. To overcome this
roughness issue of the YSZ substrate, 50 nm thick SiO2 was deposited at 250 ◦C using a CVD system
with a rotation stage. As shown in Figure 1f, the surface roughness of a SiO2 flexible YSZ substrate
was reduced to 4 nm.

In addition, the intermediate Na2MoO4 will react with the SiO2 surface to form sodium silicon
oxide at high temperatures, so that the wettability of Mo was greatly improved to promote the lateral
growth of the MoS2 layer compared to the bare YSZ substrate. [42] As shown in Figure 2a–c, few-layered
MoS2 crystals that were synthesized at different temperatures grew to different sizes. To investigate the
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size distribution of the MoS2 crystals, we divided the 15 mm2 size sample into three sections, as follows:
the 3-mm area from the edge (labeled as a region [C]), the central 3-mm area (labeled as a region [A]),
and the rest of the area between [A] and [C] (labeled as a region [B]). Over 50 MoS2 crystals in each zone
were measured using a microscope. As seen in Figure 2b, the average length of one side of a triangular
MoS2 crystal at the center of the samples grown at 800 ◦C was approximately 50% larger (50.5 µm) than
the ones that were grown at 750 ◦C and 850 ◦C (33 µm). The largest MoS2 crystals exceeded 70 µm and
maintained a thickness of less than 5 nm. It should be noted that the size of MoS2 crystals at different
growth temperatures can be explained by different routes of chemical reactions. At relatively low
growth temperatures (750 ◦C), triangle shape MoS2 island formed in a S-rich atmosphere which limits
the growth of MoS2. As the Mo precursor temperature increases to 800 ◦C, more unsaturated Mo
atoms can be provided and bond with free S atoms in the S-rich environment, leading to the growth of
large size MoS2 triangular islands. Also, the larger MoS2 flakes that were obtained at 800 ◦C can be
explained by a lower sticking coefficient at the temperature higher than 800 ◦C. The sticking coefficient
defines the percentage of precursor that forms stable domains. At 850 ◦C, the sticking coefficient drops
and a significant fraction of precursor will not contribute to deposition due to the enhanced desorption
rate at the elevated substrate temperature [43,44]. But when the temperature is increased to 850 ◦C,
the MoS2 layers started stacking vigorously and the shape changed to a relatively irregular shape.
In Figure 2c, we only counted the size of the triangular MoS2 islands.
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Figure 2. The statistical distribution of the lengths of one side of triangular MoS2 crystals grown
(a) 750 ◦C, (b) 800 ◦C, and (c) 850 ◦C, respectively. Three different regions, (A), (B), and (C), in each
1.5 cm2 size substrate were measured. Region (A) refers to the 3 mm central circle, region (B) refers to
another 5 mm circle outside of the region (A), and region (C) refers to the rest of the peripheral area to
the edge of the sample.

The size distribution study indicated that the planarized flexible YSZ substrate helped the crystal
growth and the average length of one side of the triangular MoS2 crystals was similar to the few-layered
MoS2 crystals that were grown on an SiO2/Si substrate.

3. Results and Discussion

To investigate the crystal quality of MoS2 crystals, Raman spectroscopy was performed using
Renishaw Raman spectroscopy. The excitation was provided by a linearly polarized 514 nm excitation
laser with a 50× objective lens. The diameter of the laser spot was 1 µm. To avoid MoS2 ablation caused
by laser-induced heating, all Raman spectra were recorded at the low laser power (200 µW) with an
exposure time of 10 s and ten times of accumulations. Figure 3a shows a typical Raman spectrum of
a few-layered MoS2 crystal on a flexible YSZ substrate. The Raman spectrum clearly presented two
Raman-active vibrational modes: an E1

2g peak and an A1
g peak. The E1

2g peak represents the in-plane
vibrational mode, whereas the A1

g peak is the interlayer vibrational mode, and they were observed at
around 383 cm−1 and 408 cm−1, respectively [45]. For the given wavenumber, the distance between
E1

