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Abstract: The acylation of unsymmetrical N-benzylbispidinols in aromatic solvents without an
external base led to the formation of supramolecular gels, which possess different thicknesses and
degrees of stability depending on the substituents in para-positions of the benzylic group as well as
on the nature of the acylating agent and of the solvent used. Structural features of the native gels as
well as of their dried forms were studied by complementary techniques including Fourier-transform
infrared (FTIR) and attenuated total reflection (ATR) spectroscopy, atomic force microscopy (AFM),
transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray
scattering and diffraction (SAXS). Structures of the key crystalline compounds were established by
X-ray diffraction. An analysis of the obtained data allowed speculation on the crucial structural
and condition factors that governed the gel formation. The most important factors were as follows:
(i) absence of base, either external or internal; (ii) presence of HCl; (iii) presence of carbonyl and
hydroxyl groups to allow hydrogen bonding; and (iv) presence of two (hetero)aromatic rings at both
sides of the molecule. The hydrogen bonding involving amide carbonyl, hydroxyl at position 9,
and, very probably, ammonium N-H+ and Cl− anion appears to be responsible for the formation of
infinite molecular chains required for the first step of gel formation. Subsequent lateral cooperation
of molecular chains into fibers occurred, presumably, due to the aromatic π−π-stacking interactions.
Supercritical carbon dioxide drying of the organogels gave rise to aerogels with morphologies
different from that of air-dried samples.

Keywords: organic nanomaterials; bispidines; supramolecular gels; SEM; TEM; AFM study; X-ray
diffraction; FTIR spectroscopy; ATR spectroscopy; SAXS
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1. Introduction

Positron emission tomography (PET) is one of the widely used molecular imaging methods
enabling early and high-resolution diagnostics of various diseases including oncological, neurological
and cardiovascular [1,2]. In recent years, there has been growing interest in the field of new
radiopharmaceuticals (RPs) with non-conventional PET radionuclides, for example, 86Y (14.7 h),
89Zr (78.4 h), and 64Cu (12.7 h) [3–5]. Among others, 64Cu is one of the most promising isotopes for PET
usage because it possesses the smallest average energy of positrons, and its half-life allows delivery to
local clinics [6,7]. Unlike conventional PET radionuclides (15O, 13N, 11C, 18F), the incorporation of metal
isotopes into RPs requires the use of poly/multifunctional chelating agents that should form covalent
bonds with various biomolecules/vectors possessing high specificity and selectivity toward certain
targets [5,8–11]. 3,7-Diazabicyclo [3.3.1]nonanes (hereafter called bispidines) are one of the privileged
scaffolds in medicinal chemistry [12] due to the number of advantages, for example, (i) high basicity
and solubility in water and/or organic solvents [13,14]; (ii) the ability of diverse functionalization
including chiral derivatives [15–20]; and (iii) deeply studied conformational features which allow the
application of some rigid conformation [21–23]. Our recent works have shown the potential of using
bispidine scaffolds for the design of inhibitors of serine proteases [24,25]. At the same time, bispidines
are well-known ligands with a high affinity to Cu(II) and other bivalent metals [26–29]. Therefore,
we focused on creating new potent ligands for 64Cu PET based on a number of unsymmetrically
substituted bispidine-9-ols. During our work with ligands for serine proteases, it was necessary to
find a way to insert bulky groups into pockets of the active site [24,25]. The acylation reaction is one of
the obvious ways to functionalize the secondary amine group in N-benzylbispidinols; the resulting
N-benzyl, N′-acylbispidinols allow subsequent transformations like the reduction of the amide group
or the removal of the protecting benzylic group followed by the diverse functionalization of the formed
secondary amine. In the course of our work, we discovered an interesting phenomenon, namely, the
formation of gels during the acylation of N-benzylbispidinols in benzene.

