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Abstract: In this work, a novel material that was based on mesoporous carbon and ceria nanoparticles
composite (MC–CeNPs) was synthesized, and a modified electrode was fabricated. When compared
with a bare glass electrode, the modified electrode exhibited enhanced electrocatalytic activity towards
the simultaneous determination of hydroquinone (HQ) and catechol (CC), which is attributed to
the large specific area and fast electron transfer ability of MC–CeNPs. Additionally, it exhibited
linear response ranges in the concentrations of 0.5–500 µM and 0.4–320 µM for HQ and CC,
with detection limits (S/N = 3) of 0.24 µM and 0.13 µM, respectively. This method also displayed good
stability and reproducibility. Furthermore, the modified electrode was applied to the simultaneous
determination of HQ and CC in tap and lake water samples, and it exhibited satisfactory recovery
levels of 98.5–103.2% and 98–103.4% for HQ and CC, respectively. All of these results indicate that a
MC–CeNPs modified electrode could be a candidate for the determination of HQ and CC.

Keywords: mesoporous carbon and ceria nanoparticles composite; modified electrode; simultaneous
determination; hydroquinone; catechol

1. Introduction

Hydroquinone (HQ) and catechol (CC) are two isomers of dihydroxybenzene and they are
easily introduced into the environment during their extensive use as important raw materials and
intermediates [1]. In addition, the United States Environmental Protection Agency (EPA) and the
European Union (EU) have revealed that HQ and CC are important environmental pollutants in
ecological systems, owing to the fact that they are extremely toxic to human health and ecology, even in
very low concentration [2]. HQ and CC are similar in structure and properties and they often coexist in
the environment, which makes their detection more difficult [3]. Accordingly, it is necessary to establish
an efficient method for the simultaneous determination of these two isomers. Many methods have been
developed for their determination, such as fluorescence [4], gas chromatography [5], high–performance
liquid chromatography [6], chemiluminescence [7], and electrochemical methods [8]. In the last few
years, electrochemical methods have attracted wide attention for their fast response, high sensitivity,
low–cost, selectivity, and facile to use [9–11]. However, numerous challenges exist in the use of
electrochemical methods for the simultaneous determination of HQ and CC. The two isomers have
overlapped redox potentials on a conventional electrode [12], and another significant obstacle is that the
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relationship between the electrochemical signal and concentration might be nonlinear. Many excellent
nanomaterials, such as Au@Pd/graphene [13], AuNPs–mesoporous silica [14], MWCNT/TiO2 [15],
and carbon nano–fragments [16], have been used to modify electrodes to overcome these shortages,
and the resulting electrodes have exhibited good detection limits. However, these materials have
disadvantages in their complicated synthesis process and high cost. Thus, it is necessary to develop a
novel material to detect HQ and CC.

Nanostructured ceria (CeO2) is often used as a catalytic medium due to its oxygen storage capacity
via the Ce4+/Ce3+ redox reaction. It is also considered to be an ideal candidate for electrochemical
sensors, due to its abundant active sites, oxygen vacancies, biocompatibility, and excellent catalytic
performance [17]. However, ceria nanoparticles (CeNPs) tend to form aggregates that cause lower
catalytic activity and worse stability [18]. In addition, poor conductivity hinders their application.
Therefore, appropriate supporting substrates to anchor CeNPs are expected to enhance the dispersion
and conductivity, and improve the catalytic activity.

Currently, some significant breakthroughs have been made concerning nanostructured carbon
composite material in electrochemical sensors [19], catalysts [20–23], and supercapacitors [24].
Additionally, many ceria–carbon composites have been reported, such as CeO2/graphene [25],
CeO2/g–C3N4 [26], and MWCNTs/CeO2 [27]. Mesoporous carbon (MC) is a kind of nanostructured
porous carbon materials; it can be an excellent carrier for sensors because of its good conductivity,
high porosity, high surface area, high corrosion resistance, and easy handling. When compared with
other carbon materials, such as graphene [28] and carbon nanotubes [29], MC could have better
electrocatalytic ability and electrochemical properties because of its unique pore structure, which is
conducive to mass transfer [30,31]. However, few studies have investigated electrochemical sensors
using ceria and MC. Thus, it is necessary to synthesis the composite material and investigate its
electrochemical performance.

