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Abstract: Metal-organic frameworks (MOFs) are currently recognized as unique platforms for
environmental studies. This study evaluated the potential of nine MOFs from ZIF-8, ZIF-67, and
UIO-66 families for the removal of ciprofloxacin (CIP), a toxic, bio-accumulative, and persistent
fluoroquinolone antibiotic. ZIF-67-SO4, with a rhombic crystalline morphology and 1375 m2/g BET
surface area, has the highest CIP adsorption efficiency among the studied MOFs. The mathematical
sorption model predicted that the highest CIP removal (99.2%) occurs when adsorbent dose, pH, and
agitation time are adjusted to 6.82, 832.4 mg/L, and 39.95 min, respectively. Further studies revealed
that the CIP adsorbed onto ZIF-67-SO4 in monolayer (qmax: 2537.5 mg/g) and chemisorption controlled
the rate of the process. Mass transfer kinetic coefficients improved significantly by sonication at
35 KHz in comparison with mechanical agitation. Thermodynamic parameters (minus signs of
∆G◦ [7.8 to 14.2], positive signs of ∆H◦ (58.9 KJ/mol), and ∆S◦ (0.23 KJ/mol·K)) demonstrated the
spontaneous, endothermic, and chemical sorption of CIP. The level of cobalt leached from ZIF-67-SO4

structure varied 1.2–4.5 mg/L, depending on pH, mixing time, and agitation type. In conclusion,
the excellent adsorption properties of ZIF-67-SO4 for CIP, made it an outstanding candidate for
environmental protection purposes.

Keywords: metal organic frameworks (MOFs); adsorption; ciprofloxacin; sonication; metal
leaching; kinetic

1. Introduction

Metal-organic frameworks (MOFs) are an emerging class of nanoporous structures that composed
of organic units (linker or ligand) and inorganic metallic units with one, two, or three dimensions [1,2].
Tunable and regular porosity, various possible synthesis routes, and the capability of structural
engineering and post-synthesis modifications, make these hybrid crystalline materials a platform for
sensing, drug delivery, gas storage and purification, luminescence, catalyst, and adsorption [2,3].
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Currently, adsorption is extensively used for the removal of pollutants from aqueous systems [4].
To overcome the drawbacks of ordinary adsorbents, such as slow adsorption rate and low capacity,
researchers have focused extensively on novel adsorbents [4]. With a very high surface area, excellent
porosity, and voids fraction, MOFs provide a promising perspective in sorption field. Until recently,
MOFs were applied for the sorption of arsenic [5], fluoride [6], dyes [7–9], among others [10,11].

Zeolitic imidazolate frameworks (ZIFs) are a class of MOFs composed of cobalt or zinc metal ions
and organic imidazole linkers. They are highly stable in aqueous and harsh environments. ZIF-8 is a
nitrogen-coordinated ZIF that consisting of zinc (II) ion and 2-methylimidazole linker to build tetrahedral
units. It is known for its superior advantages in membrane separation, adsorption, and catalysis. ZIF-67
has the same sodalite zeolite-type topology as ZIF-8 with cobalt ions instead of zinc [12].

UIO-66 is a zirconium base MOF with hexa-nuclear zirconium clusters connected by terephthalate
linkers. Owing to its stable structures under harsh thermal and chemical environments, UIO-66 has
received considerable attention for the purpose of different environmental applications [1].

Ciprofloxacin (CIP) is a member of fluoroquinolone antibiotics that have diverse medical
purposes. CIP is a mobile, soluble, and non-biodegradable contaminant that could not be removed
completely during the conventional wastewater treatment system. Due to their toxic, bio-accumulative,
and persistent nature, the presence of CIP and its residues in water bodies pose a major concern to the
environment and human health [3,4].

No study has yet examined the CIP removal by ZIFs or UIO-66. Thus, we studied the feasibility
of CIP removal under various key operating parameters, named pH, antibiotic concentration, MOFs
dosage and contact time. A mathematical process model was developed and optimized to maximize
CIP removal efficiency. Kinetic coefficients for CIP adsorption under conventional mechanical stirring
and ultra-sonication provided. The work also covers the study of parameters that controls the leak of
heavy metal from the MOF structure.

