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Abstract: During the past 15 years, quasi one-dimensional (1D) Cadmium Selenide (CdSe)
nanomaterials have been widely investigated for high-performance electronic and optoelectronic
devices, due to the unique geometrical and physical properties. In this review, recent advancements
on diverse synthesis methods of 1D CdSe nanomaterials and the application in photodetectors have
been illustrated in detail. First, several bottom-up synthesis methods of 1D CdSe nanomaterials
have been introduced, including the vapor-liquid-solid method, the solution-liquid-solid method,
and electrochemical deposition, etc. Second, the discussion on photodetectors based on 1D CdSe
nanomaterials has been divided into three parts, including photodiodes, photoconductors, and
phototransistors. Besides, some new mechanisms (such as enhancement effect of localized surface
plasmon, optical quenching effect of photoconductivity, and piezo-phototronic effect), which can
be utilized to enhance the performance of photodetectors, have also been elaborated. Finally, some
major challenges and opportunities towards the practical integration and application of 1D CdSe
nanomaterials in photodetectors have been discussed, which need to be further investigated in
the future.
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1. Introduction

Cadmium selenide (CdSe), one of the group-II–VI compound semiconductors, possesses extraordinary
electronic and optoelectronic properties. CdSe can commonly exist in three crystalline structures, namely,
wurtzite, zinc blende, and rock-salt. CdSe with a zinc blende structure is unstable and can convert to a
wurtzite structure under proper heating conditions, while a rock-salt structure can be observed only under
high pressure [1]. Specifically, CdSe usually exhibits unipolar n-type conductivity and it is difficult to form
p-type, because of the self-compensation effect [2,3]. Low-dimensional CdSe nanomaterials possess unique
geometrical and physical characteristics and have been widely investigated in both basic science and
practical application. Quasi one-dimensional (1D) CdSe nanomaterials mainly include CdSe nanowires
(NWs), nanobelts (NBs), and nanotubes (NTs), etc. [4–6]. A direct bandgap (~1.74 eV at 300 K for bulk)
and a high absorption coefficient near the band edge, make 1D CdSe nanomaterials a good choice for the
design in next-generation high-performance photodetectors, solar cells, light-emitting diodes, field-effect
transistors, and lasers, etc. [7–12].

Photodetectors are one important type of optoelectronic devices, which can transform light
signals into electrical signals and have been extensively used in civil and military fields, such as
space communication, remote sensing, missile guidance, night vision, motion detection, and so
forth. In photodetectors, the advantages of 1D semiconductor nanomaterials compared to their
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bulk counterparts are as follows: (1) large surface-to-volume ratio can enhance light absorption and
guarantee the possibility of surface decoration, which can be used to improve photoresponse [13],
(2) anisotropic geometries can be utilized in polarization-sensitive photodetection [14], (3) when the
diameters of 1D nanomaterials are in the range of exciton Bohr radius, the size-dependent bandgap
can broaden the spectral range of photodetection [15], (4) 1D nanomaterials have superior mechanical
characteristics and can be employed in flexible fields [16,17], (5) lower power consumption, and
(6) low-dimensional nanomaterials are promising for application in laser-induced change of optical
absorption [18].

Up to now, there are few comprehensive reviews focusing on the synthesis of 1D CdSe
nanomaterials and their application in photodetectors [19,20]. First, we have introduced and compared
several bottom-up methods developed to synthesize 1D CdSe nanomaterials. Then, the recent
progresses on photodetectors based on 1D CdSe nanomaterials have been discussed in detail. Finally,
some major challenges and opportunities in this field have been analyzed. This work can provide
meaningful guidance for the fabrication and design of novel nanoscale photodetectors based on 1D
CdSe nanomaterials in the future.

