Carboxylic Acid Functionalization at the Meso-Position of the Bodipy Core and Its Influence on Photovoltaic Performance

Figure S1. ¹H-NMR of bodipy dye 1.

Figure S2. ¹H-NMR of bodipy dye 2.

Figure S3. Tauc plots for solutions of bodipy (a) dye 1 and (b) dye 2.

Figure S4. XRD patterns for TiO₂ photoelectrodes that were sensitized with bodipy dye 1 (green) and bodipy dye 2 (red) together with the unsensitized TiO₂ photoelectrode (black). Standard anatase TiO₂ phase is shown in blue (bottom).

Figure S5. FTIR spectra of untreated (black curve) and sensitized TiO₂ photoelectrodes (green curve represent dye 1 while red curve dye 2).

Figure S6. The high-resolution (a) N 1s and (b) F 1s XPS spectra for control (unsensitized) TiO_2 photoelectrode.

Figure S7. Average (**a**) *J*sc, (**b**) Voc, (**c**) FF and (**d**) power conversion efficiency (PCE) of the fabricated PECs sensitized only with bodipy dye 1 or 2 including a control (unsensitized). The averages were calculated over 2 separate batches of devices and the standard error has been illustrated as error bars.

Table S1. FTIR peak wavenumbers and assignments for bodipy dye 1 and 2. The symbols (ν and δ) refer to stretching or bending, respectively.

Dye 1 wavenumber (cm ⁻¹)	2953	1691	1407	1205	915
Dye 2 wavenumber (cm ⁻¹)	2927	1680	1410	1197	909
Assignment	<i>v</i> (C-H)	v(C=O)	δ(O-H)	v(C-O)	δ(O-H)