Supramolecular gels belong to a broad family of supramolecular materials [30]. Since the
beginning of supramolecular gel investigation in the mid-1990s, this area attracts significant interest
due to the many exciting and unique features exhibited by this soft matter [31–41]; see also the
special issue of the Beilstein Journal of Organic Chemistry [42] and the Tetrahedron Symposium-in-Print
Number 130 [43]; vol. 256 of Topics in Current Chemistry [44]; the special issue of Gels (https://www.
mdpi.com/journal/gels/special_issues/supramol_gels), and a monograph [45]. The uniqueness of
supramolecular gels in manifested in their intrinsic stimuli-responsive nature [46]. Their properties
span from high porosity [47] to mechanically robust materials [48]; they can form unexpected
composites with polymers [39] and photopatterned materials [49]; they are known for their self-sorting
properties [50] and can be used as photophysical materials with unique properties [51,52]. Additionally,
they can be exploited as pollutant removers [53] and for programmed cell growth [54].

The synthesis of a family of unsymmetrically N,N′-disubstituted bispidine-9-ol derivatives,
gelling properties of their HCl salts, and a possible explanation of such behavior will be discussed
in this manuscript. The main advantages and features of a new family of organogelators, namely,
N,N′-disubstituted bispidine-9-ols, may be briefly emphasized as follows. Both (hetero)aromatic
groups Ar1 and Ar2 can be independently varied to allow their introduction into the organogels
and, hence, into their aerogel forms, offering a wide diversity of substituents with many useful
properties. For example, we began studying in our labs the possibility of obtaining luminescent gels
and gels capable of metal ion recognition. The presence of basic nitrogen atoms in N,N′-disubstituted
bispidine-9-ols allows researchers to study acid/base interactions and their effects on gel stability.

2. Materials and Methods

Synthesis. General Methods

Compounds 1–3 were synthesized according to procedures described in [24,55,56].

https://www.mdpi.com/journal/gels/special_issues/supramol_gels
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A solution of acyl halide (1 eq.) in dry benzene was added dropwise to a suspension of bispidine
3 (1 eq.) in dry benzene under vigorous stirring. In most cases, a gel-like substance started to form
after the first several drops of the acyl halide solution. Then the mixture was refluxed under vigorous
stirring for 3.5 hours. To obtain the hydrochloride product, the resulting gelatinous mass (precipitate
or colloidal solution) was centrifuged for 10–15 min (6000 rpm) or filtered on a Schott filter (por.40)
and then air dried with subsequent drying on a rotary evaporator. The free base was isolated from the
aqueous solution of the formed solid hydrochloride by treatment with sodium bicarbonate (3 eq.) and
characterized (Supplementary Materials, page 3–10). To study the native benzenogels, the reaction
mixture was allowed to cool down to room temperature (see below).

Supercritical carbon dioxide drying was performed using a home-made system (volumes 5 mL or
80 mL;, for details, see [57,58]). As per typical experiments, the working pressure and temperature
were 80–90 bar and 40–50 ◦C, respectively.

Small-angle X-ray scattering and diffraction (SAXS). SAXS patterns were acquired using a
dedicated small-angle diffractometer SAXSess (Anton Paar, Graz, Austria) employing monochromatic
Cu-Kα1 radiation (1.5412 A). The samples were placed into a standard glass capillary 1.5 mm in
diameter and sealed. The measurements were performed in vacuum; scattered radiation was recorded
using 2D imaging plates.

Fourier-transform infrared (FTIR) spectra were acquired using a SpectrumOne spectrometer
coupled with an AutoImage microscope (Perkin Elmer, Walthan, MA USA). The samples were
placed on gold mirror and the spectra represented the superposition of absorption (dominant) and
reflectance components.

Atomic force microscopy (AFM). AFM measurements were made using a scanning probe
microscope NTEGRA Prima (NT-MDT, Moscow, Russian Federation). Semi-contact mode was used.
The amplitude of the “free air” probe oscillations was from 20 to 25 nm (peak-to-peak). High-resolution
non-contact/semi-contact silicon AFM probes of the “Golden” NSG01 series (NT-MDT) were used.
Topography, feedback error signal, and phase difference were registered simultaneously for the
samples. The samples were prepared by drying the solution on silicon wafers.