In this work, MC–CeNPs were synthesized via the evaporation induced self-assembly (EISA)
approach and characterized by scanning electron microscopy, transmission electron microscope,
X-ray diffraction, Raman spectra, nitrogen adsorption–desorption, and X-ray photoelectron
spectroscopy. The obtained composite was dispersed in chitosan (CS) solution and dropped on a glassy
carbon electrode (GCE) to prepare the sensitive sensor, which exhibited good potential for separation
and differentiation for the simultaneous detection of HQ and CC. Scheme 1 exhibits the overall
preparation of MC–CeNPs modified electrode. To our best knowledge, this is the first time that HQ
and CC have been detected using mesoporous carbon and ceria nanocomposites. The sensing platform
exhibited wide linear response ranges, low detection limits, and suitability for practical applications
with real water samples due to the large specific area, excellent electrocatalytic performance, and fast
electron transfer ability of the nanostructured composite. Furthermore, the selectivity and storage
stability of the modified electrode were studied and found to have satisfactory results.
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2. Results and Discussion

2.1. Characterization of MC–CeNPs

The surface morphology of the composite and its individual component was characterized
using FESEM and it is shown in Figure 1 (each scale bar is 1 µM). As illustrated in Figure 1a,
MC exhibited a layered structures with wrinkles. Figure 1b depicts that MC–CeNPs tend to form a
more whole structure when compared with the MC, and few layers could be observed. Furthermore,
the composition of elements was tested by EDX (Figure 1c). Only Ce, C, and O could be observed,
suggesting that the MC–CeNPs were of high purity.
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Figure 1. Scanning electron microscope (SEM) images of mesoporous carbon (MC) (a) and MC–CeNPs
(b); energy dispersive X-ray detector (EDX) image of MC–CeNPs (c).

The dispersion state and microstructure were further investigated by TEM. Figure 2a shows MC
with stacked thin sheets structure with lots of pores. CeNPs were dispersed uniformly on the MC sheets
(Figure 2b), suggesting that MC could well act as a support for CeNPs, and an embedded structure was
formed. An HRTEM image (Figure 2c) depicts the lattice fringes of MC exhibiting interplanar spacing
of 0.35 nm [32], which was attributed to the graphite carbon lattice distance (002) [33]. Moreover,
an HRTEM image of the MC–CeNPs (Figure 2d) exhibited the clear lattice fringes (111), (200), and (220)
of cubic phase ceria with interplanar spacing of 0.33, 0.27, and 0.19 nm [34], respectively. The crystalline
structures of the materials were checked using XRD measurement. In Figure 3A, curve (a) showed
the diffraction peak of the graphite (002) at 2θ = 23.6◦ [35]. In addition, curve (b) exhibited the
diffraction peaks at 2θ = 29.2◦, 33.7◦, 48.1◦, and 56.9◦, attributed to (111), (200), (220), and (311) planes
of the cubic fluorite crystal structure of CeO2 (JCPDS 81-0792) [36], and no impurity was detected.
The result corresponded with TEM, both proved that the MC–CeNPs were prepared successfully and
they retained a well-defined crystal structure.

