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Abstract: Dye pollution is a serious problem in modern society. We desired to develop an efficient
adsorbent for the decontamination of discharged dyes. In this work, the polymeric microspheres
derived from a kind of amphiphilic block of co-poly(arylene ether nitrile) (B-b-S-P) were prepared
on the basis of “oil-in-water” (O/W) microemulsion method. The B-b-S-P microspheres were found
competent to remove the cationic dye, methylene blue (MB); and various influential factors, such as
contact time, initial concentration, solution pH and temperature were investigated. Results indicated
that the maximum adsorption capacity of B-b-S-P microspheres for MB was 119.84 mg/g at 25 ◦C in
neutral conditions. Adsorption kinetics and isotherm dates were well fitted to a pseudo-second-order
kinetic model and the Langmuir isotherm model, and thermodynamic parameters implied that the
adsorption process was endothermic. The B-b-S-P microspheres also exhibited a highly selective
adsorption for cationic dye MB, even in the presence of anionic dye methyl orange (MO). In addition,
the possible adsorption mechanism was studied, suggesting that the electrostatic interaction and π–π
interaction could be the main force in the adsorption process.
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1. Introduction

Nowadays, the advances of technology have stimulated versatile dyes applications, and an
increasing number of dye-related textile, leather, paper-making, printing and food factories have been
developed to meet people’s demands [1–3]. However, the affiliated dyes effluents are carcinogenic and
non-biodegradable, which could largely damage the ecological balance and human health when they are
discharged without rational disposal [4,5]. Numerous strategies have been proposed to relieve the dyes’
pollution pressure in the last few decades, including adsorption, photocatalysis, chemical coagulation/

flocculation, microbial degradation, membrane filtration, etc. [6–10]. Among them, adsorption has been
regarded as an effective method for the treatment of dye-wastewater, owing to its high efficiency, easy
operation, low cost and absence of secondary pollution [11]. In particular, the micro-/nanostructured
polymers distinguished themselves as promising adsorbents. Benefiting from the tunable sizes,
functional groups and morphologies, polymeric adsorbents displayed advantages when removing
dyes based on electrostatic interactions, π–π stacking, hydrophobic interactions and so on [12,13].
For example, Fu et al. prepared the polydopamine microspheres by an oxidative polymerization method,
and the microspheres exhibited selective adsorption toward cationic dyes in aqueous solution [14].
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To date, the adsorbent derived from an amphiphilic block copolymer has aroused intensive
interests [15]. Originating from the self-assembly of a small-molecular surfactant, amphiphilic block
copolymer has been exploited to prepare polymeric core-shell structures, such as spherical micelles,
vesicles, rods, lamellae and so on [16]. An “oil-in-water” (O/W) microemulsion method has been
successfully exploited to fabricate polymeric aggregates, whose morphologies were highly dependent
on the solvent in the system [17]. Due to the selective solubility of hydrophobic and hydrophilic
blocks in solvents (oil phase and water phase), the amphiphilic block polymer was likely to form a
micro-aggregate with the hydrophilic corona and hydrophobic core [18,19]. Taking polystyrene-b-
poly(acrylic acid) (PS-b-PAA) copolymer as example, the PS200-b-PAA18 tended to self-assemble into
spheres when the common solvent was DMF, but yield large compound micelles in THF [20]. Therefore,
the amphiphilic block copolymer should be promising for fabricating functional micro/nanostructures
in suitable conditions.

Poly(arylene ether nitrile) (PEN) is a typical thermoplastic polymer with an aromatic backbone,
which is known for its excellent mechanical properties and thermal stability [21,22]. Owing to an
abundant source of aromatic diphenol and dihalobenzonitrile, a series of target PENs have been
successfully synthesized and functionalized [23–25]. Though the aromatic backbone of PEN was
inherently hydrophobic, tunable synthesis route and versatile functional groups have made amphiphilic
PENs accessible [26]. For instance, a kind of sulfonated poly(arylene ether nitrile) (SPEN) adsorbent
has been prepared with pendent sulfonate and carboxylate groups on the side chains, which presented
an overall high water-absorption capacity in aqueous solution. Moreover, these hydrophilic groups
have been certificated to be crucial for removing cationic dyes in our previous work [27].

