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Abstract: This study analyses the two-dimensional thermo-elastic response of functionally graded
carbon nanotube-reinforced composite (FG-CNTRC) cylindrical pressure vessels, by applying the
third-order shear deformation theory (TSDT). The effective properties of FG-CNTRC cylindrical
pressure vessels are computed for different patterns of reinforcement, according to the rule of mixture.
The governing equations of the problem are derived from the principle of virtual works and are
solved as a classical eigenproblem under the assumption of clamped supported boundary conditions.
A large parametric investigation aims at showing the influence of some meaningful parameters on the
thermo-elastic response, such as the type of pattern, the volume fraction of CNTs, and the Pasternak
coefficients related to the elastic foundation.

Keywords: carbon nanotubes; composite cylindrical pressure vessel; functionally graded materials;
third-order shear deformation theory

1. Introduction

Pressure vessels are one of the most important and expensive components for mechanical and
structural engineering applications. Due to their importance, some international companies have
published useful guidelines for design purposes, e.g., the ASME Standards [1]. At the present stage,
however, the available standards do not deliver any suggestion for the design of reinforced pressure
vessels. To this end, the structural behavior of reinforced pressure vessels has gained increasing
attention among the scientific community, as detailed in what follows.

A preliminary work was proposed by El Mir et al. [2] to analyze cylindrical sandwich structures
made of a weak orthotropic core under a certain patch loading. The authors presented a novel
numerical formulation based on a high-order shear deformation theory (HSDT) to predict the structural
response in static conditions.

Arefi and Rahimi [3] and Arefi et al. [4–6] studied the thermo-elastic behavior of non-homogeneous
functionally graded (FG) cylinders with clamped supports under a double mechanical and thermal
loading condition, while applying the first-order shear deformation theory (FSDT). Menasria et al. [7]
employed an innovative displacement field with unknown integral terms to analyze the thermal
buckling behavior of a FG sandwich plate under a uniform thermal loading. They derived the
governing equations of the problem, based on a variational principle. A further work by Dong et al. [8]
studied the local buckling behavior of composite plates resting on a Wrinkler foundation under a
uniform in-plane shear loading, while focusing on the effect of the ply angle and stiffness foundation
on the critical buckling coefficients.
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Ahmad Bidi et al. [9] studied a reinforced curved steel structure with nanopolyurea, under a low
velocity impact loading. A double experimental and numerical study was performed by the authors to
explain the effect of the in-plain curvature and the nano-particle effect on the structural response. In a recent
work by Rahmani et al. [10], the Hamilton’s principle and the Navier solution were applied to examine
different non-local HSDTs for FG nanobeams, including the size-dependent effects. Golmakani et al. [11],
in addition, studied the non-linear thermo-elastic bending behavior of functionally graded carbon
nanotube-reinforced composite (FG-CNTRC) plates resting on an elastic foundation. Nasihatgozar
et al. [12] used a HSDT to study the free vibration response of thick-layer doubly curved sandwich
panels resting on simply supports. This investigation delivered an optimum range for the core to face
sheet stiffness ratio by considering the effective stress components, for the first time.

Arefi et al. [13] investigated the thermo-piezo-magneto-elastic behavior of a FG piezomagnetic
cylinder under thermal, magnetic and mechanical loading, which was, in turn, FG in the
radial direction. Mohammadimehr et al. [14] considered a viscoelastic piezoelectric polymeric
nano-composite plate reinforced by FG single-walled carbon nanotubes (SWCNT) based on a modified
strain gradient theory. The authors, in their work, studied the effect of the thickness-to-width ratio, as
well as of the magnetic field, the applied voltage, the static loading factor, the viscoelastic parameters
of the foundation, and the surface density constant, on the dynamic stability region. In addition,
Hao et al. [15] focused on the thermo-mechanical stresses within the graded interphase between the
fiber and the matrix in fiber-reinforced composites. Shen et al. [16] presented a non-linear bending
analysis for nanocomposite cylindrical panels subjected to a transverse uniform or sinusoidal load
resting on an elastic foundation in a thermal environment. They studied the effect of the CNT
volume fraction distribution, the foundation stiffness, the temperature rise and the in-plane boundary
conditions on the mechanical response of the structure. Moreover, Arefi and Rahimi [17] applied the
FSDT to study the electro-elastic response of a FG piezoelectric cylinder under internal pressure.