The Raman spectra of the MC (a) and MC–CeNPs (b) are shown in Figure 3B. The Raman spectra
of MC exhibited two prominent peaks (D and G bonds) for graphite carbon (1338 and 1398 cm−1) [37].
In addition, a new peak in 457 cm−1 could be observed for MC–CeNPs, which was attributed to
the F2g vibration of the anchored CeNPs [38]. Nitrogen adsorption–desorption isotherms and the
pore size distribution curve of MC–CeNPs are shown in Figure 3C. It could be found that the curve
slowly increases at low relative pressure of 0.10–0.40, then a sharp increase occurs in the range of
0.40–0.80, which gives the type–IV shape [39]. Relevantly, the existence of mesopores is supported
by the hysteresis of the desorption curve and the sharp increase in the adsorption capacity in the
medium relative pressure region. Besides, Brunauer–Emmett–Teller (BET) measurements revealed
that the specific surface area of MC–CeNPs was 362.4 m2·g−1 and the clear pore size distribution was
concentrated on 3.5 nm.
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XPS was employed to analyze the MC–CeNPs composition and the binding state of the elements.
The XPS survey of the nanocomposite (Figure 4A) demonstrates three elements Ce, C, and O in the
composites; the peak appearing at 831.7 ev belongs to the Auger peak of Ce. As shown in Figure 4B,
there were three peaks centered at 284.8, 286.3, and 289.3 eV in the C 1s XPS spectrum, which assigned
to C=C, C–O, and C=O [40]. The O1s spectrum (in Figure 4C) exhibited two peaks at 529.6 and 531.6 eV,
which were respectively ascribed to the oxygen species of CeO2 and the adsorbed OH- species on
the surface [41]. The spectrum of Ce 3d was assigned to the 3d5/2 state (labelled U) and the 3d3/2
state (labelled V). The Ce 3d3/2 displayed four peaks at 882.3, 885.1, 888.4, and 898.6 eV, while 3d5/2
showed four other peaks at 901.1, 904.8, 907.4, and 916.8 eV (in Figure 4D) [42]. The peaks at 885.1
(U2) and 904.8 (V2) eV belonged to Ce3+, and the other peaks were ascribed to Ce4+, suggesting the
existence of Ce3+ in MC–CeNPs with oxygen vacancies. This might be ascribed to CeNPs interacting
with the MC sheets, and with a certain amount of Ce4+ turned into Ce3+ and some oxygen vacancies
possibly produced.
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2.2. Electrochemical Behavior of the Modified Electrodes

Cyclic voltammetry (CV) was applied to investigate the electrochemical responses of different
modified electrodes in 1 mM K3Fe(CN)6/K4Fe(CN)6 containing 0.1 M KCl. As shown in Figure 5A,
a higher pair of redox peaks was observed for MC–CeNPs–CS/GCE as compared with other electrodes,
which indicated that MC–CeNPs–CS/GCE had the larger real area and more active sites [43].
Furthermore, the electron transfer capabilities of different modified electrodes were checked using
electron impedance spectroscopy (EIS). Figure 5B shows the EIS curves of GCE (a), CS/GCE (b),
MC–CS/GCE (c), and MC–CeNPs–CS/GCE (d), with a frequency range of 105 to 0.01 Hz. The inset
in Figure 5B exhibits the Randles equivalent circuit model [44]. In the equivalent circuit, Rct is the
electron–transfer resistance, Rs is the bulk electrolyte resistance, CPE is the interfacial capacitance,
and W is the Warburg resistance, which is related to the diffusion of the electrolyte on the electrode
surface. The semicircle in the higher-frequency regions reflects Rct and the straight line in the
lower-frequency region corresponds to the diffusion process [45]. The Rct values of the different
electrodes were in the order of MC–CeNPs–CS/GCE (119.7 Ω) < MC–CS/GCE (148.6 Ω) < GCE



Nanomaterials 2019, 9, 54 6 of 17

(182.4 Ω) < CS/GCE (301.4 Ω). The result indicated that the MC–CeNPs–CS/GCE had higher
conductivity and a faster electron transfer process.
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Figure 5. Cyclic voltammetry (CV) (A) and electron impedance spectroscopy (EIS) results (B) for
glassy carbon electrode (GCE) (a), CS/GCE (b), MC–CS/GCE (c), MC–CeNPs–CS/GCE (d) in 1 mM
K3Fe(CN)6/K4Fe(CN)6 containing 0.1 M KCl. Scan rate: 100 mV·s−1, Frequencies swept: 105 to
0.01 Hz.