Herein, we successfully synthesized a kind of amphiphilic block co-poly(arylene ether nitrile)
(B-b-S-P), which was capable of self-assembling into polymeric microspheres via an O/W microemulsion
method. The prepared B-b-S-P microspheres exhibited excellent adsorption performance with MB in
an aqueous solution. Moreover, the effect of the dye’s concentration, contact time and solution pH
were systematically investigated to reveal the adsorption kinetics, isotherm and mechanism of MB’s
adsorption by B-b-S-P microspheres. A series of experiments suggested the functional groups and
conjugated structure of B-b-S-P microspheres were crucial for the adsorption of MB, suggesting the
B-b-S-P microspheres have potential for disposing of contaminant dyes.

2. Materials and Methods

2.1. Materials

Potassium 2,5-dihydroxybenzenesulfonate (SHQ), 2,6-difluorobenzonitrile (DFBN), deuterated
dimethyl sulfoxide (DMSO-d6) and N,N-dimethyl formamide (DMF) were obtained from Sigma Aldrich
(Shanghai, China). Bisphenol A (BPA), phenolphthalein (PP), zinc (Zn), sodium hydroxide (NaOH),
potassium carbonate (K2CO3), N-methyl pyrrolidone (NMP), toluene, ethanol, tetrahydrofuran (THF),
N,N-dimethylformamide (DMF), dichloromethane (CH2Cl2) and sodium dodecyl sulfate (SDS) were
received from Chengdu Kelong Chemical Co. (Chengdu, China). Methylene blue (MB) and methyl
orange (MO) were purchased from Sinopharm chemical reagent (Shanghai, China). Phenolphthalin
(PPL) was synthesized from phenolphthalein (PP), Zn and NaOH.

2.2. The Synthesis of B-b-S-P

The new amphiphilic block poly(arylene ether nitrile) (B-b-S-P) was synthesized on the basis of our
previous work with a slight modification, and the specific synthesis route is displayed in Figure 1 [26].
With an excess ratio of reactants at 5%, the hydrophilic segment (b-S-P) was synthesized from SHQ
(6.84 g, 30 mmol), PPL (9.549 g, 30 mmol) and DFBN (8.757 g, 63 mmol). Similarly, polymerization
of hydrophobic segment (b-B) was conducted with BPA (14.382 g, 63 mmol) and DFBN (8.34 g,
60 mmol). Firstly, the hydrophilic and hydrophobic oligomers were obtained in two three-necked
flasks, respectively. With the help of K2CO3 and toluene, the nucleophile in two flasks accomplished
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dehydration and pre-polymerization in 2–3 h. Then, the two received oligomers were uniformly
mixed together for the ensuing reaction to proceed at 175 ◦C. Subsequently, the obtained polymer was
precipitated in ethanol and further washed with diluted hydrochloric acid and an aqueous solution.
Furthermore, the obtained product was immersed in NaOH solution to realize the deprotonation of
B-b-S-P. Finally, the purified B-b-S-P was dried under vacuum at 80 ◦C for 48 h after extra NaOH
was removed.
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Figure 1. The synthesis route of amphiphilic block B-b-S-P.

2.3. Preparation of the B-b-S-P Microspheres

A microemulsion method was adopted to prepare the polymeric microspheres according to our
previous work with slight modifications [26]. In a typical process, 10 mL of aqueous solution containing
30 mg SDS was firstly prepared in a vial. Then, a mixture containing B-b-S-P (2 mg), CH2Cl2 (0.9 mL)
and a variable amount of THF was added into above vial under vigorous stirring. Specifically, three
different THF contents (0.1, 0.5 or 1 mL) were adjusted in the microemulsion system. After a continuous
stirring for 12 h, the products were collected by centrifugation and purification using deionized water
3 times. In addition, the concentrations of components’ materials that were used in the preparation
process were proportionally amplified by 50 times to investigate the structural stability of the B-b-S-P
microspheres. Additionally, all of the microspheres that were applied in adsorption experiments were
obtained from the amplified microemulsion system.