2. Synthesis of One-Dimensional (1D) Cadmium Selenide (CdSe) Nanomaterials

Morphologies, crystalline structures, and doping of 1D CdSe nanomaterials have significant
influence on the electrical and optoelectrical properties, and great attention has been paid to the
synthesis methods. In general, semiconductor nanomaterials can be fabricated with top-down
or bottom-up methods [21,22]. Top-down methods usually fabricate bulk materials into desired
nanostructures with lithography (ultraviolet, e-beam, or nanoimprint lithography, etc.) and etching
processes (reactive ion, wet chemical, or focused ion beam etching, etc.), while bottom-up methods
utilize atoms, molecules, or nanostructure units as building blocks to construct nanoscale devices and
systems. However, both physical limits and economic factors of current lithography technologies
will limit the fabrication and scalability of semiconductor nanomaterials below 10 nm. What is
worse, the issues of interfacial lattice mismatch must be taken into account when semiconductor
nanomaterials fabricated with top-down methods integrate with diverse substrates. Currently, 1D
CdSe nanomaterials are commonly synthesized with bottom-up methods, such as vapor-liquid-solid
method, solution-liquid-solid method, or electrochemical deposition, etc. 1D CdSe nanomaterials
synthesized with bottom-up methods can integrate with various substrates and maintain their native
electrical and optical properties. Therefore, bottom-up methods exhibit great potential and flexibility
in synthesizing low-dimensional nanomaterials.

2.1. Vapor-Liquid-Solid Method

In 1964, Wagner and Ellis found an important method to fabricate 1D nanostructures, which was
called vapor-liquid-solid (VLS) mechanism since it contains gas precursor vapor, liquid alloy droplets,
and solid crystallization products [23]. The VLS mechanism consists of three main steps including
evaporation of the precursor, initial alloying of the semiconductor-metal catalyst, crystal nucleation,
and axial growth. Typically, metal particles are employed as catalysts for the growth of nanomaterials.
The diameter of as-synthesized nanomaterials is directly proportional to the size of metal catalyst.
Chemical vapor deposition (CVD) is usually used to produce gas precursors, transport them to the
surface of molten catalyst droplets in a VLS process, and has gradually become a common technology
to synthesize various 1D nanomaterials.

Our group synthesized CdSe NWs based on the VLS mechanism via the CVD method with Au
as the catalyst [5,6,11]. The morphology and length of NWs could be modulated by controlling the
growth temperature, time, and gas pressure, etc. Figure 1A,B shows the scanning electron microscope
(SEM) and high-resolution transmission electron microscope (HRTEM) of as-synthesized CdSe NWs,
respectively [11]. A catalyst particle could be seen at the end of the NW in the inset of Figure 1A, which
was a demonstration of a VLS growth mechanism. The doping concentration of CdSe NWs could be
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rationally controlled by the introduction of dopant. Lee’s group fabricated CdSe nanostructures with
various shapes through a bismuth-assisted VLS process [24]. In their method, bismuth (Bi) and CdSe
mixed powders were used as precursors and transferred to Au catalysts by argon via CVD method.
CdSe NWs and NBs could be controllably synthesized when the reaction temperature was 650 ◦C and
850 ◦C, respectively. Recently, Joselevich et al. reported guided VLS growth of well-aligned horizontal
CdSe NWs arrays on five different planes of sapphire substrates (as shown in Figure 1C–G) in which the
growth and assembly of NWs were combined into one single step [25]. The growth location, direction,
and crystallographic orientation of CdSe NWs were controlled by epitaxial and graphoepitaxial
relations with the underlying substrates. Generally, 1D CdSe nanomaterials synthesized with the VLS
mechanism have high crystal quality (usually single crystalline) due to high reaction temperature.
However, the diameter distribution is wide since controlling the size of catalyst droplets is difficult.
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permission from the Royal Society of Chemistry, 2014. (C–G) Guided growth of horizontal CdSe NWs
on different planes of sapphire, for each plane of sapphire: a) schematic illustration, b) SEM image, c)
and d) HRTEM cross-section image of the guided CdSe NWs. Reproduced from [25], with permission
from American Chemical Society, 2017.

2.2. Solution-Liquid-Solid Method

The solution-liquid-solid (SLS) mechanism is somewhat analogous to the VLS mechanism. In
a SLS process, the precursor is delivered in solution phase, while it is in vapor phase in the VLS
process. In SLS, the metal particles will catalyze the decomposition process of metallo-organic precursor
solution at the solution-liquid interface and dissolve the semiconductor components, then promote
the supersaturation and crystallization of the semiconductor NWs from the catalyst droplet [26]. The
reaction temperature is lower (200–400 ◦C) in comparison to VLS due to the application of metal
catalysts with low melting points, such as Ga (29.8 ◦C), In (157 ◦C), Sn (232 ◦C), and Bi (271 ◦C) [27–30].
The low reaction temperature of SLS makes it more advantageous in the synthesis of small diameter
nanomaterials with strong quantum confinement effect.