Transmission electron microscopy (TEM). TEM images were obtained using a transmission
electron microscope LEO912 AB OMEGA (Carl Zeiss, Oberkochen, Germany) operating at 100 kV
voltage. Samples were prepared by drying the solution droplets placed on copper grids coated by a
Formvar film.

Scanning electron microscopy (SEM). SEM images were obtained using a Carl Zeiss NVision
40 (Carl Zeiss, Oberkochen, Germany) workstation at 1 kV accelerating voltages using a secondary
electron (SE2) detector. The preparation of the samples was the same as for the AFM measurements.

X-Ray. Experimental intensities were measured using Bruker SMART 1K (for 4cb and 2c)
and Bruker SMART APEX II (Brucker, Madison, WI, USA) diffractometers (for 4cb, 3c, 1b, 4da,
and 5,7-dimethyl-1,3-diazaadamantan-6-one) using graphite monochromatized Mo-Kα radiation
(λ = 0.71073 Å) in ω-scan mode. Absorption corrections based on measurements of equivalent
reflections were applied. The structures were solved by direct methods and refined by full
matrix least-squares on F2 with anisotropic thermal parameters for all non-hydrogen atoms (except
the solvent benzene molecule in 4da) [59]. In 1b and 4da, all hydrogen atoms were placed in
calculated positions and refined using a riding model. As for structures 4cb, 2c, 3a, and 1b, all
protons were added geometrically and refined using a riding model, whereas all hydroxy- and
amino-hydrogens were located from difference Fourier synthesis and refined isotropically. Finally, in
3c and 5,7-dimethyl-1,3-diazaadamantan-6-one, all protons were found from the difference map and
their positional and thermal parameters were refined. The crystals of 4cb and 1b were racemically
twinned with domain ratios 0.79/0.21 and 0.76/0.24, respectively. X-ray diffraction studies were
performed at the Centre of Shared Equipment of the Institute of General and Inorganic Chemistry of
the Russian Academy of Sciences (IGIC RAS). The crystallographic data have been deposited with the
Cambridge Crystallographic Data Centre (CCDC) as supplementary publications (for CCDC numbers,
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see Table S3). This information may be obtained free of charge from the Cambridge Crystallographic
Data Centre website (www.ccdc.cam.ac.uk/data_request/cif).

3. Results

Compounds 1–3 were prepared according to protocols from [24,55,56]: the stereoselective ring
opening in salts 1 leads to unsymmetrically substituted bispidinols 2; the deformylation of the latter
gives rise to secondary amino alcohols 3 (Scheme 1).
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Scheme 1. Synthetic routes to the target amides 4.

The next step, the acylation of the secondary amine group in 3, is straightforward due to the
presence in the same molecule of a tertiary amine group which would work as an internal base to accept
released HCl. It is expected that the resulting salts 4*HCl should precipitate from the reaction mixture
making the isolation easier. Indeed, the tertiary amine group worked as the internal base during the
acylation, but unexpectedly, instead of the precipitation, the acylation of molecules 3 in benzene in
most cases (except for 4aa, 4ba, and 4ca) led to the formation of opaque to almost transparent gel-like
materials—very viscous substances with the eventual presence of crystalline admixtures (see Figures
S1–S7). Similar results were obtained when we used nitrobenzene, ethoxybenzene, or mesitylene (in
this case, the least stable gels if any were produced) instead of benzene for the synthesis of 4ab*HCl
and 4ae*HCl.

The target amides 4 were finally obtained by gentle base treatment of the salts 4*HCl
(Supplementary Materials, page 3–6). It was found that the choice of the base is crucial to obtaining
the amides 4: using a strong base like alkali leads to de-acylation instead of the formation of target
amino-amides. Presumably, this is due to the spatial proximity of an amino lone pair and an amide
function. Finally, we were able to isolate and characterize 12 new amino-amides 4 which differed by
substituents Ar1 and Ar2 (see Scheme 1).