Alibeigloo [18] investigated the free vibration behavior of FG-CNTRC cylindrical panels embedded
in piezoelectric layers with simply supported boundary conditions. A coupled thermo-mechanical
problem was also treated by Shen and Xiang [19], who considered the nanocomposite cylindrical shells
reinforced by SWCNTs in thermal environments and studied the sensitivity of the response in terms
of natural frequencies as well as of non-linear-to-linear frequency ratios for varying temperatures and
CNT volume fractions. In line with the previous work, Arefi et al. [6] presented a two-dimensional
thermo-elastic analysis of a FG thick-walled cylinder under thermal and mechanical loading resting on
a Pasternak foundation. They applied the FSDT to describe the displacement field and found that an
increased non-homogeneous index yields to a decrease of the radial and axial displacement. A finite
element method (FEM)-based numerical analysis was applied by Chavan and Lal [20] to analyze the
static behavior of SWCNT-FG plates. A large parametric investigation was aimed at investigating the
effect of the width-to-thickness ratio, the stress distribution profile along the thickness, the boundary
conditions, as well as the volume fractions on the overall structural behavior.

A further coupled thermo-piezoelectric problem was proposed by Khoshgoftar et al. [21], for a
thick-walled cylinder with FG material, subjected to an inner and outer pressure under a constant
temperature gradient. An interesting post-buckling coupled problem can be found in Kiani [22], who
studied the thermo-mechanical behavior of CNTRC plates under a uniform increase of the thermal
loading, and determined the effect of the reinforcement pattern on the critical temperature and the
maximum post-buckling deflection for different distributions. Zhang et al. [23] investigated the free
vibration response and flexural strength of CNTRC cylindrical panels with four different reinforcement
distributions. Moreover, Rahimi et al. [24] focused on the electro-elastic behavior of a FG piezoelectric
cylinder adopted as a physical sensor, and subjected to an internal pressure. A further work by
Asadi et al. [25] aimed at investigating the aero-thermo-elastic behavior of supersonic FG-CNTRC flat
panels in a thermal environment. To this end, a dynamic model was developed by the authors, according
to the FSDT, whereas the presence of an aerodynamic pressure was found to play a key role not only for
the onset of aero-thermal buckling instability, but also for the mode shapes of the composite structure.
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In recent years, increased attention has been devoted by the scientific community to a comparative
evaluation of FSDTs and HSDTs in a combined form with the novel generalized differential quadrature
(GDQ) method for the study of the statics and dynamics of composite plates and shells of arbitrary
shapes reinforced by agglomerated nanoparticles (see [26–35] among others). Despite the available
works in the literature on the reinforced cylindrical pressure vessels, there is a general lack of analytical
formulations, based on the third-order shear deformation theory (TSDT), to study FG-CNTRC cylindrical
pressure vessels, in thermal conditions. In this context, the main task of the present work regards the
novel application of the TSDT to study the thermo-mechanical response of a two-dimensional FG-CNTRC
cylindrical pressure vessel resting on a Pasternak foundation. This represents an extended version of the
FSDT-based formulation proposed in Arefi et al. [6] for the same problem, whose governing equations
were tackled as a classical eigenproblem, for a clamped structure at the two extremities. In this work,
a parametric analysis aims at investigating the sensitivity of the thermo-mechanical response of the
composite structure to some important parameters such as the reinforcement pattern, the volume
fraction of CNTs, or the Pasternak parameters related to the foundation. This represents a useful aspect
to account for practical industry applications and optimization design. The paper is organized as
follows. First, we present the problem formulation in Section 2, whose solution procedure is briefly
reviewed in Section 3. Next, the parametric investigation and the main results are presented and
discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Problem Formulation

2.1. Geometry and Material Properties

Let us consider a FG cylindrical shell with geometrical parameters defined in Figure 1. It is
possible to assume different CNT distributions along the thickness, whose geometries are depicted
in Figure 1, with the analytical expressions reported in Table 1 as a function of the effective volume
fraction V∗CNT , in which R, r and h indicate the average radius, arbitrary radius and the thickness of
the cylinder which are clarified in Figure 1e. This last one is computed as follows [36–39]

V∗CNT =
WCNT

WCNT +
(

ρCNT
ρm

)
−
(

ρCNT
ρm

)
WCNT

(1)

where WCNT is the mass fraction of the CNTs, while ρCNT and ρm refer to the density of the CNTs
and matrix, respectively. In Table 1, all of the patterns are defined in terms of the same total volume
fraction V∗CNT . In a FG-X distribution of CNTs, the top and bottom surfaces reach the maximum values,
whereas the mid-plane is completely free of CNTs, with a linear increase of CNTs along the thickness.
The contrary occurs for a FG-O distribution of CNTs, where the external surfaces are free of CNTs, the
mid-surface of the plate is enriched with CNTs and a linear decrease of CNTs is established from the
mid-plane to the external surfaces. In a FG-V distribution, the top surface is enriched of CNTs, the
bottom one is completely free of CNTs, with a linear increase in the amount of CNTs from the bottom
to the top surfaces. In a UD type, the volume fraction of CNTs maintains constant along the thickness.
Figure 1 illustrates the whole distributions of VCNT as a function of the thickness coordinate.