2. Experimental Design, Materials, and Methods

2.1. Reagents and Chemicals

All the chemical used in this study were prepared from Sigma Aldrich (St. Louis, Mo, USA) and
Merck (KGaA, Darmstadt, Germany) and used without modification. The chemical structure of CIP
and its physiochemical properties are presented in Table 1.

Table 1. Structural and chemical properties of ciprofloxacin and its pKa [3,13].

Ciprofloxacin Structure Molecular Formula pKa
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C17H18FN3O3 

pKa1 = 5.9 

pKa2 = 8.9 

2.2. Synthesis of Metal-Organic Frameworks (MOFs) 

ZIF-8, ZIF-67, and UIO-66 were prepared according to the procedures described in the 
supplementary file. Different crystal topologies for ZIF-8 and ZIF-67 were obtained by changing the 
mole ratios and metal compounds in synthesis method as summarized in Table 2. The resulting 
product in the synthesis solution, (white in the case of ZIF-8, purple for ZIF-67, and yellow for UIO-
66) was centrifuged at 3000 rpm for 10 min and washed several times with deionized water. The
residual solid was oven-dried at 70 °C to remove any remaining moisture in the MOF pores [14–16].

C17H18FN3O3

pKa1 = 5.9

pKa2 = 8.9

2.2. Synthesis of Metal-Organic Frameworks (MOFs)

ZIF-8, ZIF-67, and UIO-66 were prepared according to the procedures described in the
supplementary file. Different crystal topologies for ZIF-8 and ZIF-67 were obtained by changing
the mole ratios and metal compounds in synthesis method as summarized in Table 2. The resulting
product in the synthesis solution, (white in the case of ZIF-8, purple for ZIF-67, and yellow for UIO-66)
was centrifuged at 3000 rpm for 10 min and washed several times with deionized water. The residual
solid was oven-dried at 70 ◦C to remove any remaining moisture in the MOF pores [14–16].
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Table 2. Summary of synthesis condition and structural properties of as-synthesized metal-organic
frameworks (MOFs).

MOFs Ligand Metal
Source

Ligand/ Metal
Mole Ratio

Structural
Morphology

BET Surface
Area (m2/g)

Total Pore
Volume (cm3/g)

UIO-66 Terephthalic acid ZrCl4 1 Plate 765 0.44

ZIF-67

2-methylimidazole Co(NO3)2 20 Granular 734 0.34

2-methylimidazole Co(OAC)2 20 Rhombic
Dodecahedron 1323 0.57

2-methylimidazole CoSO4 20 Rhombic
Dodecahedron 1375 0.62

2-methylimidazole CoCl2 20 Rhombic
Dodecahedron 1278 0.52

ZIF-8

2-methylimidazole Zn(NO3)2 29.4 Octahedron 1151.2 0.58
2-methylimidazole Zn(OAc)2 7.9 Leaf 12.7 0.04
2-methylimidazole Zn(NO3)2 7.9 Cuboid 890.4 0.48
2-methylimidazole Zn(NO3)2 2 Cube 978 0.51

A batch experimental system was employed in this study and the experiments were carried out in
25 ◦C and agitated at a speed of 200 rpm and duplicate (mean values). The pH of the CIP solution
was adjusted to the required values using dilute NaOH or HCl solutions. The experiments were
conducted by changing the variables of pH (4–12), initial CIP concentration (10–100 mg/L), adsorbent
dosage (0.2–1 g), and contact time (10–90 min). The residual concentration of CIP in the solution was
determined using high liquid performance chromatography (HPLC, knauer, smartline, Germany)
equipped with a vortex column and UV detector at a flow rate of 0.8 mL min-1 and wavelength 270 nm.

2.3. Experimental Design

Response surface methodology (RSM) is a collection of statistical and mathematical techniques
and also one of the ideal tools for experimental design optimization where several variables affect the
response of interest. It is an economical approach to determine the maximum efficiency in a shorter
period of time and with conducting the least number of experiment runs [17,18].