2.4. Batch-of-Dye Adsorption

Generally, adsorption experiments were conducted using 5 mg of B-b-S-P microspheres and
10 mL of MB solution within a vial, which was inhibited in a thermostat water bath with a magnetic
stirrer. The adsorption experiments were performed under vigorous stirring with certain temperature
and pH value. Moreover, 5 mg of B-b-S-P microspheres were added into a mixed dye solution
containing 5 mL MB (20 mg L−1) and 5 mL MO (20 mg L−1) to evaluate the selective adsorption
property of microspheres. In certain time intervals, the dye solutions were collected and then tested by
UV-Vis spectrophotometer. On the basis of dyes’ concentration changes, the instantaneous adsorption
capacities (qt) and equilibrium adsorption capacities (qe) of the microspheres were calculated by
Equations (1) and (2) were displayed [28].

qt =
(Co −Ct

m

)
×V (1)
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qe =
(Co −Ce

m

)
×V (2)

where Co (mg L−1) represents the initial concentration of the dye solution; Ce (mg L−1) and Ct (mg L−1)
are the dye concentrations in solution at equilibrium time; and given time t. V (L) and m (mg) represent
the volume of dye solution and the mass of adsorbent, respectively.

2.5. Characterization

The characteristic functional groups of B-b-S-P were examined by Fourier transform infrared
spectroscopy (Shimadzu 8400S FTIR spectrometer, Kyoto, Japan) and 1H unclear magnetic resonance
spectrometry (Bruker AV II-400, Bruker, Switzerland, DMSO-d6, δ = 2.50 ppm). X-ray photoelectron
spectroscopy (XPS) (Thermo Scientific Escalab 250Xi, Waltham, MA, USA) of B-b-S-P before and
after the adsorption of MB was performed to expound on the changes of typical chemical bonds.
The molecular weight and distribution were recorded by Waters Breeze 2 HPLC system (Waters
corporation, Milford, CT, USA) with a gel permeation chromatography (GPC) method using DMF as
the eluent and poly(methyl methacrylate) as the standard. (The weight average molecular weights
(Mw) of B-b-S-P, the hydrophilic segment (b-S-P) and the hydrophobic segment (b-B) were 73817, 8943
and 8230 g mol−1, respectively.) Thermal gravimetric analysis (TGA) and derivative thermogravimetric
analysis (DTG) of B-b-S-P were obtained by a TA Instruments of TGA-Q50 (Newcastle, DE, USA) at a
heating rate of 20 ◦C min−1 under a nitrogen atmosphere. Additionally, the B-b-S-P was heated at a
rate of 10 ◦C min−1 under a nitrogen atmosphere for differential scanning calorimetry (DSC) using a
TA Instrument, DSC-Q100 (Newcastle, DE, USA). Scanning electron microscopy (SEM, JMS-6490LV,
JEOL, Akishima, Japan) and transmission electron microscopy (TEM, JEM-2100F, JEOL, operating at
200 kV, Akishima, Japan) were employed to characterize the morphology of B-b-S-P microspheres.
Ultraviolet-visible (UV-Vis) absorption spectra of MB in aqueous solutions were detected with a UV-Vis
spectrophotometer (TU 1901, Persee, Beijing, China). The size distributions of microspheres were
calculated by a statistical software called “Image J.”