Table 1. Volume fraction of CNTs as a function of thickness coordinate for various cases of CNTs
distribution [22].

CNTs Distribution VCNT

UD VCNT = V∗CNT

FG-X VCNT = 4
(
|r−R|

h

)
V∗CNT

FG-V VCNT = 2
(

r−R
h + 0.5

)
V∗CNT

FG-O VCNT =
(
−4 |r−R|

h + 2
)

V∗CNT
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Figure 1. Geometry of the carbon nanotube-reinforced composite (CNTRC) cylindrical shell, with 
different CNTs distribution patterns: (a) UD, (b) FG-O, (c) FG-X, (d) FG-V, (e) Geometry. 
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Figure 1. Geometry of the carbon nanotube-reinforced composite (CNTRC) cylindrical shell, with
different CNTs distribution patterns: (a) UD, (b) FG-O, (c) FG-X, (d) FG-V, (e) Geometry.

The rule of mixture is here applied to define the effective material properties, namely, the Young’s
moduli E11, E22, the shear modulus G12, the density ρ, and the Poisson’s ratio ν12, as follows [40,41]:

E11 = η1VCNTECNT
11 + VmEm

η2
E22

= VCNT
ECNT

22
+ Vm

Em

η3
G12

= VCNT
GCNT

12
+ Vm

Gm

ρ = VCNTρCNT + Vmρm

ν12 = VCNTνCNT
12 + Vmνm

(2)

where η1, η2 and η3 refer to the efficiency parameters explaining the scale-dependent material
properties, VCNT and Vm are the volume fractions of the CNT and the matrix, respectively, which are
related to each other as:

VCNT + Vm = 1 (3)

The other effective mechanical properties E33, G13, ν31, and ν32, are described here below:

E33 = E22 , G13 = G12 , ν31 = ν21 , ν32 = ν21 (4)

2.2. Basic Equations

According to the TSDT, the displacement field (see Figure 2) of the cylinder reads [42]:{
ux

uz

}
=

{
u0(x)
w0(x)

}
+ z

{
u1(x)
w1(x)

}
+ z2

{
u2(x)
w2(x)

}
+ z3

{
u3(x)
w3(x)

}
(5)

where ux and uz are the axial and radial displacement components, respectively, and ui {i = 1, 2, 3}
and wi{i = 1, 2, 3} are functions of x. Thus, the strain field can be obtained by derivation, together
with the axial component εx, radial component εz, circumferential component εt and shear component
γxz, namely: 

εx = ∂ux
∂x = ∂u0

∂x + z ∂u1
∂x + z2 ∂u2

∂x + z3 ∂u3
∂x

εz =
∂uz
∂z = w1 + 2zw2 + 3z2w3

εt =
uz
r = w0+zw1+z2w2+z3w3

R+z
γxz = 2εxz =

∂ux
∂z + ∂uz

∂x = u1 + 2zu2+

+3z2u3 +
∂w0
∂x + z ∂w1

∂x + z2 ∂w2
∂x + z3 ∂w3

∂x

(6)
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The stress-strain relations read as follows:
σx

σt

σz

τxz

 =


Q11 Q12 Q13 0
Q21 Q22 Q23 0
Q31 Q32 Q33 0

0 0 0 Q55




εx − α11T
εt − α22T
εz − α33T

γxz

 (7)

where,
Q11 = E11

∆ (1− ν23ν32), Q22 = E22
∆ (1− ν13ν31),

Q33 = E33
∆ (1− ν21ν12), Q55 = G13,

Q12 = E11
∆ (ν21 + ν31ν23),

Q13 = E11
∆ (ν31 + ν21ν32)

Q23 = E22
∆ (ν32 + ν12ν31)

∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν12ν32ν13

(8)

In Equation (7), T represents the increment in temperature from the reference state, and α11, α22

and α33 are the coefficients of thermal expansion.
On the other hand, the following constitutive relations must be considered, relating forces and

displacements, due to the presence of the Pasternak foundation:

Ff = k1

(
uz= h

2

)
− k2

∂2

∂x2

(
uz= h

2

)
(9)

k1 and k2 being the Pasternak coefficients. In Equation (9), the two kinematic terms can be expressed
in the following expanded form: uz= h