The effect of four independent variables was investigated using the central composite design
(CCD) with a total 30 runs consisting of 2 × 4 = 8 axial points, 24 = 16 factorial points, and six center
points. To explain functional interactions between input parameters and the response, a second-order
polynomial equation was applied to model the sorption process as following:

Y = β0 +
k∑

i=1

βiXi +
k∑

i=1

βiiX
2
i +

k−1∑
i=1

k∑
j−1

βi jXiXj + ε (1)

where Y is the response, Xi and Xj are the independent variables, β0 is a constant value, βi, βii, and βij

are the regression coefficients for a linear, second-order, and interaction effects, respectively. ε is the
error of the model [17,18].

In the first phase of this study, the synthesized MOFs were used at 15–30 min contact time to find
the adsorbent with the highest affinity to the CIP. The amount of CIP removal and the amount of CIP
uptake (qe) at the equilibrium were calculated by using the following equations, respectively:

% Removal =
(C0 −Ce) × 100

C0
(2)

qe =
(C0 −Ce) ×V

W
(3)

where C0 is initial CIP concentration, Ce is final CIP concentration, V is the volume of the solution (L),
and W is the mass of the MOF (g) used in the experiments. During the first phase of study, the CIP
detaches from the MOF surfaces gradually as time increases beyond about 30 min. On the basis of
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these observations, the upper limit of time in designing the experiments was considered to be 30 min.
The study also revealed that ZIF-67-SO4 has the highest CIP removal. Thus, ZIF-67-SO4 was selected
to continue the CIP adsorption study. Response surface methodology (RSM) using R software was
utilized to model the sorption process. Before run design, the operational variables were coded in the
following order: X1, X2, X3, and X4 representing contact time (min), adsorbent dosage (g/L), pH and
CIP concentration (mg/L), respectively. The range of independent variables and their coded values are
shown in Table 3.

Table 3. Experimental range and levels of independent variables.

Factor
Variable Level

Code −1 0 +1

contact time (min) X1 2 16 30

MOF dosage (g/L) X2 0.1 0.55 1

pH X3 4 7.5 11

ciprofloxacin (mg/L) X4 30 62.5 100

A total of 29 experiments with four replicates at the center point were performed in a Box-Behnken
design (BBD) design. The coded values (xi) of the input variables were determined by the following
equation [19]:

xi =
Xi −X0

∆X
(4)

where Xi is the actual value of input variables, X0 is the actual value of input variables at the center point,
and ∆X is the step change value. After performing the experiments according to the design matrix
(Table 4), the data were analyzed using the analysis of variance (ANOVA), coefficient of determination
(R2), and lack of fit (LOF).

Table 4. BBD design and removal levels for ciprofloxacin (CIP).

Run No.
Coded Variable Response (% Removal)

Run No
Coded Variable Response (% Removal)

X1 X2 X3 X4 Observed Predicted X1 X2 X3 X4 Observed Predicted

1 −1 1 0 0 80 81 16 1 0 0 −1 97 100
2 −1 −1 0 0 73 68.2 17 −1 0 0 1 70 68.9
3 0 1 −1 0 79 79.7 18 0 0 0 0 94 96
4 1 0 1 0 75 73.6 19 0 1 0 1 79 79
5 0 1 1 0 65 62.7 20 1 0 −1 0 77 77.5
6 0 0 1 1 48 50.4 21 1 −1 0 0 96 92.5
7 0 −1 0 1 74 76.6 22 0 0 0 0 95 96
8 0 1 0 −1 98 96.2 23 0 0 1 −1 65 65.1
9 0 0 0 0 95 96 24 −1 0 −1 0 71 73.3

10 −1 0 1 0 41 41.1 25 −1 0 0 −1 76 78.4
11 1 1 0 0 91 93.4 26 0 0 −1 −1 86 81.2
12 0 −1 −1 0 70 73.9 27 0 0 −1 1 73 70.4
13 0 0 0 0 97 96 28 1 0 0 1 85 84
14 0 −1 1 0 54 54.8 29 0 −1 0 −1 84 84.9
15 0 0 0 0 99 96 - - - - - - -

3. Results and Discussion

3.1. Adsorbent Characterization

The adsorbents were characterized by x-ray diffraction (XRD, Unisantis S.A, XMD300 model,
Geneva, Switzerland) and field emission scanning electron microscope (FE-SEM, MIRA3 TESCAN,
Czech Republic) analysis. Figure 1 shows the XRD pattern of the MOFs. The conformity of XRD
peaks for MOFs with those reported in the literature shows their pure crystalline structures [14–16].
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Moreover, the uniformity of micrometer-sized crystals and geometrical structure of the particles in
SEM analysis, as shown in Figure 1, confirms the preciseness of the MOFs’ synthesis.
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3.2. Study of MOFs for Ciprofloxacin (CIP) Removal