2g and A1
g peaks increases with the increasing thickness of MoS2 because of a thickness-dependent

suppression of atomic vibrations by the interlayer van der Waals forces in MoS2. Thus, it is possible
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to determine a thickness of MoS2 by measuring the peak positions of the E1
2g and A1

g peaks [45,46].
Based on the measured Raman spectrum, the distance in wavenumbers between the E1

2g and A1
g

peaks was 25 cm−1, which yielded ~7 nm (or 9–10 layers of MoS2); this is in good agreement with
the AFM results in Figure S2 in Supplementary Material. It should be noted that the thickness of the
MoS2 thin films on a flexible YSZ substrate can be controlled by controlling the loading amount of
precursor in our technique. Even thicker films can be prepared by spin-coating the precursor solution
with a higher concentration [47]. In addition, the substrate chemistry will also influence the number of
layers. Therefore, controlling the SiO2 layer quality with the desired amount of –O dangling bond will
change the surface energy of the substrate to facilitate heterogeneous nucleation and MoS2 growth [48].
Figure 3b–c show a typical SEM and EDX image of a few-layered MoS2 crystal. Although morphology
of the MoS2 crystals that was observed using SEM images was similar to those grown on SiO2/Si
substrate, EDX was performed to confirm the chemical composition of MoS2 crystals using a Hitachi
S4000 field emission scanning electron microscope (FESEM). Chemical analysis from the EDS spectrum
indicates the presence of Mo and S (elements of MoS2), but no other elements such as O (elements of
MoO2, and MoO3) were introduced during the growth. Additionally, elements from a SiO2-coated
flexible Yttria-stabilized zirconia ceramic (YZS) substrate such as Si, O, and Zr did not diffuse into the
MoS2 crystals. Quantification of the peaks also showed that the atomic ratio of S to Mo is approximately
2, which is very close to the stoichiometric of ideal MoS2 crystals.
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Figure 3. (a) Raman spectrum and (b) EDX of MoS2 crystals grown at 800 ◦C. (c) (i) SEM image, and
EDX mapping images of MoS2 crystals consists of (ii) S, (iii) Mo, (iv) Zr, (v) Si, and (vi) O atoms from a
SiO2 coated flexible YSZ substrate.

To further investigate the uniformity and chemical composition of MoS2 crystals, Raman mapping
was performed on three MoS2 samples that were grown at 750 ◦C, 800 ◦C, or 850 ◦C (Figure 4a–c).
The Raman mapping was conducted at the center of the samples across a 25 × 25 µm2 area with 1
µm step increases and a beam spot radius of 0.66 µm under a 100× objective, which consisted of
576 pixels. As shown in Figure 4, the intensity map of the E1

2g peak (383 cm−1 in yellow) and the
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A1
g peak (408 cm−1 in light blue) of the MoS2 crystals show uniformly distributed color, indicating

the high homogeneity of the MoS2 thickness within the spatial resolution of the Raman instrument
(approximately 1 µm). Therefore, combining the perimeter measurement shown in Figure 2, with the
Raman mapping results, we confirmed that the SiO2 coated flexible YSZ substrate does not influence
the quality of MoS2 crystal.
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Figure 4. Raman mapping of MoS2 crystal showing (left) E1
2g peak at 383 cm−1 and (right) A1

g peak at
408 cm−1 when grown at 750 ◦C for (a,b), 800 ◦C for (c,d), and 850 ◦C for (e,f).