2
= w0 +

h
2 w1 +

(
h
2

)2
w2 +

(
h
2

)3
w3

∂2

∂x2

(
uz= h

2

)
= ∂2w0

∂x2 + h
2

∂2w1
∂x2 +

(
h
2

)2
∂2w2
∂x2 +

(
h
2

)3
∂2w3
∂x2

(10)

Substitution of Equation (10) into Equation (9) yields the following expression:

Ff = k1

(
w0 +

h
2 w1 +

(
h
2

)2
w2 +

(
h
2

)3
w3

)
− k2

[
∂2w0
∂x2 + h

2
∂2w1
∂x2 +

(
h
2

)2
∂2w2
∂x2 +

(
h
2

)3
∂2w3
∂x2

]
(11)

Therefore, we can define the variation of the strain energy as follows:

δU =
∫

σijδεijd∀ =
∫
[σxδεx + σtδεt + σzδεz + τxzδγxz]d∀ (12)

By the substitution of Equation (6) into Equation (12), Equation (12) can be rewritten as:

δU =
s (

σx

{
∂δu0
∂x + z ∂δu1

∂x + z2 ∂δu2
∂x + z3 ∂δu3

∂x

}
+ σt

{
1

R+z
[
δw0 + zδw1 + z2δw2 + z3δw3

]}
+ σz

{
δw1 + 2zδw2 + 3z2δw3

}
+ τxz

{
δu1 + 2zδu2 + 3z2δu3 +

∂δw0
∂x + z ∂δw1

∂x + z2 ∂δw2
∂x + z3 ∂δw3

∂x

})
2π(R + z)dzdx

(13)

For simplification purposes, Equation (13) can be rewritten in terms of internal stress resultants
as follows:

δU = 2π
∫ [

Nx
∂δu0
∂x + Mx

∂δu1
∂x + Px

∂δu2
∂x + Sx

∂δu3
∂x + Ntδw0 + Mtδw1 + Ptδw2 + Stδw3 + Nzδw1 + Mzδw2+

Pzδw3 + Qxδu1 + Qx
∂δw0

∂x + 2Mxzδu2 + Mxz
∂δw1

∂x + 3Pxzδu3 + Pxz
∂δw2

∂x + Sxz
∂δw3

∂x

]
dx

(14)
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where the internal stress resultants can be introduced as follows:

Nx =
∫

σx(R + z)dz
Px =

∫
σxz2(R + z)dz

Nt =
∫

σtdz
Pt =

∫
σtz2dz

Nz =
∫

σz(R + z)dz
Pz = 3

∫
σzz2(R + z)dz

Mxz =
∫

τxzz(R + z)dz
Sxz =

∫
τxzz3(R + z)dz

Mx =
∫

σxz(R + z)dz
Sx =

∫
σxz3(R + z)dz

Mt =
∫

σtzdz
St =

∫
σtz3dz

Mz = 2
∫

σzz(R + z)dz
Qx =

∫
τxz(R + z)dz

Pxz =
∫

τxzz2(R + z)dz

(15)

In addition, we can define the variation of the external work as follows:

δW =
∫ [

Piδwz

∣∣∣z=− h
2
− Ff δwz

∣∣∣
z= h

2

]
dA (16)

where Pi is the internal pressure, here set to Pi = 70 MPa.
By partial integration of Equation (14) and by substitution of Equations (6) and (11) into

Equation (16), get the following variations of the strain energy and energy of the external work:

δU = 2π
∫


− ∂Nx
∂x δu0 +

(
− ∂Mx

∂x + Qx

)
δu1

+
(
− ∂Px

∂x + 2Mxz

)
δu2 +

(
− ∂Sx

∂x + 3Pxz

)
δu3

+
(

Nt − ∂Qx
∂x

)
δw0 +

(
Mt + Nz − ∂Mxz

∂x

)
δw1

+
(

Pt + Mz − ∂Pxz
∂x

)
δw2 +

(
St + Pz − ∂Sxz

∂x

)
δw3

dx (17)

δW = 2π
∫


{
Pi

(
R− h

2

)
− Ff

(
R + h

2

)}
δw0

+
{
−Pi

(
R− h

2

)
h
2 − Ff

(
R + h

2

)
h
2

}
δw1

+

{
Pi

(
R− h

2

)(
h
2

)2
− Ff

(
R− h

2

)(
h
2

)2
}

δw2

+

{
Pi

(
R− h

2

)(
h
2

)3
− Ff

(
R− h

2

)(
h
2

)3
}

δw3


dx (18)

The application of the Hamilton’s principle gives the following governing equations of
the problem:

δΠ = δU − δW = 0 (19)

and the substitution of Equations (17) and (18) into Equation (19) gives the following differential
equations in terms of internal stress resultants:
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