3. Results and Discussion

3.1. Characterization of B-b-S-P

The chemical structure and thermal stability of B-b-S-P were both characterized. As shown in
the FTIR spectrum in Figure 2a, the absorption bands at 2967 and 2230 cm−1 were attributed to the
stretching vibration of C–H on methyl groups and the symmetric stretching vibration on nitrile groups,
respectively. Owing to the deprotonation of B-b-S-P, the absorption band of carboxylate groups was
found at 1406 cm−1. The characteristic bands belonging to skeleton vibrations of benzene rings were
found at 1600 and 1460 cm−1. In addition, the peaks around 1246 and 1082 cm−1 were assigned to
aromatic ether and sulfonate groups, respectively. With DMSO-d6 as the standard solvent, the 1H NMR
spectra of B-b-S-P was detected and shown in Figure 2b. The peaks at 2.5 and 3.46 ppm were ascribed
to DMSO-d6 and H2O, respectively. The primary hydrogen atoms of methyl groups were observed at
1.69 ppm, certifying the existence of a hydrophobic block containing BPA. Moreover, the characteristic
peak assigned to the tertiary hydrogen atom on PPL was exhibited at 6.66 ppm. As for the peaks
ranging from 6.73 to 7.83 ppm, they would be attributed to the hydrogen atoms on benzene rings.
Figure 2c presented the DSC spectra of hydrophilic B-b-S-P, hydrophilic b-S-P and hydrophobic b-B,
whose glass transition temperatures (Tg) were about 184.6, 187.6 and 181.1 ◦C, respectively. Moreover,
the 5% weight loss (T5%) temperature of B-b-S-P was at 497.5 ◦C and its maximum decomposition
rate temperature (Tmax) was about 528.5 ◦C in the nitrogen atmosphere, as in the TGA and DTG
curves shown in Figure 2d. These characterizations certificated that the amphiphilic block B-b-S-P
was successfully synthesized, with high-temperature resistance, which should contribute to a wider
application of B-b-S-P microspheres in harsh environments.
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Figure 2. The FTIR (a), 1H NMR (b), differential scanning calorimetric (DSC) (c) and thermal gravimetric
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3.2. Preparation of the B-b-S-P Microspheres

The morphologies and related particle size distributions of B-b-S-P aggregates that were prepared
in an “oil in water” (O/W) microemulsion system were displayed in Figure 3. With the same range of
horizontal and vertical coordinates, the particle size distributions of B-b-S-P microspheres from Figure 3a
to Figure 3c obviously got more and more narrow. In the presence of 0.1 mL THF, the aggregates
obtained in Figure 3a presented an irregular and fractured spherical structure with some pits, which also
exhibited a wide particle size distribution and an average diameter ~2.5 µm. When THF content
was increased to 0.5 mL, the relatively smaller microspheres with an average diameter of 1.5 µm
were detected in Figure 3b. Besides, no more obvious cracked microspheres were observed with
the exception of little pits. With the THF content continuously increased to 1 mL, the microspheres
received were uniform in size with an average diameter of 0.7 µm, as the SEM image and particle
size distribution of microspheres display in Figure 3c. Moreover, the TEM image shown further
verified the integrity and roundness of microspheres. These SEM images indicated that the B-b-S-P
was competent at preparing integrate microspheres; moreover, the THF content in the “O/W” system
was crucial for preparing uniform B-b-S-P microspheres. Since the hydrophobic segment of b-B was
soluble in THF, enough THF would be beneficial for the stretching of b-B, also leading to uniform and
integrate microspheres. Meanwhile, insufficient THF might have impeded the extending of B-b-S-P
chains, resulting in unregular assembly with cracked microspheres [17,20]. Furthermore, an “O/W”
system referring to the amplified components’ proportions in Figure 3c was applied to prepare B-b-S-P
microspheres, because a quantity of B-b-S-P microspheres were in need to evaluate their dye adsorption
performance. It was found that the B-b-S-P microspheres obtained (Figure 3d) displayed a wide
size distribution compared with the microspheres in Figure 3c, while no obvious cracks or pits were
observed and the average diameter was also close to the result in Figure 3c. The relatively stable
morphology and size distribution of B-b-S-P microspheres should contribute to a wider application
in many fields. For example, the microspheres might act as supporter for loading a photocatalyst or
encapsulate an active drug for multimodal imaging and drug delivery [29,30]. As shown in Figure 4,
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the microspheres were obtained on the basis of the selective solubility of amphiphilic block B-b-S-P in
the “O/W” system with the assistance of SDS. It should be noted that the hydrophilic surfactant SDS
in the “O/W” system acted as an emulsifier to reduce the interfacial tension and energy requirement,
which was sufficient to enhance the stability of resulted microspheres.

Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 15 

 

noted that the hydrophilic surfactant SDS in the “O/W” system acted as an emulsifier to reduce the 
interfacial tension and energy requirement, which was sufficient to enhance the stability of resulted 
microspheres. 

 

Figure 3. The SEM images and corresponding particle size distributions of B-b-S-P microspheres 
prepared with the assistance of 0.1 mL (a), 0.5 mL (b), and 1 mL (c) of THF and in the amplified oil-
in-water (“O/W”) system (d). Insets: typical TEM image of B-b-S-P microspheres. 