In order to understand the structural features of the gels with general formulae benzene@4*HCl,
several physical-chemical methods providing information about various structural levels of
supramolecular gels [30–32,60,61] were applied: on the molecular scale (X-ray diffraction, IR
spectroscopy), nanoscale (SAXS, SEM, TEM, AFM), and macroscopic scale (IR and NMR spectroscopy,
SAXS, DLS, DSC, POM, rheology). Some of the applied methods failed to provide useful information.
For example, we were unable to obtain reasonable results from the NMR-spectroscopic titration of
solution of 3 by acyl chloride solution since all signals appeared to be quite broad. Rheological studies
applied to sample benzene@4ce*HCl showed that this was indeed a gel [62], but no quantitative
information emerged (Tables S1 and S2, Figures S8 and S9).

In order to understand possible mechanisms of the intermolecular interactions that would lead to
gel formation, we applied the single-crystal X-ray technique to those samples that were crystalline.
The chemical connectivity scheme for structurally characterized samples 4cb, 2c, 3a, 3c, and 4da*HCl

www.ccdc.cam.ac.uk/data_request/cif
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is presented in Scheme 2a, whereas their molecular structures are shown in Figures S10–S17. Selected
geometrical features are listed in Table 1. The main geometrical parameters of the bispidine skeleton in
all studied compounds are close to the values reported and discussed for numerous bispidines and
their salts in [63] and references cited therein.
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In all presented cases, both piperidine cycles of bicyclic skeleton adopt a chair conformation
with involuntarily shortened N . . . N separations (see Table 1). In all five bispidine structures,
benzyl-substituted nitrogen atoms (NBz) are almost tetrahedral with the sum of C-NBz-C angles
ranging from 330.0 to 332.1◦. Benzyl substituents always occupy axial positions with respect to
six-membered piperidine cycles (exo- to the concave surface of an eight-membered cycle). Of interest,
hydroxyl groups at C9 positions are oriented in the same direction as the benzyl substituents.
As expected, amido nitrogen atoms in 2c, 3c, and 4da*HCl are almost planar due to their sp2 nature
and do not participate in hydrogen bonding. In contrast, secondary amine N atoms in 3a and 3c are
tetrahedral with the sum of angles nearly equal to 325◦. Their hydrogen atoms are endo-oriented due
to intramolecular hydrogen bonding.

The most intriguing feature of the bispidine derivatives is the conformational flexibility of both
piperidine cycles. In general, they can adopt chair-chair, chair-boat, or boat-boat conformations [22,64].
Search in the Cambridge Structural Database (CSD, ver. 5.39, Feb 2018) [65] for structures of neutral
organic flexible bispidine derivatives with sp3- hybridized carbon atoms within an eight-membered
cycle produced 121 entries (136 molecules). Several additional structures with additional fused rigid
cycles were rejected. Examination of the nitrogen–nitrogen separation distribution reveals that the
widely used N . . . N distance is an inappropriate parameter for conformational analysis of bispidines.
In close proximity to the intermediate point (half-chair arrangement with one almost planar N atom),
significant shifts of the nitrogen atom (perpendicular to the main plane of the cycle) do not lead to
noticeable changes in N . . . N distances (Scheme 2b). Therefore, the mutual distribution of C9 . . . N
distances was analyzed (Figure 1). Regions corresponding to chair-chair and chair-boat conformations
are clearly separated on this scatterplot. The chair-chair arrangement dominates: 87 vs. 49 cases.
Interestingly, in the crystalline state, the boat-boat conformation is absent. Thus, other criteria should
be used to distinguish chair-chair and chair-boat conformations: namely, the absolute value of the
difference between C9 . . . N distances (Figure S18-S19). The approximate value 0.17 Å may be used as
a threshold between these conformations.

In structures 4cb, 3c, and 4da, one of the two nitrogen atoms bears a H atom available for hydrogen
bonding. It is of interest that, in all cases, these atoms are involved in strong intramolecular hydrogen
bonding NH . . . N. Obviously, such hydrogen bonding is assisted by conformational preorientation of
the bispidine scaffold.