δu0 : − ∂Nx
∂x = 0

δu1 : − ∂Mx
∂x + Qx = 0

δu2 : − ∂Px
∂x + 2Mxz = 0

δu3 : − ∂Sx
∂x + 3Pxz = 0

δw0 : Nt − ∂Qx
∂x −

(
Pi

(
R− h

2

)
− Ff

(
R + h

2

))
= 0

w1 : Mt + Nz − ∂Mxz
∂x +

{
Pi

(
R− h

2

)
h
2 + Ff

(
R + h

2

)
h
2

}
= 0

δw2 : Pt + Mz − ∂Pxz
∂x −

{
Pi

(
R− h

2

)(
h
2

)2
− Ff

(
R− h

2

)(
h
2

)2
}

= 0

δw3 : St + Pz − ∂Sxz
∂x −

{
Pi

(
R− h

2

)(
h
2

)3
− Ff

(
R− h

2

)(
h
2

)3
}

= 0

(20)

By substitution of Equations (15) and (11) into Equation (20), we obtain the following set of
equations in the matrix form:

G1X′′ + G2X′ + G3X = F (21)

where the displacement vector X, the coefficient matrixes (G1, G2 and G3) and the force vector F are
defined as follows:

X = {u0 u1 u2 u3 w0 w1 w2 w3}T (22)

G1 =



−A1 −A2 −A3 −A4 0 0 0 0
−A2 −A3 −A4 −A5 0 0 0 0
−A3 −A4 −A5 −A6 0 0 0 0
−A4 −A5 −A6 −A7 0 0 0 0

0 0 0 0 −A8 − B1 −A9 − B1h
2 −A10 − B1h2

4 −A11 − B1h3

8

0 0 0 0 −A9 − B1h
2 −A10 − B1h2

4 −A11 − B1h3

8 −A12 − B1h4

16

0 0 0 0 −A10 − B2h2

4 −A11 − B2h3

8 −A12 − B2h4

16 −A13 − B2h5

32

0 0 0 0 −A11 − B2h3

8 −A12 − B2h4

16 −A13 − B2h5

32 −A14 − B2h6

64


(23)

G2 =

[
0 G2r

G2l 0

]
8×8

(24)

G2r =


−A15 −A16 − A22 −A17 − 2A23 −A18 − 3A24

−A16 + A8 −A17 − A23 + A9 A10 − A18 − 2A24 A11 − A19 − 3A25

−A17 + 2A9 2A10 − A18 − A24 2A11 − A19 − 2A25 2A12 − A20 − 3A26

3A10 − A18 3A11 − A19 − A25 3A12 − A20 − 2A26 3A13 − A21 − 3A27

 (25)

G2l =


A15 A16 − A8 A17 − 2A9 −3A10 + A18

A16 + A22 A17 + A23 − A9 −2A10 + A18 + A24 −3A11 + A19 + A25

A17 + 2A23 −A10 + A18 + 2A24 −2A11 + A19 + 2A25 −3A12 + A20 + 2A26

A18 + 3A24 −A11 + A19 + 3A25 −2A12 + A20 + 3A26 −3A13 + A21 + 3A27

 (26)

G3 =

[
G3l 0
0 G3r

]
8×8

(27)

G3r =


A28 + B3 A29 + A35 +

B3h
2 A30 + 2A36 +

B3h2

4 A31 + 3A37 +
B3h3

8

A29 + A35 +
B3h

2 A30 + 2A36 + A41 +
B3h2

4 A31 + 3A37 + 2A42 +
B3h3

8 A32 + 4A38 + 3A43 +
B3h4

16

A30 + 2A36 +
B4h2

4 A31 + 3A37 + 2A42 +
B4h3

8 A32 + 4A38 + 4A43 +
B4h4

16 A33 + 5A39 + 6A44 +
B4h5

32

A31 + 3A37 +
B4h3

8 A32 + 4A38 + 3A43 +
B4h4

16 A33 + 5A39 + 6A44 +
B4h5

32 A34 + 6A40 + 9A45 +
B4h6

64

 (28)

G3l =


0 0 0 0
0 A8 2A9 3A10

0 2A9 4A10 6A11

0 3A10 6A11 9A12

 (29)
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F =



0
0
0
0

A46 − B5

A47 + A50 +
B5h

2

A48 + 2A51 − B5h2

4

A49 + 3A52 − B5h3

8


(30)

Additional details about the analytical expression of the coefficients Ai {i = 1 . . . 52} and
Bi{i = 1 . . . 5}, can be found in Appendix A.Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 24 
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3. Solution Procedure