 
Figure 4. Schematic diagram of the preparation of B-b-S-P microspheres. 

3.3. Adsorption Kinetics 

Adsorption kinetic experiments were conducted at 25 °C in a neutral condition, and the 
concentrations of MB solutions were 15 and 25 mg L−1, respectively. As shown in Figure 5a, the 
adsorption capacity of B-b-S-P microspheres conspicuously increased at the initial stage, and then 
slowed down until it reached equilibrium. The fast adsorption would have been due to the fact that 
it was easy for MB molecules to occupy most of vacant surface sites on B-b-S-P microspheres during 

Figure 3. The SEM images and corresponding particle size distributions of B-b-S-P microspheres
prepared with the assistance of 0.1 mL (a), 0.5 mL (b), and 1 mL (c) of THF and in the amplified
oil-in-water (“O/W”) system (d). Insets: typical TEM image of B-b-S-P microspheres.

Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 15 

 

noted that the hydrophilic surfactant SDS in the “O/W” system acted as an emulsifier to reduce the 
interfacial tension and energy requirement, which was sufficient to enhance the stability of resulted 
microspheres. 

 

Figure 3. The SEM images and corresponding particle size distributions of B-b-S-P microspheres 
prepared with the assistance of 0.1 mL (a), 0.5 mL (b), and 1 mL (c) of THF and in the amplified oil-
in-water (“O/W”) system (d). Insets: typical TEM image of B-b-S-P microspheres. 

 
Figure 4. Schematic diagram of the preparation of B-b-S-P microspheres. 

3.3. Adsorption Kinetics 

Adsorption kinetic experiments were conducted at 25 °C in a neutral condition, and the 
concentrations of MB solutions were 15 and 25 mg L−1, respectively. As shown in Figure 5a, the 
adsorption capacity of B-b-S-P microspheres conspicuously increased at the initial stage, and then 
slowed down until it reached equilibrium. The fast adsorption would have been due to the fact that 
it was easy for MB molecules to occupy most of vacant surface sites on B-b-S-P microspheres during 

Figure 4. Schematic diagram of the preparation of B-b-S-P microspheres.

3.3. Adsorption Kinetics

Adsorption kinetic experiments were conducted at 25 ◦C in a neutral condition, and the
concentrations of MB solutions were 15 and 25 mg L−1, respectively. As shown in Figure 5A,
the adsorption capacity of B-b-S-P microspheres conspicuously increased at the initial stage, and then
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slowed down until it reached equilibrium. The fast adsorption would have been due to the fact that it
was easy for MB molecules to occupy most of vacant surface sites on B-b-S-P microspheres during
the initial stage, while the repulsive force between dyes and adsorbent might have restrained further
adsorption of MB on remaining vacant surface sites [31]. Moreover, B-b-S-P microspheres presented a
high equilibrium adsorption capacity to MB of 25 mg L−1, which was mainly attributed to that high
initial MB concentration having supplied a driving force to relieve the mass transfer resistance of dyes.
Herein, the pseudo-first-order (Figure 5B), pseudo-second-order (Figure 5C) and intraparticle diffusion
(Figure 5D) models were simulated to analyze the adsorption isotherm, whose models were calculated
with Equations (3)–(5) [32]:

qt = qe
(
1− e−k1t

)
(3)

qt =
k2q2

e t
1 + k2qet

(4)

qt = kit0.5 + C (5)

where k1 (min−1), k2 (g mg−1 min−1) and ki (mg g−1 min−0.5) are the rate constants of pseudo-first order,
pseudo-second order and intraparticle diffusion model, respectively. t (min) is the contact time and C
(mg g−1) is a constant related to adsorption steps. The corresponding spectra in Figure 5A,B indicated
that the adsorption data were more fitted with the pseudo-second-order model than pseudo-first-order
model. Moreover, the collected data in Table 1 exhibited that the linear correlation coefficient in
pseudo-second order model was closer to 1 and the calculated qe (cal.) was also closer to the experimental
qe (exp.). In addition, the simulated curves based on intraparticle diffusion model demonstrated that
there were two steps in the dye diffusion process, as shown in Figure 5D [33]. The first adsorption step
was known as the film diffusion stage, which referred to the diffusion of MB molecules from the solution
to the surfaces of B-b-S-P microspheres. The subsequent adsorption step, called the intra-particle
diffusion stage benefited from the rough surface of the microspheres. Therefore, both film diffusion
and intra-particle diffusion promoted the adsorption of MB onto B-b-S-P microspheres. The calculated
parameters in Table 1 suggested that the slope in intra-particle diffusion stage was lower than the
one in film diffusion stage, demonstrating that the intraparticle diffusion stage was a gradual process.
What is more, that the calculated curves did not pass the origin implied the intraparticle diffusion was
not the rate-limiting step.