Thus, all five bispidinols contain just one “active” hydroxyl hydrogen atom suitable for the
formation of intermolecular hydrogen bonds. Additionally, all these molecules contain several
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acceptors of hydrogen bond at the opposite side, promoting the formation of the H-bonded chains.
Actually, such chains formed by OH . . . O=C or OH . . . N bonds were observed in the structures of the
neutral bispidinols 4cb, 2c, 3a, and 3c (Figures 2–6). In contrast, the structure of salt 4da*HCl contains
an insular 0D hydrogen-bonded motif due to the OH . . . Cl hydrogen bond (Figure S14).
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Table 1. Selected geometric parameters for bispidines 4cb, 2c, 3a, 3c, 4da.

4cb 2c 3a 3c 4da*HCl

R1, R2
R3

p-FC6H4CH2-,
—p-ClC6H4C(=O)-

p-FC6H4CH2-,
—-CH(=O)

C6H4CH2-,
—H

p-FC6H4CH2-,
—H

p-BrC6H4CH2-,
HC6H4C(=O)-

C-OH 1.423(3) 1.472(6)* 1.4195(12) 1.4178(12) 1.416(12)
av N-Cendo ** 1.469(3) 1.458(3) 1.4695(15) 1.4691(14) 1.458(14)

NBz-C ** 1.465(3) 1.471(3) 1.4653(14) 1.4658(13) 1.505(13)
N-CO ** 1.339(3) 1.331(3) — — 1.375(13)

ΣC-NBz-C *** 330.3 330.0 331.4 331.9 332.1
ΣC-Namid-C *** 359.4 359.5 — — 353.7

Σ ang NH *** — — 325.0 325.8 —

X, O . . . X **** =O, 2.784(3) =O, 2.665(5) R2HN,
2.7250(12)

R2HN,
2.7157(12) Cl-, 3.049(10)

N . . . Nintra ***** 2.825(3) 2.830(4) 2.8372(13) 2.8309(13) 2.790(14)

* for major component of disorder. ** average distances between nitrogen and carbon atoms (N-Cendo—between
secondary amine nitrogen atoms and skeleton carbon atoms; NBz-C—between benzyl substituted nitrogen atoms
and skeleton carbon atoms; N-CO—between amide nitrogen atoms and carbonyl carbon atoms). *** the sum of
C-N-C angles (NBz—benzyl substituted nitrogen atom; Namid—amide nitrogen atom; NH—secondary amine
nitrogen atom). **** length of hydrogen bonds. ***** intramolecular distance between nitrogen atoms.

Structure 1c comprises both ketone and its bis-diol forms. The molecular structures of the
diazaadamantane derivatives 1c and 1c+H2O are shown in Figures S15 and S17. The main geometrical
features of the diazaadamantane scaffold in both compounds are close to those found for hydrochloride
of the parent compound [63]. Notably, this is only the third known example of the cocrystallization
of ketone and its hydrate [67,68]. Surprisingly, the conformations of both forms are very close
to each other. In 1c+H2O, the diol form is stabilized by hydrogen bonding with the adjacent
chlorine anions and water molecules (Figure S15). This hydrogen-bonded system is finite, and this
structure represents the 0D network. It should be noted that the bezylation of one of the nitrogens
in 5,7-dimethyl-1,3-diazaadamantan-6-one (X-ray-derived structure shown in Figure S16) leads to
the inequivalence of CH2-N bonds in both 1c and 1c+H2O: the one connected to N+ became longer
(1.546/1.565 Å) than the initial one in the starting diazaadamantanone (1.466 Å), whereas the second
bond became slightly shorter (1.422/1.437 Å). This is a consequence of the nN – σ*N–C anomeric type
electronic interaction already mentioned in [69].

The infinite hydrogen-bonded chains in solid-state structures is a common motif for 2c, 3c, 4cb.
In the case of the amine 3c, the secondary nitrogen lone pair serves as a hydrogen bond acceptor,
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whereas in the amides 2c and 4cb, carbonyl oxygens play this role. The structure of the salt 4da*HCl
differs dramatically, since two types of intermolecular hydrogen bonds can be distinguished within
it. The first one binds the protonated tertiary amine hydrogen and carbonyl oxygen of the adjacent
centro-symmetrically linked molecule forming the dimers. Each organic molecule is also linked to
the chloride anion by the second intermolecular hydrogen bond involving the hydroxyl hydrogen at
position 9, which serves as a hydrogen bond donor as in 2c, 3c, and 4cb.