The problem above is solved including both homogeneous and particular solutions. Here below
the complete solving procedure, that embraces the following 4 steps

Step 1. The particular solution of Equation (18) is obtained as [43–45]:

G3Xp = F→ Xp = G3
−1F (31)

Step 2. The eigenvalues mi {i = 1, 2, 3} are obtained by solving the characteristic equation:

G3Xp = F→ Xp = G3
−1F (32)

Step 3. The associated eigenvectors vi{i = 1, 2, 3} are determined as:

(G1m2 + G2m + G3)v = 0 (33)

Step 4. The displacement components are computed by substitution of the eigenvalues mi and
eigenvectors vi into the following equation:

Xj = Xj
h + Xp =

16

∑
i=1

civi
je

mix + Xp (j = 1 . . . 8) (34)

where ci refers to the unknown coefficients determined by enforcing the appropriate boundary
conditions, here assumed as clamped-clamped at each side, namely:

at x = 0 and x = l →
{

u0 = u1 = u2 = u3 = 0
w0 = w1 = w2 = w3 = 0

(35)
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4. Validation

Khoshgoftar et al. [21,45] studied the thermoelastic behaviour of a FG piezoelectric cylindrical
structure, whose results have been here selected for validation purposes. In detail, the accuracy of the
solution procedure is evaluated for l = 0, where l is the non-homogeneous parameter. A comparative
evaluation of the results is shown in Figure 3 in terms of distribution of the electrical potential along
the thickness for a thick walled cylinder made of piezoelectric material. The perfect agreement
between our results and predictions from the literature confirms the reliability and accuracy of the
proposed formulation.Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 24 
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5. Numerical Results

We illustrate the use of the proposed formulation, here applied for a cylinder with inner
radius ri = 0.04 m, outer radius ro = 0.05 m and length L = 0.5 m. The structure is made of a
polyethylmethacrylate (PMMA) material with the same mechanical properties for the matrix as found
in Kiani [22], i.e., Em = 2.5 GPa, αm = 45× 10−6 1

K , νm = 0.34. A SWCNT is here considered as fiber
reinforcement, with geometrical, mechanical and thermal properties, as detailed in Table 2.

Table 2. Thermo-mechanical properties of (10, 10) armchair single-walled carbon nanotube (SWCNT)
(tube length = 9.26 nm, tube mean radius = 0.68 nm, tube thickness = 0.067 nm) [22].

T [K] ECNT
11 [TPa] ECNT

22 [TPa] GCNT
12 [TPa] νCNT

12 αCNT
11 [10−6 1

K ] αCNT
22 [10−6 1

K ]

300 5.6466 7.0800 1.9445 0.175 3.4584 5.1682

As a comparison, we assume three different volume fractions of CNTs, as follows [22]:

η1 = 0.137, η2 = 1.022, η3 = 0.7η2 for V∗CNT = 0.12
η1 = 0.142, η2 = 1.626, η3 = 0.7η2 for V∗CNT = 0.17
η1 = 0.141, η2 = 1.585, η3 = 0.7η2 for V∗CNT = 0.28

Additionally, we consider different CNT distributions and different Pasternak coefficients for
comparative purposes, while applying both the FSDT and TSDT to investigate the kinematic and static
response of the reinforced structure.

5.1. Kinematic Response

First, we analyze the effect of the reinforcement distribution on the kinematic response of the
structure. Figure 4 shows the longitudinal distribution of the axial displacement ux (Figure 4a) and
radial displacement uz (Figure 4b) at the middle surface (z = 0), for a UD, FG-X and FG-V pattern,
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as well as for a fixed volume fraction V∗CNT = 0.12 and a null value of the Pasternak coefficients
k1 = k2 = 0.
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different reinforcement patterns.

Based on the numerical results, the boundary conditions are clearly satisfied at two ending
supports of the cylindrical pressure vessel. In addition, it is worth noting that the maximum radial
displacement is reached under a FG-X distribution, whereas the maximum axial displacement is
obtained for a FG-V distribution.

A further check is evaluated on the sensitivity of the structural response to the volume fraction of
reinforcement. Figure 5 illustrates the variation of the axial and radial displacements at the middle
surface (i.e., for z = 0) along the longitudinal direction, by applying different volume fractions of
FG-CNTRC, and considering a UD reinforcement pattern. Also in this case, we keep the Pasternak
coefficients k1, k2 equal to zero. A significant decrease in both axial and radial displacements is noticed
for increasing volume fractions of CNTs, in line with findings by Arefi et al. [6]. An increased volume
fraction of CNTs, indeed, yields to an increased structural stiffness, with a consistent reduction of the
kinematic quantities. The variations of the longitudinal and radial displacements along the radial
direction are listed in Tables 3 and 4 at various longitudinal positions. It is worth noticing that the
maximum radial displacements are reached at the middle surface of the cylindrical shell. In addition,
the maximum longitudinal displacements occur near one quarter of the cylindrical shell.