To date, most CdSe NWs synthesized with the SLS mechanism are with Bi-based nanoparticles as
catalysts [31–34]. Buhro et al. fabricated CdSe NWs using Bi nanoparticles as catalysts based on the
SLS mechanism [15]. The CdSe NWs were synthesized from cadmium stearate and n-R3PSe (R is butyl
or octyl) in trioctyl phosphine oxide at 240–300 ◦C. The diameters of NWs were in the range of 5–20 nm
and could be controlled by varying the reaction temperature and the size of the catalyst nanoparticle.
Another investigation from Li group showed how the diameters of the CdSe NWs depended on the
growth of Bi nanoparticles during the SLS process [31]. Since there was a competition between the
coagulation of Bi particles and the growth of CdSe NWs, accelerating the growth of the Bi catalysts or
slowing the growth of CdSe NWs can lead to larger diameter and vice versa. In order to seek more
convenient synthetic methods, Kuno et al. proposed a simplified SLS synthesis method of CdSe NWs,
using only Bismuth salt such as BiCl3 as a catalyst, instead of pre-synthesized Bi nanoparticles [34].
Figure 2a,b exhibits the transmission electron microscope (TEM) images of as-synthesized CdSe NWs
with different diameters and shows apparent quantum confinement effects in the absorption spectrum,
as seen in Figure 2c. The diameter could be tuned by simply changing the amount of Bi salt in the
reaction. The size distribution of synthesized NWs varied from 13% to 24% and tended to increase
with increasing diameter.

2.3. Electrochemical Deposition

The electrochemical deposition has remarkable strengths in synthesizing nanomaterials, such as
fast growth rate, high uniformity, large cover surface, and inexpensive apparatus [35]. A three-electrode
apparatus is usually used in this method, including a reference electrode, a counter electrode, and a
working electrode. Appropriate electric potential is applied to the electrolyte-containing precursors,
and finally the required nanomaterials are deposited on the working electrode.

Zhang’s group synthesized CdSe NW arrays with various growth orientations by employing
the electrochemical deposition using porous alumina as templates (PATs) [36]. They demonstrated
that the growth orientation of CdSe NWs could be effectively tuned by simply varying either the
nanopore diameter of the PATs or the deposition current density. Joselevich et al. reported a modified
electrodeposition method to synthesize polycrystalline CdSe NWs with controlled geometries, such as
straight arrays, serpentines, or loops, etc., as seen in Figure 3 [37]. Single-walled carbon nanotubes
(SWNTs), which were synthesized via the CVD method, were used as the underlying electrode and
template for the selective electrodeposition of CdSe NWs. The pattern of SWNTs could be defined by the
patterned iron catalyst, which was fabricated with photolithography and electron-beam evaporation.
In the work, the shape of the electrodeposited CdSe NWs could be controlled by the underlying SWNTs.
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Figure 3. SEM images of CdSe NWs with diverse geometries: (a), (b), (f) straight arrays, (c), (d), (e),
and (h) thin serpentine, and (i) coiled. Atomic force microscope (AFM) images of: (g) straight NW,
in which heights of marked sections are 87 (blue makers), 84 (red), and 68 nm (green), (j) serpentine
NW, in which heights of marked sections are 450 (blue), 540 (red), and 500 nm (green). Reproduced
from [37], with permission from American Chemical Society, 2012.
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2.4. Other Methods