On the basis of these findings for the dried materials, we can tentatively suggest that the main
structural motif that links molecules into the 1D supramolecular polymer within the supramolecular
gel is the hydrogen bond between the hydroxyl at position 9 and the hydrogen bond donor, which can
be either a halogenide anion or a carbonyl oxygen atom. The involvement of the hydroxyl and carbonyl
groups in hydrogen bonding is confirmed by FTIR spectra of the native gels benzene@4ce*HCl and
benzene@4de*HCl (Figure S25).

It should be stressed here that upon the removal of benzene and ethoxybenzene, the gel structure
undergoes irreversible changes clearly seen in the carbonyl and hydroxyl/NH regions of the IR
spectra (Figure 7). These changes indicate heavy structural rearrangement of the gel which leads to
the insolubility of the dried sample even in hot benzene, which was attempted in order to prepare
a gel from the solid 4*HCl. This can be explained as follows: the removal of the solvent moves
previously loosely packed molecular chains into close proximity with the formation of stronger
interchain attractive interactions; another explanation can be found in the changes in intermolecular
H-bonding (see below in Discussion).

Nanomaterials 2018, 8, x FOR PEER REVIEW  8 of 17 

 

The infinite hydrogen-bonded chains in solid-state structures is a common motif for 2c, 3c, 4cb. 

In the case of the amine 3c, the secondary nitrogen lone pair serves as a hydrogen bond acceptor, 

whereas in the amides 2c and 4cb, carbonyl oxygens play this role. The structure of the salt 4da*HCl 

differs dramatically, since two types of intermolecular hydrogen bonds can be distinguished within 

it. The first one binds the protonated tertiary amine hydrogen and carbonyl oxygen of the adjacent 

centro-symmetrically linked molecule forming the dimers. Each organic molecule is also linked to 

the chloride anion by the second intermolecular hydrogen bond involving the hydroxyl hydrogen at 

position 9, which serves as a hydrogen bond donor as in 2c, 3c, and 4cb. 

On the basis of these findings for the dried materials, we can tentatively suggest that the main 

structural motif that links molecules into the 1D supramolecular polymer within the supramolecular 

gel is the hydrogen bond between the hydroxyl at position 9 and the hydrogen bond donor, which 

can be either a halogenide anion or a carbonyl oxygen atom. The involvement of the hydroxyl and 

carbonyl groups in hydrogen bonding is confirmed by FTIR spectra of the native gels 

benzene@4ce*HCl and benzene@4de*HCl (Figure S25). 

It should be stressed here that upon the removal of benzene and ethoxybenzene, the gel 

structure undergoes irreversible changes clearly seen in the carbonyl and hydroxyl/NH regions of 

the IR spectra (Figure 7). These changes indicate heavy structural rearrangement of the gel which 

leads to the insolubility of the dried sample even in hot benzene, which was attempted in order to 

prepare a gel from the solid 4*HCl. This can be explained as follows: the removal of the solvent 

moves previously loosely packed molecular chains into close proximity with the formation of 

stronger interchain attractive interactions; another explanation can be found in the changes in 

intermolecular H-bonding (see below in Discussion). 

 

Figure 5. The changes in ATR spectra of 4ab during solvent removal. Benzene peaks are shown in 

blue. See text for details. 

The xerogel organization at the nanoscale level of type 4*HCl obtained by direct benzene 

evaporation was studied by AFM, SEM, and TEM (Figure 8, Figures S20–S24). The data clearly show 

the existence of long and thin nanofibers as a main structural motif of the xerogels, which is typical 

for supramolecular gels [32]. In some cases, the nano-crystalline additives are observed. In some 

extreme cases, the width of the nanofibers is less than 100 nm. 