Due to the application of the TSDT, the displacement components are expected to vary along the
radial direction, as represented in Figure 6 for a volume fraction V∗CNT = 0.12, a uniform distribution
of CNTs, and null values of the Pasternak coefficients k1 = k2 = 0. As visible in Figure 6a, the axial
displacement assumes an asymmetric behavior at each surface along the longitudinal direction, while
reaching the minimum value at the mid-surface (i.e., for z = 0), and the maximum values at the
external lateral surfaces (i.e., for z = −h

2 and z = h
2 ).

In addition, moving from the inner surface (z = −h
2 ) to the outer one (z = h

2 ) of the cylinder,
the radial displacement reduces slightly, and attains the maximum values at the mid length of the
structure (see Figure 6b).

The efficiency of the proposed TSDT formulation is also verified against the FSDT, through a
comparative evaluation of the kinematic results in the axial and radial direction. As expected, more
accurate results can be obtained by applying a TSDT compared to the other based on lower order
theories [33], as clearly shown in Figure 7. In more detail, the TSDT–based axial displacement in the
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longitudinal direction is lower than the FSDT estimate (see Figure 7a), whereas the TSDT-based radial
displacement is always higher than the FSDT prediction along the whole specimen (see Figure 7b).Nanomaterials 2019, 9, x FOR PEER REVIEW 12 of 24 
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Table 3. Variation of the longitudinal displacement field along the radial direction at different
longitudinal positions.

z [m]
ux [m]

x = 0 x = l/4 x = l/2 x = 3l/4 x = l

−0.005 0 3.04 × 10−6 0 −3.12 × 10−6 0
−0.0044 0 4.3 × 10−6 0 −4.38 × 10−6 0
−0.0038 0 4.48 × 10−6 0 −4.55 × 10−6 0
−0.0032 0 3.71 × 10−6 0 −3.79 × 10−6 0
−0.0026 0 2.14 × 10−6 0 −2.23 × 10−6 0
−0.0021 0 −8.28 × 10−8 0 −2.66 × 10−8 0
−0.0015 0 −2.81 × 10−6 0 2.682 × 10−6 0
−0.0009 0 −5.91 × 10−6 0 5.748 × 10−6 0
−0.0003 0 −9.22 × 10−6 0 9.029 × 10−6 0
0.0003 0 −1.26 × 10−5 0 1.238 × 10−5 0
0.0009 0 −1.59 × 10−5 0 1.565 × 10−5 0
0.0015 0 −1.9 × 10−5 0 1.871 × 10−5 0
0.0021 0 −2.17 × 10−5 0 2.139 × 10−5 0
0.0026 0 −2.39 × 10−5 0 2.357 × 10−5 0
0.0032 0 −2.54 × 10−5 0 2.509 × 10−5 0
0.0038 0 −2.61 × 10−5 0 2.582 × 10−5 0
0.0044 0 −2.59 × 10−5 0 2.559 × 10−5 0
0.005 0 −2.46 × 10−5 0 2.428 × 10−5 0
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Table 4. Variation of the radial displacement field along the radial direction at different
longitudinal positions.

z [m]
uz [m]

x = 0 x = l/4 x = l/2 x = 3l/4 x = l

−0.005 0 0.005791 0.005885 0.005767 0
−0.0044 0 0.005785 0.00588 0.005762 0
−0.0038 0 0.005773 0.005867 0.00575 0
−0.0032 0 0.005754 0.005848 0.005731 0
−0.0026 0 0.005731 0.005825 0.005708 0
−0.0021 0 0.005705 0.005798 0.005681 0
−0.0015 0 0.005675 0.005768 0.005652 0
−0.0009 0 0.005644 0.005736 0.005621 0
−0.0003 0 0.005612 0.005704 0.005589 0
0.0003 0 0.005581 0.005672 0.005557 0
0.0009 0 0.005551 0.005642 0.005527 0
0.0015 0 0.005523 0.005614 0.0055 0
0.0021 0 0.005499 0.005589 0.005476 0
0.0026 0 0.00548 0.005569 0.005456 0
0.0032 0 0.005466 0.005555 0.005442 0
0.0038 0 0.005459 0.005547 0.005435 0
0.0044 0 0.005459 0.005547 0.005436 0
0.005 0 0.005468 0.005556 0.005445 0
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5.2. Tensional Response