Solvothermal/Hydrothermal technology refers to a low-temperature and high-pressure chemical
reaction process in a closed vessel (such as autoclave) with aqueous or non-aqueous solution as a solvent,
and has the advantages of high yield, simple reaction apparatus, and low reaction temperature [38].
Solvothermal/Hydrothermal technology is very suitable for synthesizing 1D CdSe nanomaterials since
their morphologies and crystalline phases can be controlled by adjusting monomer concentration,
reaction temperature, composition, proportion of precursors, or surfactants, etc. [39–42]. Tang et al.
studied the solvothermal growth process of CdSe and cadmium telluride (CdTe) NWs, which were
synthesized through the redox reaction of selenite and tellurite with cadmium salt in the presence of
poly (vinyl alcohol) (PVA) in 160–180 ◦C [40]. In the work, PVA could promote the oriented attachment
in the solvothermal process, which resulted in preferred growth of CdSe NWs. Most of as-synthesized
CdSe NWs were in the zinc blend structure and could transform from zinc blend to wurtzite structure
when the reaction temperature was higher than 170 ◦C. Qian et al. synthesized CdSe NWs, CdS NWs,
and CdS-CdSe core-shell NWs with the solvothermal method [42]. Figure 4 shows the as-synthesized
CdS and CdSe NWs. The length of NWs could be as long as 100 µm. It was demonstrated that solvents
have significant influence on the morphology and optical property of CdSe NWs.
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Oriented attachment refers to the approach of attaching existing dot-shaped nanoparticles along
a certain crystal orientation to generate NWs [43–45]. The collective behavior of nanoparticles and
interactions between them are the main determinants of orientation growth. First, nanoparticles find
appropriate lattice to match after a series of rotations. Then, the interaction along a specific direction
will drive nanoparticles to fuse spontaneously and form linear aggregates. Finally, NWs can be
formed via recrystallizing. This method enables excellent uniformity in NW diameter and high aspect
ratio. Pradhan’s group utilized this method to synthesize single-crystalline CdSe NWs with tunable
diameters in the strong quantum confinement size regime (1.5–6 nm) at relatively low temperatures
(100–180 ◦C) [44]. Figure 5 exhibited the TEM images of as-synthesized CdSe NWs. The length of NWs
was a few micrometers. The diameters could be tuned by varying the reaction temperature or using
alkylamines (a single type or mixture of two different types of amines) with different chain lengths.
Three different growth stages of CdSe NWs were identified, including generation of magic-sized
clusters, formation of prewire aggregates, and appearance of solid NWs.
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3. Application of 1D CdSe Nanomaterials in Photodetectors

3.1. Performance Parameters of Photodetectors

Before the introduction of photodetectors, we have summarized some important performance
parameters of photodetectors.

(1) Photocurrent (Iph): defined as the current contribution due to the absorption of signal light.
(2) Dark current (Id): defined as the output current of photodetectors in the absence of illumination.
(3) Responsivity (R): defined as the photocurrent generated per unit power of incident light on the

effective area of a photodetector. R = Iph/Pin, in which Iph is the photocurrent, and Pin is the
power of incident light. The unit of R is A/W.

(4) External quantum efficiency (η): defined as the ratio of the number of photogenerated electron-hole

pairs per second to the number of incident photons per second. η =
Iph/q

Pin/hν =
hν
q R, in which h is

the Planck constant, υ is the frequency of signal light, and q is the elementary charge.
(5) Gain (G): defined as the number of charges collected by the electrodes for each absorbed incident

photon. G = τ
τtr

= τ
l2/µV , in which τ is the lifetime of excess carrier, l is the channel length, τtr is the

carrier transit time across the channel, V is the applied voltage bias, and µ is the carrier mobility.
(6) Response time: defined as the time for the photocurrent of a photodetector to increase (decay)

from 10% (90%) to 90% (10%) after receiving (removing) signal light, which is also named as
rising/falling time.

(7) Specific detectivity (D*): used to evaluate the capability of a photodetector in weak light detection.
D∗ =

√
AB/NEP, in which A is the effective area of a photodetector, B is the electrical bandwidth,

and NEP is the signal power that produces a signal-to-noise ratio to be equal to 1. The unit of D*
is cm·Hz·0.5

·W–1 (Jones).

3.2. Photodetectors Based on 1D CdSe Nanomaterials

Generally, the basic physical mechanism of semiconductor photodetectors can be described
as follows: first, electron-hole pairs are generated in semiconductors after the absorption of the
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above-bandgap photons. Then, photogenerated electron-hole pairs are separated and collected to the
electrodes by a built-in or external electric field. Finally, photocurrent is formed in the external circuit.
The role of such a separating and collecting electric field can be played by either a built-in electric field
(as in photodiodes), or an external voltage bias (as in photoconductors or phototransistors).