Figure 5. The changes in ATR spectra of 4ab during solvent removal. Benzene peaks are shown in blue.
See text for details.

The xerogel organization at the nanoscale level of type 4*HCl obtained by direct benzene
evaporation was studied by AFM, SEM, and TEM (Figure 8, Figures S20–S24). The data clearly
show the existence of long and thin nanofibers as a main structural motif of the xerogels, which is
typical for supramolecular gels [32]. In some cases, the nano-crystalline additives are observed. In
some extreme cases, the width of the nanofibers is less than 100 nm.
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The sample of benzenogel benzene@4cb*HCl was subjected to different solvent
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benzene@4cb*HCl: (a) bulk xerogel; (b) gel coated on the glass surface; (c) liquid CO2 washing;
(d) sc-CO2 washing. Scale bar is 1 micrometer.

The drying regime drastically affects the microstructure of the gels. Figure 9 shows scanning
electron microscopy images of benzene@4cb*HCl gels dried under different conditions. Drying
under ambient conditions results in dense structures ranging from strongly interwoven to partially
conglutinated fiber-like particles (Figure 9a,b). Drying in supercritical CO2 resulted in a loose structure
possessing a lower aggregation degree of individual fibers (Figure 9d). Presumably the difference is
due to the contribution of capillary forces. Drying under ambient conditions (xerogels) results in a
strong coalescence of the particles upon the removal of liquid benzene and a movement of menisci into
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the sample monolith. The supercritical drying almost levels the effects from the capillary forces and
results in loose unaggregated monoliths. The chemical composition of the benzene@4cb*HCl xerogel
sample is in agreement with its chemical structure: indeed, the sample contains Cl and F.

Unusual structures were formed upon washing the gel using liquid CO2 with subsequent
solvent removal (Figure 9c). The gel’s fiber-like structure looks almost disrupted, and the sample
consists of strongly coalesced particles with a crystal-like shape; some particles are even faceted.
Such an appearance may be due to the substance’s partial dissolution in liquid CO2 followed by
re-crystallization and fast desorption of CO2 from the sample surface, resulting in the disruption of
fibers and the formation of dendrite-like particles. The same observations were found for samples
prepared from ethoxebenzene (Figure S24)

An investigation of the xerogel sample using a back-scattered electron detector (BSE-mode)
(Figure 10) reveals inclusions of a secondary phase with a density notably higher than that of the
matrix. This finding is in agreement with POM data (Figure S7). This can be explained by the formation
of some nano-crystalline domains within the amorphous gel fibers.
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Similar differences were observed upon drying the benzene@4ce*HCl sample under ambient
conditions and in supercritical CO2 (Figure 9).
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The nanoscale structure of the gels leads to a highly heterogeneous spatial distribution of electron
density reflected by intense small-angle X-ray scattering (SAXS) caused by scatterers larger than 60 nm.
The samples benzene@4ce*HCl and benzene@4de*HCl also possess crystallographic ordering with
interlayer spacings of 2.47, 1.16, and 0.75 nm (benzene@4ce*HCl) and 2.4+2.7 (double peak), 1.16, and
0.75 nm (benzene@4de*HCl) (Figure 10).
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benzene@4de*HCl (black).

The close similarity in scattering patterns of the two different samples undoubtedly indicates the
similar nano- and macrostructural organization of benzenogels based on N-benzyl, N’-acylbispidinols.
The existence of the crystallographic ordering may be a result of the ordering of gelator molecules
within chains, fibers, and bundles. It can also point to the presence of nano-crystalline domains within
the whole gel-like material.

