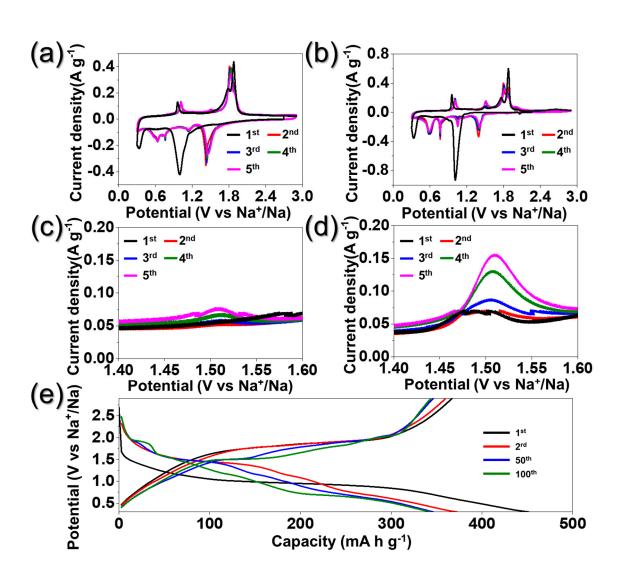

Supporting information

Porous Hybrid Nanofibers Comprising ZnSe/CoSe₂/Carbon with Uniformly Distributed Pores as Anodes for High-Performance Sodium-Ion Batteries


Sun Young Jeong and Jung Sang Cho *

Department of Engineering Chemistry, Chungbuk National University, Chungbuk 361-763, Korea

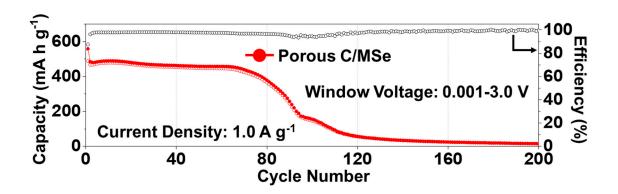

^{*} Correspondence: jscho@cbnu.ac.kr; Tel.: +82-43-261-2489

Figure S1. (a and b) Morphologies and (c) XRD pattern of the nanofibers obtained after heat-treatment of as-spun nanofiber at 400°C under air atmosphere.

Figure S2. Electrochemical properties of porous ZnSe/CoSe₂/C composite nanofibers and bare ZnSe/CoSe₂ powders: (a,c) cyclic voltammetry (CV) curves of porous ZnSe/CoSe₂/C composite nanofibers, (b,d) CV curves of bare ZnSe/CoSe₂ powders, and (e) charge-discharge curves of porous ZnSe/CoSe₂/C composite nanofibers. All cells assembled with ether-based electrolyte.

Figure S3. Cycling performance of the porous ZnSe/CoSe₂/C composite nanofibers assembled with ether-based electrolyte in voltage windows between 0.001 and 3.0 V.

Table S1. Elemental analysis result of porous ZnSe/CoSe₂/C composite nanofibers.

Sample	C (wt%)
Sample	15