2.3. Electrochemical Behaviors of HQ and CC

To investigate the potential applications of the different materials, the electrochemical behaviors
of HQ and CC were also studied through the CV method. Figure 6A–C show the CV responses of GCE
(a), CS/GCE (b), MC–CS/GCE (c), MC–CeNPs–CS/GCE (d) in 0.1 M CBS (pH 5, containing 0.2 mM of
HQ, CC, and their mix solution) at 0.1 V s−1(E: −0.2 to 0.5 V (vs. SCE)), respectively. It can be observed
that the CS/GCE exhibited the poorest redox peaks in all solutions. Furthermore, the current peaks
of the independent presence of HQ and CC on GCE were relatively obvious, but they overlapped
in the mix. However, the peak currents that were obtained from the MC–CS and MC–CeNPs–CS
modified electrodes increased significantly, and the redox peaks were easy to distinguish. Especially,
MC–CeNPs–CS/GCE exhibited well-defined redox currents and selectivity for the analytes, owing to
the excellent conductivity, large specific surface area, and prominent catalytic ability of MC–CeNPs.
In addition, the behavior of MC–CeNPs–CS/GCE in the absence of HQ and CC was investigated
(Figure 6D) and no redox peak was observed, which demonstrated MC–CeNPs–CS did not interfere
with the experiment and could be a suitable material for the determination of HQ and CC.

2.4. Effect of pH

The effect of pH on the simultaneous determination of HQ and CC was studied via CV.
As depicted in Figure 7A, the CV response of 0.2 mM HQ and CC was recorded; in 0.1 M CBS
with different pH values (4.0 to 7.0) at scan rate of 0.1 V s−1; the cathode peak potential (Epc)
and anode peak potential (Epa) shifted negatively, indicating that protons were involved in the
electrochemical redox process [46]. Furthermore, the Epa and Epc exhibited a linear relationship
with increasing pH, expressed as Epa (V) = 0.42–0.049 pH (R2 = 0.992) and Epc (V) = 0.36–0.050 pH
(R2 = 0.994), Epa (V) = 0.55–0.050 pH (R2 = 0.993), and Epc (V) = 0.48–0.050 pH (R2 = 0.997) for HQ and
CC, respectively. In addition, these slopes were close to the ideal Nernst theoretical value (0.059 V,
25 ◦C), implying that an equal amount of proton and electron transfer occurred in the electrochemical
reaction [47].

In addition, it can be seen from Figure 7B–E that the current signal (the cathode peak current Ipc

and oxide peak current Ipa) first increased and reached its maximum value at pH 5 and then decreased
with a further increase of the pH value. The pKa values of HQ and CC are 9.85 and 9.4; at higher
pH, these two molecules were deprotonated and converted to anions. Furthermore, the functional
groups of CS (–NH2) also became deprotonated, which caused the modified electrodes to possess
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negative charges. Thus, the electrostatic repulsion between electrode and analytes would decrease
the adsorption on the electrode. Consequently, the peak currents decreased with increasing pH value.
The maximum current responses of HQ and CC appeared at pH 5, hence pH 5 was selected as an
optimum condition for the following experiment.
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2.5. Effect of Scan Rate

To investigate the reaction mechanism of HQ and CC during the electrochemical process, the effect
of scan rate was further studied via CV with different scan rates (0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14,
0.16 V s−1). As displayed in Figure 8A, it can be observed that the peak current signals of HQ and CC
were enhanced with increasing scan rates, and that Epa shifted positively and Epc moved negatively.
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Furthermore, Figure 8B–E (the red line region) show the linear relationship between Ip and
increasing scan rates (ν), which can be expressed as Ipa = 5.25 + 516.52 ν (R2 = 0.991) and
Ipc = 4.88–501.91 ν (R2 = 0.991) for HQ and as Ipa = 7.06 + 541.07 ν (R2 = 0.992) and Ipc = 2.27–445.53 ν