Table 1. The kinetic parameters of adsorption of MB onto B-b-S-P microspheres.

Models Parameters 15 mg L−1 25 mg L−1

Pseudo-first-order

k1 (min−1) 0.0292 0.0283
qe (cal.) (mg g−1) 9.8384 21.066
qe (exp.) (mg g−1) 28.643 48.243

R2 0.9163 0.9587

Pseudo-second-order

k2 (g mg−1 min−1) 0.0120 0.0042
qe (cal.) (mg g−1) 29.155 49.505
qe (exp.) (mg g−1) 28.643 48.243

R2 0.9996 0.9994

Intraparticle diffusion

ki1 (mg g−1 min−0.5) 3.8658 5.7591
C1 6.8537 12.744
R1

2 0.9843 0.9413

ki2 (mg g−1 min−0.5) 0.2945 0.8029
C2 24.930 38.259
R2

2 0.9395 0.8994
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model (D) for the adsorption of MB onto B-b-S-P microspheres.

3.4. Adsorption Isotherm

The adsorption equilibrium isotherm was crucial to expound the adsorption behavior between
adsorbate and adsorbent. A series of experiments were carried out using 10 mg B-b-S-P microspheres
for the adsorption of 20 mL MB solutions with different concentrations (10–200 mg L−1). The typical
Langmuir and Freundlich models were used to analyze the adsorption isotherm. It should be noted
that the Langmuir model was suitable for analyzing the monolayer adsorption of homogeneous
adsorbent, while the Freundlich isotherm assumed the adsorbent possessed a heterogeneous surface
for multilayer adsorption. The two models were defined as the following equations [34]:

Ce

qe
=

1
KLqm

+
Ce

qm
(6)

lnqe = lnKF +
1
n

lnCe (7)

where KL (L mg−1) and qm (mg g−1) represent the Langmuir adsorption equilibrium constant and
maximum adsorption capacity, respectively. KF and n are Freundlich constants. The Langmuir isotherm
and Freundlich isotherm are exhibited in Figure 6a,b respectively. Relevant parameters calculated from
the two models are collected in Table 2. Obviously, the Langmuir isotherm exhibited good linearity
with a correlation coefficient of 0.9981, while the correlation coefficient in Freundlich isotherm was
as low as 0.7975. Besides, the calculated adsorption capacity (119.05 mg g−1) was much closer to the
experimental capacity (119.84 mg g−1) from the Langmuir isotherm, which suggested the adsorption
sites at B-b-S-P microspheres were homogeneous and the adsorption followed a monolayer adsorption.
Furthermore, Table 3 listed the maximum adsorption capacities of various polymer-derived adsorbents
for MB, which indicated that B-b-S-P microspheres were more efficient than other adsorbents. It was
also believed that enhanced adsorption performance of B-b-S-P microspheres would be achievable
after suitable modifications.
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Furthermore, a separation factor (RL) derived from the Langmuir isotherm was applied to evaluate
the feasibility of the adsorption process, defined below [35]:

RL =
1

1 + KLCo
(8)

In general, the isotherms were classified as irreversible (RL = 0), favorable (0 < RL < 1), linear
(RL = 1) and unfavorable (RL > 1). The RL in this work was calculated in the range of 0.0057–0.1035,
suggesting the adsorption of MB onto B-b-S-P microspheres was favorable.Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 15 
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Table 2. Adsorption isotherm constants for the adsorption of MB onto B-b-S-P microspheres.