The affinity of as-synthesized MOFs for CIP was evaluated in a batch system by observing their
removal efficiency in the presence of a fixed 500 mg MOF per L. Furthermore, the capacity of adsorbents
for CIP in the equilibrium, after 30 min, were determined. The results presented in Figure 2 show that
the CIP removal was highest for ZIF-67-SO4, and the level of MOF affinity decreased by ZIF-67-Cl
> ZIF-8-NO3 > ZIF-8 leaf = ZIF-8 octahedron > ZIF-8-OAc > ZIF-8-cube > UIO-66. ZIF-67-SO4 also
shows the highest capacity for CIP in this stage.
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3.3. Model Development Using Response Surface Methodology (RSM)

To evaluate the suitability of linear, interaction (2Fl), quadratic and cubic models, the statistical
indicators from the sequential model were compared, as seen in Table S1 in Supplementary Materials.
The simplest model which also featured an acceptable statistical fitness was recognized as the best
model. The larger amount of F-value and smaller p-value coefficients in Table S1 demonstrate the
quadratic model as the best fit.

ANOVA could explain how the change in independent variables influences the response values.
The results of ANOVA are given in Table S2. For the model, both R2 (0.97) and adjusted R2 (0.95) are
close to one and within ± 0.2 range of each other. Moreover, the F-value (41.85), P-value (5.718 × 10–9),
and non-significant value for lack of fit (0.1155) indicate that the model is statistically adequate.

The preciseness of the model for predicting the CIP removal under experimental conditions is
apparent from the uniform distribution of experimental points close to the regression line as seen in
Figure 3.

According to the coefficients obtained for each term presented in Table 5, the following equation
was developed for the prediction of CIP removal values:

CIP removal (%) = 96.02 + 9.18 X1 + 3.42 X2 − 9.03 X3 − 6.38 X4 − 3 X1X2

+7.08 X1X3 − 1.63 X1X4 + 0.5 X2X3 − 2.25 X2X4 −X3X4 − 6.82 X2
1

−5.42 X2
2 − 22.83 X2

3 − 6.41 X2
4

(5)
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Table 5. Estimated coefficients of the fitted polynomial model for CIP adsorption onto ZIF-67-SO4.

Model Term Coefficient Estimate Std. Error t-Value p-Value

Intercept 96.02 1.47 65.30 <0.0001

X1 9.18 0.95 9.68 1.40 × 10−7

X2 3.42 0.95 3.60 0.0028997

X3 −9.03 0.95 −9.51 1.74 × 10−7

X4 −6.38 0.95 −6.72 9.84 × 10−6

X1X2 −3.00 1.64 −1.82 0.0894262

X1X3 7.08 1.64 4.30 0.0007283

X1X4 −1.63 1.64 −0.99 0.3396952

X2X3 0.50 1.64 0.30 0.7654894

X2X4 −2.25 1.64 −1.37 0.1926667

X3X4 −1.00 1.64 −0.61 0.5527336

X2
1 −6.82 1.29 −5.28 0.000116

X2
2 −5.42 1.29 −4.20 0.0008955

X2
3 −22.83 1.29 −17.69 5.66 × 10−11

X2
4 −6.41 1.29 −4.96 0.0002087

In the above quadratic model, the level of impaction for each individual variable and their
interactions on CIP removal is attainable. The positive and negative sign of terms in the model
demonstrates that the adsorption increased and decreased by variable value, respectively [13].