3.2.1. Photodiodes

Photodiodes refer to photodetectors based on Schottky, pn, or pin junctions. Based on band
alignments, junctions can be typically divided into four types, including Schottky, type-I, type-II, and
type-III junctions. Schottky junctions are composed of metal and semiconductor with certain work
function differences [46,47]. Type-I junctions [48,49], in which the conduction band minimum and
valence band maximum of the semiconductor with narrower bandgap are placed in between those
of the other, have been widely used in fabricating high-efficiency light emitting devices. The typical
characteristic of type-III band alignment is the broken gap. Type-III junctions are commonly used
to build tunneling diodes or field-effect transistors [50–52]. In type-II junctions, both the conduction
band minimum and valence band maximum in one semiconductor are higher than those of the
other semiconductor [53,54]. In both Schottky junctions and type-II junctions, the built-in electric
fields can promote the separation and decrease the recombination rate of photogenerated electrons
and holes, which is advantageous for photodetection and photovoltaic devices. Therefore, most
photodiodes are based on Schottky junctions or type-II junctions. Photodiodes have some advantages
over photoconductors, such as high response speed, low dark current, and possible zero-bias operation
due to the built-in electric field.

Our group fabricated and investigated self-powered photodetectors based on CdSe NB/graphene
Schottky junctions on both rigid and flexible substrates for the first time, as seen in Figure 6a,b [16,55].
Compared to traditional electrode materials (such as metal and indium titanium oxide), graphene has
many advantages, such as high carrier mobility, flexibility, and light transparency. Typical Schottky
junctions exhibited good rectifying behavior with on/off ratio more than 103 under dark conditions,
as shown in Figure 6c. The influences of light wavelength and intensity on the external quantum
efficiency (EQE) and response speed were discussed. In Figure 6d, EQE was lower for signal light
with a shorter wavelength because of shorter light penetration depth in CdSe NB. EQE decreased
monotonically as light intensity increased, as shown in Figure 6e. The response and recovery times of
such photodetector were about 70 and 137 µs respectively, under 3500 Hz light switching frequency. As
seen in Figure 6f, both the response and recovery time decreased first, and then came to constant values
as light intensity increased, which might arise from the filling and saturation processes of the hole-traps
in CdSe NBs. The performances of flexible photodetectors under various bending conditions have also
been investigated. Joselevich et al. reported photodetectors based on self-aligned CdS-CdSe core-shell
nanowalls, which were synthesized with a combination of surface-guided VLS horizontal growth and
selective-area vapor-solid epitaxial growth [56]. It is worth mentioning that the integration of CdS-CdSe
core-shell nanowalls into photodetectors at wafer-scale is without postgrowth transfer, assembly, or
etching steps. The response time, responsivity, and gain of photodetectors were about 200 ns, 1.2 × 103

A/W, and 3.8 × 103, respectively. The simultaneous realization of sub-microsecond response and high
gain was attributed to high crystalline quality of CdS-CdSe core-shell nanowalls and the quasi-type-II
band alignment, which could enhance the separation efficiency of photogenerated carriers.
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Figure 6. Photodetectors based on CdSe nanobelts (NB)/graphene Schottky junction on a polyethylene
terephthalate (PET) substrate: (a) the optical image, (b) the energy band diagram, (c) I-V characteristic
in dark condition, (d) the photoresponse of the device together with the calculated external quantum
efficiency (EQE) under different light wavelength, (e) the light intensity dependence of EQE, (f) the
light intensity dependence of the response and recovery times. Reproduced from [16], with permission
from the Royal Society of Chemistry, 2013.