(R2 = 0.994) for CC. These relationships indicate that the electrochemical process of HQ and CC on
MC–CeNPs–CS/GCE is typical adsorption–controlled [48]. Laviron theory [49] was used to study the
reaction mechanism:

Ip = nFQν/4RT (1)

where n is the number of electrons, F is the Faraday constant (96485 C mol−1), Q is the electric quantity,
R is the universal gas constant (8.314 J K−1 mol−1), and T is the temperature in kelvin. The n can be
calculated, the values are 1.69 and 1.85 for HQ and CC, indicating that the reaction of HQ and CC in
modified electrode is complex, which is not a simple two–electron process [46–48].

In addition, Figure 8B–E (the black line region) depict that the relationship between Ep and the
corresponding log ν. The linear regression equations were Epa = 0.21 + 0.020 log ν (R2 = 0.996) and
Epc = 0.071–0.034 log ν (R2 = 0.996), Epa = 0.32 + 0.021 log ν (R2 = 0.996) for HQ, and Epc = 0.21–0.020
log ν (R2 = 0.995) for CC. The electrochemical parameters, such as charge transfer coefficient (α) and
electron transfer coefficient (Ks), were calculated by following Laviron’s eq [31,49]

Epa = Eθ +

(
2.3RT

(1 − α)nF

)
log ν (2)

Epc = Eθ–
(

2.3RT
αnF

)
log ν (3)

logks = α log(1 − α) + (1 − α)logα− log
(

RT
nFv

)
− (1 − α)

αnF∆E
2.3 RT

(4)

Here, ∆E represents the potential separation between Epc and Epa; the other notation is as
previously defined. Thus, the values of α and ks were estimated to be 0.45, 0.69 s−1 for HQ, and 1.09,
1.05 s−1 for CC. These ks values are better than those for sensors that are based on CS [50,51], indicating
that HQ and CC have faster electron transfer kinetics on MC–CeNPs–CS/GCE.

2.6. Simultaneous Determination of HQ and CC

Differential pulse voltammetry (DPV) was carried out to record the peak currents of HQ and
CC on MC–CeNPs–CS/GCE. The DPV responses for HQ and CC on MC–CeNPs–CS/GCE are
displayed in Figure 9A,B, the independent determination of HQ and CC was obtained, while the
concentration of one species was changed and the other was held constant. As shown in Figure 9A,
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the peak current increased with an increasing concentration of HQ in the presence of 10 µM CC.
Furthermore, the current of CC remained almost constant, which indicated that the oxidation of HQ
and CC on MC–CeNPs–CS/GCE took place individually. In addition, the peak current exhibited
linear relationships with the concentration of HQ (0.5–10 µM and 10–500 µM): two linear calibration
curves were obtained and expressed as Ip = −24.66–0.48 CHQ (R2 = 0.996) and Ip = −29.14–0.11 CHQ

(R2 = 0.996). Similarly, Figure 9B depicts the DPV results of various concentrations of CC in the
presence of 10 µM HQ, and the regression equations found were Ip = −23.27–0.76 CCC (R2 = 0.992)
and Ip = −30.72–0.17 CCC (R2 = 0.997) for the CCC ranges of 0.4–10 µM and 10–320 µM. The detection
limits for HQ and CC were 0.24 µM and 0.13 µM (S/N = 3), respectively. A comparison between
MC–CeNPs–CS/GCE and the other reported electrodes is shown in Table 1. Two linear ranges existed
from low to high concentration for both HQ and CC. This could be attributed to MC–CeNPs–CS/GCE
having limited active sites. During the electrochemical process, the analytes firstly reacted in highly
active sites. When the highly active sites reached saturation, the analytes would be slowly enriched
onto the other sites with low activity. Thus, the slope of low–concentration range was bigger than
that of the high concentration range [52]. Moreover, the active sites were saturated gradually with
increasing concentration, and there was no linear relationship with higher concentration.