A similar parametric study is also repeated from a tensional point of view, in terms of
axial, circumferential, radial and shear stresses along the longitudinal direction, and for different
reinforcement patterns. Based on the numerical results in Figure 8, a FG-O pattern of CNTs seems
to yield to the maximum values for the axial and radial stresses and to the minimum values for the
circumferential and shear components except for the boundary zones. The stress response given by a
UD and a FG-V distribution, instead, is almost similar for each component along the whole structure,
with the highest numerical differences nearby the two clamped sides. The stress response can be
affected significantly by the volume fraction of the reinforcement, whose variation is plotted in Figure 9,
assuming volume fractions V∗CNT = 0.12, 0.17, 0.28. This parametric investigation is here tackled for a
UD pattern, but could be similarly repeated for all the other reinforcement distributions. Based on the
numerical results, a general increase in magnitude is observed for the axial, circumferential, and radial
stress components, and for a volume fraction V*

CNT higher than 0.12 (see Figure 9a–c).Nanomaterials 2019, 9, x FOR PEER REVIEW 14 of 24 
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Only the shear stress seems to be almost insensitive to the volume fraction (see Figure 9d), in
agreement with findings by Arefi et al. [6].

In addition, Figure 10 represents the longitudinal distribution of the stress components for the
middle and external surfaces of the structure (i.e., for z = −h

2 , z = 0, z = h
2 , respectively). It is worth

observing that the TSDT allows all stress components to assume different magnitudes through the
thickness direction, as can be seen in Figure 10a–d, for V∗CNT = 0.12, FG−UD, k1 = k2 = 0.
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The last parametric study focuses on the sensitivity of the stress response to the Pasternak
parameters of the elastic foundation. Figure 11 plots the main curves for different combinations of
k1 and k2, while keeping V∗CNT = 0.12, FG−UD, z = 0. The numerical results in Figure 11 clearly
state that lower magnitudes can be obtained for each stress component by increasing both Pasternak
parameters. This is strictly related to a general increase in stiffness of the foundation for increasing
values of k1 and k2, with an expected sensitive reduction of the kinematic quantities.
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5.3. Radial Distribution of Results

In this section, the radial distribution of numerical results are provided. For this purpose, the
radial and axial deformation of the cylindrical shell are plotted along the radial direction at a defined
longitudinal position. Figure 12a,b show the radial distribution of the longitudinal deformation at
x = 0.1 and 0.4, respectively. One can conclude that the maximum longitudinal deformations occur
at the external surfaces while the minimum values occur at the inner surfaces. Figure 13a,b plot the
radial distribution of the radial deformation at x = 0.25 and 0.5, respectively. One can conclude that
maximum radial deformations occur at the inner surfaces while the minimum deformations involve
the outer surfaces.
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6. Conclusions

The third-order shear deformation theory (TSDT) is employed in this work to study the
thermo-elastic response of FG-CNTRC cylindrical pressure vessels resting on a Pasternak foundation.
The rule of mixture is adopted herein for computing the effective material mechanical properties,
whereby the governing equations of the problem are derived from Hamilton’s principle and solved as
a classical eigenvalue problem. A parametric investigation aims at investigating the sensitivity of the
static and kinematic response to some important parameters such as the reinforcement distribution, its
volume fraction, or the Pasternak parameters related to the elastic foundation. Based on the numerical
results, the main conclusions can be pointed out as:

• The accuracy of higher order theories, such as the TSDT, and lower order theories, such as
the FSDT, must be determined comparatively with respect to the experimental results, but
it is expected that a TSDT provides a more accurate structural response due to its capability
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to capture the variation of the static and kinematic responses through the thickness of the
cylindrical structure.

• An increased volume fraction within the composite material yields to a reduction of the radial
and axial displacement components, together with an increase of the stress field.

• An increasing stiffness of the foundation is reached for increasing values of the Pasternak
parameters, with a consistent reduction of the displacement and stress field.

• Focusing on the reinforcement distributions, the maximum stress is obtained for a uniform
distribution UD of CNTs, whereby the minimum stress is obtained for a FG-O distribution. At the
same time, the minimum displacement is obtained for a FG-V distribution, while the maximum
displacement is obtained for a FG-X pattern.

The conclusions above could be of interest for engineers and designers of mechanical and
electronic devices, whose thermo-mechanical study requires an appropriate selection of the analytical
and numerical tools, in order to ensure the feasibility of results.
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Appendix A

More details about the coefficients Ai{i = 1 . . . 52} and Bi{i = 1 . . . 5} in Equations (19)–(22) are
reported below:
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