3.2.2. Photoconductors

Photoconductors, also named as photoresistors, are mainly composed of two Ohmic contact
electrodes and certain semiconductor materials between them as a photoactive layer. Photoconductive
effect is the main physical mechanism of photoconductors, in which carriers are generated under
illumination either by above-bandgap transitions or by transitions involving forbidden-gap energy
levels, resulting in an increase in electrical conductivity of semiconductors [57]. Compared to
photodiodes, photoconductors are a kind of low-speed and noisy devices, but their simplicity, high
responsivity, and gain are attractive features.
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Lee et al. reported the photoresponse properties of CdSe NB photoconductors [58]. The devices
exhibited high response speed (<1 ms) in a wide range of light switching frequency (up to 300 Hz)
and power-law dependent photocurrent on light intensity. The phenomenon of intensity-dependent
response speed and photocurrent revealed the existence of various traps in the bandgap of CdSe NB.
Surface passivation with SiO2 thin film could reduce the number of recombination centers on CdSe NB
surface, resulting in an increase in the photocurrent and a decrease in the response speed. Dai et al.
investigated the influence of impurity in CdSe NB on the photoresponse of photoconductors [59]. They
found unintentionally doped CdSe NBs were more suitable for application in building fast and sensitive
photoconductors, while intentionally doped CdSe NBs were more advantageous in constructing high
gain and responsivity photoconductors. For photoconductors based on unintentionally doped CdSe
NBs, the responsivity, response, and recovery time were 3060 A/W, 20 and 27 µs, respectively. While,
the responsivity, response, and recovery time were 1.5 × 104 A/W, 21 and 73 µs respectively, for
intentionally doped CdSe NBs. The different photoresponse characteristics mainly resulted from
the impurities-induced traps. Shen et al. constructed hybrid organic-inorganic photoconductors by
utilizing poly(3-hexylthiophene) (P3HT) and CdSe NW as the components on both rigid and flexible
substrates [60]. Figure 7a shows the schematic illustration of the hybrid device. For the hybrid
photodetectors on silicon substrate at a bias of 3 V, the photocurrent was 320 nA, much higher than that
of pure CdSe NWs (120 nA), while the dark current was 2.5 nA, lower than that of pure CdSe NWs (7.5
nA). Figure 7b exhibits the switching photoresponse. The response and recovery times were less than
0.1 s. The enhanced photocurrent could be attributed to: 1) the inlay of CdSe NWs into the P3HT film
significantly broadened the light absorption spectrum, and 2) as shown in Figure 7c,d, the built-in field
in the interface of CdSe NWs/P3HT could promote the separation of photogenerated electron-hole pairs.
CdSe NWs acted as the electron-transport material, while P3HT was the hole-transport material. The
decreased dark current of hybrid photodetectors arises from difficult charge transportation through
the interface of CdSe NWs/P3HT under dark conditions. Flexible hybrid photodetectors fabricated
on polyethylene terephthalate (PET) substrates and printing paper could successfully work under
bending up to 180◦, exhibiting excellent mechanical flexibility and stability.
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Figure 7. (a) Schematic illustration, and (b) switching photoresponse of typical CdSe
NWs/poly(3-hexylthiophene) (P3HT) hybrid photodetector on a silicon substrate, (c) schematic of the
CdSe NWs/P3HT hybrid film, (d) energy band alignment of the CdSe NWs/P3HT hybrid film under
illumination. Reproduced from [60], with permission from Wiley, 2013.
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3.2.3. Phototransistors

Phototransistors are a kind of three-terminal photodetectors based on the structure of either
bipolar junction transistors (BJTs) or field-effect transistors (FETs) [61–63]. Compared to two-terminal
photodetectors, the photoresponse of phototransistors can be modulated by the third terminal via
either gate voltage or light intensity [64–66]. Dai et al. fabricated CdSe NBs-based metal-semiconductor
field-effect transistors (MESFETs) and explored their application in photodetection [67]. The gate
electrode was Au, which formed good Schottky contact with the CdSe NB. The threshold voltage,
subthreshold swing, and on/off ratio were –0.55 V, 60.4 mV/dec, and 2 × 108, respectively. Typical
phototransistors showed high responsivity (~1.4 × 103 A/W), high gain (~2.7 × 103), and fast response
speed (35–60 µs) under a gate voltage of −1 V, which was attributed to the unique advantages of
the high-performance MESFET structure. Our group reported novel graphene-oxide-semiconductor
(GOS) NW phototransistors, in which monolayer graphene, HfO2, and CdSe NW were used as top
gate electrode, gate dielectric, and channel, respectively [11]. Figure 8a is the SEM image of a typical
device. In dark conditions, the devices exhibited clear field effect characteristics, as seen in Figure 8b,c.
The gate voltage had a remarkable modulation effect on the responsivity of such phototransistors, as
shown in Figure 8e. Typical phototransistors have high responsivity (1.06 × 107 A/W), gain (1.93 × 107