Finally, we investigated the evolution of the MoS2 Raman spectra under different uniaxial strain
conditions. Raman spectroscopy has been widely used to investigate strain in other 2D materials,
because of its nondestructive characterization capability of lattice vibrations sensitive to strains [49–52].
The thickness of MoS2 for this stain-Raman spectrum study was the same as for the MoS2 crystals that
were used for the Raman characterization. To accurately measure the changes in the Raman spectra
under the uniaxial strain conditions, we employed convex- and concave-shaped metal molds that
had different curve radii ranging from 25 mm to 50 mm, which corresponded to the uniaxial tensile
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and compressive strains up to 0.5%. The amount of strain applied to the MoS2 is calculated by the
following equation:

strain (%) = 1/[(2R/∆R) + 1]

where R is the bending radius and ∆R is a thickness of bended object including a substrate and MoS2.
The Strain-dependent characteristics of the E1

2g and A1
g modes are shown in Figure 5. Figure 5a shows

the Raman spectra measured from 0.5% of tensile strain to 0.5% of compressive strain. It should be
noted that, in Figure 5d, a negative and a positive strain values denote a tensile and a compressive
strain, respectively. Figure 5b,c are the magnified spectra of the E12g and A1

g peaks under different
strain conditions: red and orange indicate 0.5% and 0.25% tensile strain, respectively, while blue and
purple indicate 0.25% and 0.5% compressive strain, respectively. As shown in Figure 5d, which presents
the position of the E1

2g and A1
g peaks as a function of strain, we observed a very small shift of the A1

g

mode at a rate of −0.5 cm−1/% strain. The E1
2g mode, however, showed a considerably larger shift, at

a rate of −2.4 cm−1/%. These rates are slightly higher than the rates that were observed when using
a PDMS substrate, and they were similar to the results from the freestanding MoS2 crystals [41,53].
This higher rate of E1

2g mode can be explained by stronger chemical bonds between MoS2 and YSZ
substrate. It is known that the E1

2g mode is responsible for opposite vibration of two S atoms with
respect to the Mo atom in the basal plane, while the A1

g mode results from the vertical or out-of
plane vibration of S atoms in opposite directions [41]. Our result clearly indicates that the dominated
covalent bonding between Mo and S atoms is fairly sensitive to the in-plane uniaxial strain. In addition,
it is suggested that MoS2 crystals were strongly bonded to the flexible zirconia substrate without
experiencing any mechanical slip or layer sliding. For applied strain in the range of −0.5% to +0.5%,
the peak shifting rate of the E1

2g and A1
g peaks was nearly constant and did not exhibit any hysteresis

in multiple loading/unloading strain cycles (Figure S3 in Supplementary Material). This indicates that
the strain does not generate a significant number of defects in the MoS2 crystals.
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Figure 5. (a) Raman spectra of MoS2 crystal measured under the uniaxial strains and magnified Raman
spectra of (b) E1

2g mode and (c) A1
g mode. Rainbow color lines represent different types and intensities

of strains; (red) 0.5% compressive strain, (orange) 0.25% compressive strain, (green) flat, (blue) 0.25%
tensile strain, (purple) 0.5% tensile strain. (d) E1

2g mode and A1g mode as a function of applied strain.

4. Conclusions

In conclusion, high-quality few-layered MoS2 crystals were successfully grown on a flexible ZrO2

substrate. To planarize the rough ZrO2 substrate, 50 nm of SiO2 was deposited before the growth.
MoS2 crystals grown at 800 ◦C showed a uniform and large crystal size. The EDX and Raman mapping
revealed a good uniformity of MoS2 crystals with a stable chemical composition of one Mo and two S.
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The Raman characterization under bending conditions also exhibited a stable material property that
was consistent with other results. ZrO2 crystals and other 2D materials can be directly grown on a
flexible ZrO2 substrate, and therefore, we suggest that the direct growth of a 2D materials on a flexible
substrate offers a new opportunity to enable the use of 2D materials on a larger substrate at a lower
cost. This would provide high performance and flexible electronic/optoelectronic applications without
sacrificing the intrinsic performance of 2D materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/10/1456/s1,
Figure S1: Microscopic images of MoS2 taken from YSZ substrate under different temperature from 700 ◦C to
800 ◦C. Figure S2: AFM image of few-layered MoS2 crystal on flexible YSZ substrate. Figure S3: Raman shift rate
of E12g and A1

g mode peaks as a function of bending cycles.
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