To further investigate the performance of the MC–CeNPs–CS/GCE, the DPV responses of HQ
and CC were also studied, when the concentration of these two species increased simultaneously.
As shown in Figure 9C, the current increased with the concentration from 4 to 200 µM. The regression
equations were Ip = −29.42–0.16 CHQ (R2 = 0.996) and Ip = −26.47–0.18 CCC (R2 = 0.992). All of
these results indicate that the sensor can be successfully used for the simultaneous determination of
coexisting CC and HQ, without the species interfering with each other.Nanomaterials 2018, 8, x FOR PEER REVIEW  11 of 17 
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of CC and HQ of different concentrations (4–200 µM).
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Table 1. Comparison of the simultaneous determination of HQ and CC by different electrodes.

Electrode
Linear Range (µM) Detection Limit (µM)

Ref.
HQ CC HQ CC

c–MWCNTs a/CTS b/Au/GCE 0.5–1500 5–900 0.17 0.89 [53]
Cu–MOF199 c/SWCNTs d/GCE 0.1–1453 0.1–1150 0.08 0.1 [54]

Ni/N–MWCNT e 0.1–301 0.1–301 0.01 0.01 [55]
CS/MWCNTs/PDA f/AuNPs g/GCE 0.1–10 0.1–10 0.035 0.047 [56]

Cu3(btc)2
h/CS–ERGO i 5.0–400 2.0–200 0.017 0.069 [57]

CS/f–MWCNT j 0.09–171.4 0.09–155.4 0.027 0.029 [58]
NiO/CNT/GCE 10–500 10–400 2.5 2.5 [59]

NCNF k–GCE 1–400 1–400 0.3 0.4 [60]
CNCs l–RGO/GCE 1–400 1–300 0.87 0.40 [61]

BG m 5–100 1–75 0.3 0.2 [62]
P–rGO n 5–90 5–120 0.08 0.18 [63]

MC–CeNPs–CS/GCE
0.5–10, 0.4–10,

0.24 0.13 This work10–500 10–320

Abbreviations: a carboxy–functionalized multi–walled carbon nanotubes; b chitosan; c metal–organic frameworks;
d single–walled carbon nanotubes; e nitrogen–doped multiwalled carbon nanotubes; f polydopamine; g glod
nanoparticles; h benzene–1,3,5–tricarboxylic acid; i electrochemically reduced graphene oxide; j (CS)–stabilized
multi–walled carbon nanotube; k nitrogen–doped carbon nanofiber; l carbon nanocages; m Boron–doped grapheme;
n porous reduced graphene oxide.

2.7. Reproducibility, Stability, and Selectively

The repeatability of the MC–CeNPs–CS/GCE was examined by monitoring the DPV response of
10 µM HQ and CC for five individual measurements. The relative standard deviations (RSDs) were
2.5% and 3.7% for HQ and CC, respectively. Moreover, the stability of MC–CeNPs–CS/GCE was also
investigated by recording the change in CV plots over 14 days, in 0.1 M CBS containing 200 µM HQ
and CC. As shown in Figure 10A, after 14 days, the current response remained about 96.4% of the
original value. In addition, a selectivity study of the MC–CeNPs–CS/GCE was carried out by DPV
in a mixed solution (10 µM HQ and CC) containing some inorganic ions and organic compounds.
The result in Figure 10B shows that 100-fold Na+, K+, NH4

+, Ca2+, Mg2+, Cu2+, Pb2+, Al3+, Fe3+, Cl–,
NO3

–,SO4
2−, Br-, and I-, and 50–fold resorcinol, nitrophenol, bisphenol A, and phenol did not interfere

with the determination (signal change below 5%). In summary, all of these results indicate that the
sensor has acceptable reproducibility, long-term stability, and satisfactory anti–interference ability for
the determination of HQ and CC.Nanomaterials 2018, 8, x FOR PEER REVIEW  12 of 17 
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for 2 h; this mix solution was poured into petri dishes to evaporate ethanol at room temperature, 
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scraped from the dishes, then calcined at 350 °C for 3 h and 900 °C for 2 h in N2. The carbon–silica–
ceria composite was immersed in HF (10 wt %) in air for 24 h to remove the silica. Finally, the MC–
CeNPs nanocomposite was obtained after washing and drying. The MC was synthesized the same 
way but without Ce(NO3)3·6H2O.  