4. Discussion

In previous sections we have shown that the acylation of secondary amines 3 in benzene by acyl
chlorides led to the formation of supramolecular gels of general formulae benzene@4*HCl. Before we
start to speculate on the structural features of new materials, some additional information and data
should be taken into account:

• the gels are formed only during the acylation of secondary amines of N-benzylbispidine-9-ols,
but not upon purging the HCl gas through the solution/suspension of isolated amino-amides 4
in benzene;

• during the removal of benzene from the gel, the latter undergoes some irreversible structural
rearrangements which lead to the further insolubility of dried material in benzene;

• the gels are formed neither in the presence of the external base (e.g., triethylamine), nor from the
chloroanhydrides of picolinic acids (beta or gamma) or pyrazole-containing acid chlorides;

• the removal of the chloride anion by the action of aqueous silver nitrate destroys the
supramolecular gel;

• the gels are not formed upon alkylation (e.g., by benzylchloride);
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• the gels are formed only from aromatic (benzoic, para-chlorobenzoic acid) or heteroaromatic
(2-thiophencarboxylic acid) acid chlorides, but not with the use of aliphatic reagents
(acetylchloride, chloroanhydride, or cyclopropanecarboxylic acid);

• the gels are formed also in nitrobenzene, ethoxybenzene, and mesitylene at elevated temperatures
(nearly 100 ◦C), but their stability depends on the substituents at acylating agents (SI pp. 6–9).

All these data indicate that for the formation of supramolecular gels in our systems, one needs
the following: (i) proton (in the form of a protonated tertially amino group, which was found in the
crystal of 4da*HCl); (ii) chloride anion (obviously, to form hydrogen bonds with N-H+, as in 4da*HCl,
or O-H, as in 1c+H2O); (iii) carbonyl group (obviously, to form infinite chains via hydrogen bonds
with O-H, like those found in the crystal structure of 4cd or 2c); (iv) two aromatic substituents at both
nitrogen atoms of the bispidine scaffold (presumably, to form the lateral intermolecular bonding via
π−π-stacking interactions).

The combination of all features mentioned above allows us to formulate the following mechanism
of gel formation upon acylation of amines 3 (Scheme 3). The possible participation of H-bonded
supramolecular polymers like those found in the crystals of 3a or 3c is not discussed here for simplicity,
although they may play some role in the beginning of the process.
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Scheme 3. Schematic representation of a possible method of gel formation. 
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Scheme 3 accounts for all of the factors and features mentioned above. Indeed, all the required
items are presented in the scheme and all play crucial roles for the gel formation process. At this
moment, we lack enough data to reveal the mechanism for the aggregation of species of molecular size,
schematically shown as a result of supramolecular polymerization that includes both the formation
of H-bonds and π−π-stacks. The role of the solvent in these processes is also unclear, but we can
assume the importance of the donor/acceptor properties of the aromatic solvent as well as its steric
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demands. Indeed, in the case of nitrobenzene, the strongest gel is formed when the π-donor thiophene
acid chloride is applied. On the other hand, the sterically demanding mesitylene forms least stable
gels among this row of solvents: nitrobenzene, mesitylene, benzene, and ethoxybenzene.

At the same time, assuming that the organogel building block shown in Scheme 3 indeed appeared
during the gel formation, we can explain the changes in gel structure during the solvent removal
(see Scheme 4). At the molecular/supramolecular level, one expects the change in the main H-bonded
motif from polymeric chain to discreet dimers of type [4da*HCl]2. This explains the evolution of the IR
spectra during the solvent evaporation: both OH/NH and C=O regions display remarkable changes
in the corresponding vibrations (see above). Obviously, such changes will affect the nano/macro level
of the gel organization, and different solvent removal methods will result in different morphologies of
the final solids.
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5. Conclusions 

In conclusion, we have discovered a new family of low molecular weight gelators (LMWGs) 

based on the HCl salts of unsymmetrical N-benzyl, N’-acylbispidinols. The first example of the 

aerogel preparation from the supramolecular gel is reported in this manuscript. The scope and 
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5. Conclusions

In conclusion, we have discovered a new family of low molecular weight gelators (LMWGs)
based on the HCl salts of unsymmetrical N-benzyl, N’-acylbispidinols. The first example of the aerogel
preparation from the supramolecular gel is reported in this manuscript. The scope and limitations
of the new class of LMWGs is the subject of our current studies. The investigation of copper and
zirconium complexes of new ligands and their gel forms for possible PET applications is also on
our agenda.
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