Isotherms Parameters Temperatures (K)
298.15

Langmuir
qm (mg g−1) 119.05
KL (L mg−1) 0.8660

R2 0.9981

Freundlich
KF (L mg−1) 52.657

n−1 0.1943
R2 0.7975

Table 3. Comparation of maximum adsorption compacity (qm) of MB by various polymeric adsorbents.

Adsorbent qm (mg g−1) Reference

DPA microspheres 90.7 [14]
CS-MPONs nanocomposites 104 [15]

PCPP microspheres 50.7 [35]
PZS nanospheres 20.0 [36]

Polyamide-vermiculite nanocomposites 76.42 [37]
Poly(methacrylate)/silica hybrid materials 91.324 [38]

PDA-rGO-kaolin composite 39.663 [39]
B-b-S-P microspheres 119.84 This work

3.5. Adsorption Thermodynamics

Temperature was an important factor for dye’s adsorption. Figure 7a displays the varied equilibrium
adsorption capacities (qe) of B-b-S-P microspheres for MB under four different adsorption temperatures
(298–328K). The qe presented an obvious increasing trend and reached 141.62 mg g−1 at 328 K, suggesting
that a higher temperature was beneficial for the adsorption of MB onto B-b-S-P microspheres. On the
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basis of Figure 7a, related thermodynamic parameters were calculated using following, Equations (9)
and (10) [35]:

∆GO = −RT ln KC (9)

ln KC = −
∆HO

RT
+

∆SO

R
(10)

where ∆GO (kJ mol−1), ∆HO (kJ mol−1) and ∆SO (J mol−1 K−1) represent the changes of Gibbs free
energy, enthalpy and entropy, respectively. KC (L g−1) is equal to the ratio of qe (mg g−1) and Ce (mg L−1),
R (8.314 J mol−1 K−1) is the universal gas constant and T (K) means the experimental temperature.
From Van’t Hoff plot in Figure 7b, corresponding thermodynamic parameters were calculated and
displayed in Table 4. It was found that the ∆GO was not only negative but also demonstrated a
decreasing trend along with the increased temperature, indicating the adsorption of MB onto B-b-S-P
microspheres was spontaneous and especially favored at higher temperatures. The effect of temperature
was also certificated from the positive ∆HO of 1.2936 kJ mol−1, which implied that the adsorption
of MB was endothermic. Moreover, the positive ∆SO manifested showed that the adsorption of MB
brought in an increased randomness among MB and B-b-S-P microspheres. Thus, it was believed that
B-b-S-P microspheres were qualified and efficient at removing MB.
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Table 4. Thermodynamic parameters of the adsorption of MB onto B-b-S-P microspheres.

T (K)
Thermodynamic Parameters

lnK ∆GO (kJ mol−1) ∆SO (J mol−1 K−1) ∆HO (kJ mol−1)

298 1.1873 −2.9431 53.545 1.2936
308 1.4360 −3.6790 — —
318 1.5672 −4.1454 — —
328 1.6709 −4.5585 — —

3.6. The Effect of Solution pH and Selective Adsorption for MB

At different initial solution pH, the adsorption capacities and zeta potentials of B-b-S-P microspheres
were investigated at 25 ◦C. As shown in Figure 8a, the adsorption capacities of B-b-S-P microspheres
exhibited an obvious increase from 74 to 131 mg g−1 along with the pH value’s increase from
2 to 10, indicating that a basic solution was beneficial for the adsorption of MB onto B-b-S-P
microspheres. In contrast, the zeta potentials were also detected to analyze the surface charge of
B-b-S-P microspheres, which displayed a decreasing trend with the increasing solution-pH. Moreover,
it should be noted that the zeta potential of B-b-S-P microspheres was maintained as a negative, which
should be ascribed to the intrinsic deprotonation of carboxylate and sulfonate groups [28,40]. At
the initial solution’s pH of 2, the low adsorption capacity was caused by the limited deprotonation
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of functional groups on B-b-S-P microspheres, which impeded their electrostatic interaction with
cationic dye MB. When the deprotonation of functional groups was encouraged in an alkaline
environment, the enhanced electrostatic interaction brought in excellent adsorption capacity of MB
onto B-b-S-P microspheres [41]. Furthermore, the dye-mixture solution, simultaneously containing
cationic MB and anionic MO, was prepared for further exploration of the adsorption property of
B-b-S-P microspheres. As in the spectra shown in Figure 8b, the mixed solution before adsorption
displayed two characteristic absorption bands at 664 and 464 nm, which were ascribed to MB and MO,
respectively. After B-b-S-P microspheres were added into the dye-mixture, the peak of MB gradually
weakened, while the peak of MO remained unchanged. The inset in Figure 8b exhibits the color
change of the mixture solution from turquoise to orange yellow, suggesting the selective adsorption
of B-b-S-P microspheres to cationic MB. Given that B-b-S-P microspheres were negatively charged,
the maintained absorption band of MO could be attributed to the repulsive force between B-b-S-P
microspheres and MO. In conclusion, electrostatic interaction was considered to be the main force
contributing the dye-adsorption of B-b-S-P microspheres.
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3.7. Adsorption Mechanism