3.4. Effects of Model Variables and Their Interactions

A solid-to-solution ratio is one of the main factors in a batch adsorption process to determine the
efficiency of an adsorbent [3,20]. The effect of MOF dosage on removal efficiency of CIP is displayed in
Figure 4a. With increasing MOF dosage from 0.1 to 0.55 g/L, firstly, removal of CIP increased in all of
the initial concentration of CIP because of the more available active sites on the adsorbent; however,
when MOF dosage was more than 0.55 g/L, a decrease was observed, which can be related to the
increase in the pH of the solution by MOF dose.
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Solution pH can change the surface speciation of both the adsorbate and adsorbent. It is necessary
to explore the effect of solution pH on removal efficiency to understand the mechanism of adsorption
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between them [20]. The interaction plot of pH and MOF dosage is illustrated in Figure 4b. When
the pH of the solution increases from 3 to 7.5, adsorption of CIP on MOF also increased. However,
at pH values above 7.5, it decreased. The root of this adsorption behavior can be attributed to
protonation–deprotonation reactions in groups of CIP molecule including cationic species (pH < 5.9),
zwitterionic species (5.9 < pH < 8.9), or anionic species (pH > 8.9), as shown in Table 1. In previous
studies, the point of zero charges of MOF was found to be at 8.7 [21], showing a positively charged
surface at pH < 8.7 and negatively charged surface of ZIF-67 at pH > 8.7 [21]. As shown in Figure 4c,
removal percentage increased when the CIP molecules had forms of cationic or zwitterionic species,
likely a result of electrostatic attraction between more numbers of negatively charges on the surface of
CIP and positively charged surface of the adsorbent. While in the presence of anionic species of CIP,
the surface of CIP and MOF were both negative, leading to repulsion between them and decreasing
removal efficiency [3,22]. Maximum adsorption of CIP was obtained at pH 7.3, which was selected for
further study.

3.5. Model Optimization and Adequacy Checking

Optimization is the final goal in modeling a sorption process that provides the condition in which
the sorption proceed under highest efficiency. By using Equation (5), the optimum values for the
operating variables in the current study were achieved and are presented in Table 6. Confirmatory tests
were conducted by simulating the optimum conditions and subsequently, the obtained CIP removal
value was compared with those predicted by the model.

Table 6. Optimum values for each independent variable.

Factor Time (min) MOF Dose (g/L) pH CIP (mg/L) Removal (%)

Predicted Experimental

Value 30 0.22 7.31 100 100 99.9

3.6. Isotherm Modeling

Adsorption time was prolonged to 8 h for determining the equilibrium time of adsorbent. Five
two-parameter and six three-parameter isotherm models were employed to fit the experimental data.
Nonlinear form of isotherm models was used for data fitting duo to lack of ability of linear regression
to describe experimental data in isotherm models with more than two parameters. Table S3 in the
supplementary file shows the list of nonlinear isotherm models [23,24]. Table 7 shows the parameters
of isotherm models.

Table 7. The values of isotherm parameters.

Isotherm Parameters Values

Langmuir

b (L/mg) 1.89166

qe (mg/g) 2537.52777

χ2 3024.69308

SSE 12,098.77233

R2
Adj 0.99567

Freundlich

Kf (mg/g)/(mg)1/n 1345.1812

n 2.69053

χ2 30,900.26595

SSE 123,601.06379

R2
Adj 0.9558
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Table 7. Cont.

Isotherm Parameters Values

Jovanovic

qm (mg·g−1) 2256.44168

Kj (L·mg−1) −1.64853

χ2 4439.2249

SSE 17,756.89959

R2
Adj 0.99365

Temkin

AT (L/mg) 31.62846

bT 447.91592

B (J/mol) -

χ2 15,237.21971

SSE 60,948.87886

R2
Adj 0.9782

Sips

qms (mg/g) 2593.86316

KS (L/mg)ms 1.71831

ms 0.94708

χ2 3786.66401

SSE 11,359.99203

R2
Adj 0.99458

Toth

KT 2577.35956

AT 0.52871

TT 0.94943

χ2 3995.17545

SSE 11,985.52634

R2
Adj 0.99428

Khan

qs (mg/g) 2772.45949

bK 1.67977

aK 1.03572

χ2 3999.75536

SSE 11,999.26609

R2
Adj 0.99428

Nonlinear plots of the selected isotherm models are shown in Figure 5. As can be seen, both
of two-parameter and three-parameter isotherm models are capable of fitting the experimental data.
However, among the selected isotherm models, the Langmuir model could describe isotherm data
better than other models because of the higher R2