A/W), and specific detectivity (9.68 × 1015 Jones) under 633 nm light illumination, which were among
the highest reported values for NW-based photodetectors and exhibited a potential application in
weak light detecting. The switching photoresponse of a typical phototransistor is shown in Figure 8f.
The high performance of the GOS NW phototransistors originated from the following factors: 1) high
transparency of graphene gate could improve light transmission, 2) a proper negative gate voltage
could greatly reduce the dark current and the recombination of the photogenerated electron-hole pairs,
and 3) the existence of trap states in CdSe NWs could prolong the lifetime of minority carriers and
improve the gain and responsivity.

3.2.4. Some New Mechanisms

In order to further improve the photoresponse characteristics or add novel functionalities of
photodetectors based on 1D CdSe nanomaterials, some new mechanisms have been proposed, including
enhancement effect of localized surface plasmon, optical quenching effect of photoconductivity, and
piezo-phototronic effect, etc.

Localized surface plasmon (LSP), which is the collective oscillation of electrons in noble metal
nanoparticles excited by light at an appropriate wavelength, can result in a remarkable localized-field
enhancement effect and can be used to improve light absorbance in photodetectors [68–71]. Luo et
al. constructed plasmonic photodetectors based on CdSe nanoribbons (NRs) decorated with hollow
gold nanoparticles (HGNs) [71]. Figure 9a showed the schematic diagram, and Figure 9b was the
TEM image of a CdSe NR decorated with HGNs. The resulting LSP could enhance the absorption of
incident light in CdSe NBs, as seen in Figure 9c. After decoration with HGNs, the responsivity could
be improved from 2.75 × 104 to 4.87 × 104A/W, and the detectivity increased from 3.18 × 1013 to 7.5 ×
1013 Jones, respectively. Besides, the LSP resonance peaks could be rationally tuned via adjusting the
geometric dimensions of metal nanoparticles, which was an advantage for designing photodetectors
with spectral selectivity.
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(e) the Vgs dependence of responsivity, and (f) the light switching response. Reproduced from [11],
with permission from the Royal Society of Chemistry.
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Optical quenching of photoconductivity refers to the phenomenon where sub-bandgap light can
reduce the background photoconductivity established by above-bandgap light illumination, which
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has potential application for sub-bandgap infrared photodetection [72–74]. Tong et al. reported the
optical quenching of photoconductivity in single CdSe NW with sub-bandgap excitation power down
to pW level at room temperature [72]. Figure 10a was the schematic diagram for investigating the
quenching effect of photoconductivity in a single CdSe NW. The CdSe NW was suspended across a glass
channel, with gallium coated at both ends of CdSe NW as electrodes. Excitation light was evanescently
coupled into the CdSe NW with a fiber taper. Figure 10b was the experimental results. Based on the
energy band diagram of CdSe NWs, as shown in Figure 10c,d, the mechanism of optical quenching of
photoconductivity could be understood as follows: 1) the background photocurrent was generated due
to the illumination of above-bandgap (660 nm) light, 2) upon the illumination of sub-bandgap (1550
nm) light, electrons would be excited from the valence band to the defect states. Then, excess holes
were created and would recombine with free electrons in the conduction band, resulting in decreased
conductivity. A typical responsivity of 0.5 A/W for quenching the photoconductivity was observed,
under a 1550 nm laser with 10 nW power for waveguiding excitation.
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Figure 10. (a) Schematic diagram for investigating the quenching effect of photoconductivity in a
single CdSe NW, (b) the experimental results of optical quenching effect in a CdSe NW, the energy
band diagram of CdSe NWs under illumination of (c) above-bandgap light (660 nm) and (d) both
above-bandgap light (660 nm) and sub-bandgap (1550 nm) light. Reproduced from [72], with permission
from Optical Society of America, 2011.