To gain an insight into the adsorption mechanism, X-ray photoelectron spectroscopy (XPS) of
B-b-S-P microspheres before (Figure 9a,c,e) and after (Figure 9b,d,f) adsorption of MB were contrasted.
The C1s in the spectra of B-b-S-P microspheres (Figure 9a) were fitted onto four peaks, which
corresponded to C–C (284.8 eV), C–O (286.4 eV), C=O (288.9 eV) and π–π* satellite (291.4 eV) peaks.
Specifically, the satellite peak at 291.4 eV was derived from the π–π* transition in aromatic ring, whereas
the π–π* satellite peak was not detected after adsorption, implying the π–π stacking interaction might
have promoted the adsorption of MB onto B-b-S-P microspheres, as per the result shown in Figure 9b.
As for the S2p spectra in Figure 9c, two peaks at 167.6 eV (S2p3/2) and 168.8 eV (S2p1/2) belonging to
sulfonate group of B-b-S-P microspheres were obtained. After the adsorption of MB, the S2p spectra
of B-b-S-P microspheres presented two clear split peaks with decreased intensities. As shown in
Figure 9d, the splitting peaks at 163.9 eV (S2p3/2) and 167.6 eV (S2p1/2) should be attributed to the
sulfur of the phenothiazine structure in MB, indicating the successful adsorption of MB onto B-b-S-P
microspheres. What is more, the O1s in the spectrum of B-b-S-P microspheres exhibited two peaks
at 531.5 eV (C=O) and 533.1 eV (C–O), as shown in Figure 9e. Due to the oxygen atom having a
priority to accept an electron, the intensity of O1s peaks slightly increased after the adsorption of MB,
suggesting the electrostatic interaction between them [42,43]. As a result, the adsorption of MB onto
B-b-S-P microspheres would be mainly dependent on the electrostatic interaction and π–π stacking
interaction. The possible adsorption process and mechanism are illustrated in Figure 10; the white and
blue powders are the B-b-S-P microspheres before and after the adsorption of MB, respectively.
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4. Conclusions

In summary, a kind of newly synthesized amphiphilic block poly(arylene ether nitrile) was
successfully applied to preparing uniform B-b-S-P microspheres, which displayed excellent adsorption
capacity for cationic dye MB. The adsorption kinetics of MB onto B-b-S-P microspheres followed the
pseudo-second-order model and the intraparticle diffusion model, indicating the intraparticle diffusion
was not the rate-limiting step. Moreover, the Langmuir isotherm was more suitable to explain the
homogeneous adsorption sites on the surfaces of B-b-S-P microspheres. The experimental maximum
adsorption capacity of B-b-S-P microspheres was calculated to be 119.84 mg g−1 at 25 ◦C in neutral
conditions, and B-b-S-P microspheres were certified to be capable of selectively removing cationic MB,
while MO remained unchanged in the mixed-dye solution. In addition, alkaline conditions and a
higher temperature were beneficial for removing MB. Removal benefited from the functional groups
and conjugated structure of B-b-S-P microspheres, both electrostatic interactions and the π–π stacking
interaction promoted the adsorption of MB. It is expected that the B-b-S-P microspheres have great
potential as nanoreactors to exert their dye-disposing specialty.
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