Adj. The maximum adsorption capacity of the
adsorbent was obtained to be 2.537 g/g according to Langmuir isotherm model, which is close to those
suggested by Jovanovic (2.256 g/g), Sips (2.593 g/g), and Khan (2.772 g/g) isotherms. The sum of the
square errors (SSE), adjusted linear coefficient of determination (R2

Adj), and Chi-square (x2) tests were
used to check and compare the validity of the models. The ability of the model to predict experimental
data could be concluded from the lower values of SSE and x2 and higher values of R2 [25]. As a result,
Langmuir isotherm was selected as the best model for fitting data due to the lower SSE and x2 and
higher R2 values.
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3.7. Kinetics Modeling under Convectional Mixing and Sonication

Kinetic parameter values of CIP adsorption on ZIF under mechanical mixing and sonication are
reported in Table 8. Fitting plots of CIP adsorption capacity (qt) of ZIF against time (t) are shown in Figure 6.
Pseudo-second-order model was found to be the best fitting model because it provided the highest
determination coefficients (R2

≥ 0.992) in comparison with the others in all of CIP initial concentration.
In addition, the maximum adsorption capacity of ZIF predicted by the pseudo-second-order model
(514.8 mg/g) is closer to experimental ones (509.06 mg/g) when compared with those calculated by other
models. Rate constant values of pseudo-second-order model (k2) decreased with an increasing initial
concentration of CIP, suggesting that the adsorption rate decreased as CIP concentration increased [21].

The effect of mechanical mixing and sonication on CIP adsorption was studied by performing the
kinetic experiments under the magnetic string at an initial concentration of CIP 50 and 100 mg·L−1 and in
an ultrasonic bath at an initial concentration of CIP 100 mg·L−1. As seen in Table 8, experimental qe and
rate constant of the pseudo-second-order model in the ultrasonic bath were higher than those reported
under mechanical mixing. The formation of micro jets and high-pressure zones during the sonication
could promote the migration of CIP molecules into the nano-sized pores of ZIF-67-SO4. Similar findings
were also obtained for the removal of blueberry anthocyanins [26], congo red [27], phosphate [28],
and different dyes [29]. Studies also demonstrated that sonication can be used as a modifier to promote
the structural properties of adsorbents to reach higher capacity for target contaminants [30,31].
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Table 8. Kinetic values of CIP adsorption onto ZIF.

Concentration (mg/L) 50 100 100

Agitation Type Magnetic Stirrer Sonication

qe, exp (mg/g) 256.4 509.06 560

Pseudo-First Order

qe (mg/g) 6.13223 480.42467 527.8629

k1 (min−1) 2.51783 2.58553 3.0163

χ2 156.19152 918.66385 1109.7541

SSE 780.95761 4593.31927 5548.7708

R2
Adj 0.93144 0.89479 0.86801

Pseudo-Second Order

qe (mg/g) 258.37326 514.80069 562.129

k2 (g/mg·min) 0.01483 0.0076 0.00849

χ2 16.21654 62.69378 65.9758

SSE 81.08269 313.4689 329.8794

R2
Adj 0.99288 0.99282 0.99215
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Table 8. Cont.

Concentration (mg/L) 50 100 100

Intraparticle Diffusion

k3 40.94423 81.66703 80.3091

C 142.60978 285.45518 339.36581

χ2 618.10256 2061.48156 1950.1885

SSE 3090.51278 10,307.40782 9750.9426

R2
Adj 0.72867 0.76391 0.7680

Elovich

a 10,708.00341 22,609.6118 56,005.9375

b 0.03048 0.0154 0.0156

χ2 214.18997 605.792 558.3242

SSE 1070.94984 3028.9600 2791.6209

R2
Adj 0.90598 0.9306 0.9335

3.8. Thermodynamic of Adsorption

All the chemical, physical, and biological processes could be influenced by the temperature of
the environment in which they occur. The thermodynamic study aimed to investigate the feasibility
of process progressiveness by studying changes in environmental temperature. Thermodynamic
parameters also reveal the nature of adsorption in term of physisorption or chemo-sorption.
The description of a sorption behavior in a thermodynamic study could be done by using the
most widely used standard enthalpy (∆H◦), standard entropy (∆S◦), and Gibb’s free energy (∆G◦)
which are obtainable using the Van’t Hoff plot (Ln K0 vs 1/T) according to the following:

∆G◦ = −RT lnKL (6)

lnKL =
∆S
R
−

∆H◦

RT
(7)

where R and T are universal gas constant (8.314 J/mol·K) and temperature (K), respectively.
Thermodynamic parameters for CIP removal under different temperature are presented in Table 9.
The negative values for ∆G◦ reveal the spontaneous nature of adsorption. Decreasing the CIP removal
by temperature and the positive sign of ∆H◦ and ∆S◦ present the endothermic nature of adsorption.
Furthermore, the absolute ∆G◦ in the table is higher than 40 kJ/mol, indicating that chemisorption is
the predominant mechanism for the CIP adsorption [32,33].