The piezo-phototronic effect refers to a coupling effect of piezoelectric polarization, optical
excitation, and semiconductor properties in piezoelectric semiconductors (such as CdSe, CdS,
ZnO, GaN, and MoS2, etc.) [75–79]. This effect can be utilized to enhance the photoresponse of
photodetectors through creating piezoelectric polarization charges and modulating the generation,
separation, transport, and/or recombination of charge carriers [80–82]. Zhou et al. reported a kind
of broadband photodetectors based on CdSe/ZnTe core/shell NW arrays, in which the performance
of photodetectors was largely boosted by the piezo-phototronic effect [77]. Figure 11a shows the
schematic diagram of the photodetectors. As shown in Figure 11b–d, under UV (385 nm), blue (465
nm), and green (520 nm) light illumination, the peak photocurrent of the photodetectors is two orders
higher at 0.25 kilogram force (kgf) than no load, and the resulting responsivity changed by four orders
of magnitude, which was partially attributed to the piezo-phototronic effect induced by a change in
the barrier height at the Ag-ZnTe Schottky junction, and in the CdSe-ZnTe type-II band alignment.
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4. Summary and Outlook

In summary, because of unique geometrical and physical properties, 1D CdSe nanomaterials
have exhibited great potential application for high-performance photodetectors. In this review,
recent progresses on various synthesis methods of 1D CdSe nanomaterials and the application in
photodetectors have been introduced. The bottom-up synthesis methods of 1D CdSe nanomaterials,
such as VLS method, SLS method, electrochemical deposition, etc., have been analyzed in detail.
Considering diverse factors, such as crystal quality, morphology, growth temperature, and cost,
etc., each synthesis method has their own advantages and shortcomings. The illustration of recent
advancements on photodetectors based on 1D CdSe nanomaterials has been divided into three parts
based on the device configurations and working mechanisms, including photodiodes, photoconductors,
and phototransistors. Besides, some new mechanisms (such as enhancement effect of localized surface
plasmon, optical quenching effect of photoconductivity, and piezo-phototronic effect, etc.), which can
be utilized to enhance the performance of photodetectors, have also been elaborated. The review can
provide meaningful guidance for the future fabrication and design of novel nanoscale photodetectors.

Despite these progresses, there still exist some major challenges towards the practical integration
and application of photodetectors based on 1D CdSe nanomaterials. First, a low-cost, simple,
and reproducible method, which can be used to synthesize 1D CdSe nanomaterials with precisely
controllable geometrical and physical properties, such as diameter, length, orientation, crystal quality,
and doping concentration, is still lacking. Second, in most cases, controllable and scalable postgrowth
transfer and assembly of 1D CdSe nanomaterials on target substrates is difficult in the fabrication of
photodetectors. Up to now, some methods have been proposed, including the use of fluid-assisted
alignment, the Langmuir-Blodgett technique, the dielectrophoretic method, and contact printing,
etc. [83–87]. However, their ability to precisely control the position and orientation of each 1D
CdSe nanomaterial is still inadequate. Third, due to the large surface-to-volume ratio, 1D CdSe
nanomaterials have plenty of surface states, which have significant influence on the response speed,
responsivity, and stability of photodetectors. Although some methods about the passivation of surface
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states in CdSe nanomaterials have been reported [58,88–90], the influence mechanism of passivation
on the photoresponse characteristics of 1D CdSe nanomaterials needs to be further investigated.
Finally, although 1D CdSe nanomaterials have a high absorption coefficient near the band edge, they
absorb little light due to thin diameters. In order to further enhance the light absorption, some new
mechanisms and structures needs to be introduced. Recently, Hu et al. summarized six routes to realize
localized fields enhancement in two-dimensional materials photodetectors, including ferroelectric
field, photogating electric field, floating gate-induced electric field, interlayer built-in field, localized
optical field, and photo-induced temperature gradient field, respectively [91,92]. The localized fields
have been proven to effectively enhance optical absorption, suppress background noise, and improve
electron-hole separation efficiency. Combining 1D CdSe nanomaterials photodetectors with the idea
of localized fields enhancement might be an efficient method to further improve the performance of
photodetectors in the future.
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