Table 9. Thermodynamic parameters for CIP adsorption by ZIF-67-SO4.

Temperature K Ce mg/L −∆G◦ kJ/mol ∆H◦ KJ/mol ∆S◦ KJ/mol.K

293 3.65 7.88

58.9 0.23303 2.55 9.12

313 0.7 12.88

323 0.5 14.2

3.9. ZIF-67-SO4 Structural Stability

Due to the presence of cobalt in the structure of ZIF-67, levels of this heavy metal may be present
in treated waters. Thus, it is crucial to investigate the level of cobalt leach in the solution. Cobalt
concentration in the treated water also could provide an indirect indication for the structural stability
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of ZIF-67-SO4 under environmental agitation. The stability test was conducted under different initial
pH for 30 and 60 min under conventional mechanical agitation and sonication at 35 KHz. Figure 7
shows the concentration of Co ions in the final solution when ZIF-67-SO4 was applied to the solutions.
As expected, the concentration of Co ions increased dramatically by increasing the corrosiveness as a
result of higher H+ in low pH. Our previously published work showed that ZIFs were completely
dissolved in strong acidic environments (with a pH of about 3) [28]. Moreover, the concentration of Co
ions increases by mixing time (~30–60 min), which may be attributed to an increased opportunity for
metal ions to leach from the ZIF-67-SO4 structure. As Figure 7 shows, sonication could result in much
higher Co ions when compared with conventional mixing. This could be attributed to higher shear
forces during sonication which results in de-agglomeration of crystals and the probable break-down in
the structure of ZIF-67-SO4 [26,27].
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4. Conclusions

Environmental pollution with antibiotics poses great concerns to both humans and the ecosystem.
Control of ciprofloxacin as a toxic, bio-accumulative, and persistent antibiotic is crucial for the
pharmaceutical industry. Herein, the potential of nine members of MOFs for ciprofloxacin (CIP)
removal was investigated and observed to be in the order of ZIF-67-SO4 > ZIF-67-Cl > ZIF-8-NO3

> ZIF-8 leaf > ZIF-8 octahedron > ZIF-8-OAc > ZIF-8-cube > and UIO-66. A prediction model
for CIP removal was developed by performing the experiments according to BBD. Optimization
of the model yield the highest CIP removal (99.2%) to occur at 6.82, 832.4 mg/L, and 39.95 min for
adsorbent dose, pH, and agitation time, respectively. Among nonlinear form of two-parameter and
three-parameter isotherm models, the Langmuir model described the data well according to SSE,
R2

Adj, and x2. The maximum adsorption capacity of the adsorbent was 2.537 g/g according to the
Langmuir model. Kinetic constants were improved in the sonication at 35 KHz when compared with
mechanical agitation mode, and in both cases followed the pseudo-second-order model. The level
of cobalt leached from ZIF-67-SO4 was influenced by solution pH, mixing time, agitation type, and
was observed to be in the range of 1.2–4.5 mg/L. Thermodynamic parameters (minus signs of ∆G◦ (7.8
to 14.2), positive signs of ∆H◦ (58.9 KJ/mol), and ∆S◦ (0.23 KJ/mol·K)) demonstrate the spontaneous,
endothermic, and chemisorption nature of the process. In short, ZIF-67-SO4 shows outstanding capacity
and excellent affinity toward CIP and thus is a promising candidate for preventing CIP discharge into
the aquatic environment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/10/1422/s1,
Table S1: Adequacy of the model tested, Table S2: Analysis of variance (ANOVA) for CIP removal by ZIF-67-SO4,
Table S3: Nonlinear isotherm models and their parameters.
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