Figure 10. (A) CV results of 0.1 M CBS containing 200 µM HQ and CC recorded for 14 days. (B) DPV
results of 0.1 M citrate buffer solution (CBS) containing 10 µM HQ and CC, (a) without any interfere,
(b) adding inorganic ions, and (c) adding organic compounds.
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2.8. Real Sample Analysis

To explore the potential for practical application, tap water and lake water were selected as
samples for quantitative analysis and tested by the standard addition method. Each sample was tested
five times by five individually electrodes. The obtained average values and the RSDs are shown in
Table 2. The recoveries were in ranges of 98.5–103.2% and 98–103.4% for HQ and CC, respectively,
suggesting that this sensor has feasibility, reliability, and potential for the determination of HQ and CC
in real samples.

Table 2. Determination of CC and HQ in tap water and lake water samples using MC–CeNPs–CS/GCE
by DPV.

Sample
Added( µM) Found( µM) Recovery (%) RSD (%)

HQ CC HQ CC HQ CC HQ CC

Tap water

0 0 0 0 – – – –
10 10 9.9 9.5 99.0 98.6 2.3 1.2
50 50 51.6 51.7 103.2 103.4 3.6 2.7
100 100 102.7 100.7 102.7 100.7 2.8 3.4

0 0 0 0 – – – –

Lake water
10 10 10.1 9.8 101.0 98.0 1.4 3.6
50 50 49.8 50.6 99.6 101.2 3.1 2.9
100 100 98.5 99.2 98.5 99.2 1.9 2.6

3. Experimental

3.1. Materials and Reagents

Pluronic F127 (EO106PO70EO106, Mw = 13,000) purchased from Shanghai Macklin Biochemical
Co., Ltd., Shanghai, China. HQ, CC, chitosan (CS), tetraethyl orthosilicate (TEOS), Phenol, formalin
(37 wt %), cerium nitrate hexahydrate (Ce(NO3)3·6H2O), citric acid (C6H8O7·H2O), and trisodium
citrate dehydrate (Na3C6H5O7·2H2O) were provided by Sinopharm Chemical Reagent Co., Ltd.
(shanghai, China). All of the chemical reagents were used without further purification. All of the
solutions were prepared with ultrapure water (18.2 MΩ).

3.2. Synthesis of the MC–CeNPs Nanocomposite

The carbon source (resol phenolic resin) was prepared according to the method by Fan et al. [64].
The MC–CeNPs nanocomposite was synthesized via the EISA method. Briefly, 1.6 g F127 was added
into the mix solution (8 g C2H5OH, 1 g 0.2 M HCl) at 40 ◦C and stirred for 0.5 h to obtain a clear
solution. A quantity of 0.2 g Ce(NO3)3·6H2O was dissolved in 5 g resol phenolic resin to form a brown
solution. The two solutions were mixed together, and 2.03 g TEOS was added with stirring for 2 h;
this mix solution was poured into petri dishes to evaporate ethanol at room temperature, followed
thermopolymerization at 100 ◦C. The products, brown or transparent membranes, were scraped
from the dishes, then calcined at 350 ◦C for 3 h and 900 ◦C for 2 h in N2. The carbon–silica–ceria
composite was immersed in HF (10 wt %) in air for 24 h to remove the silica. Finally, the MC–CeNPs
nanocomposite was obtained after washing and drying. The MC was synthesized the same way but
without Ce(NO3)3·6H2O.

3.3. Preparation of Modified Electrode

The glassy carbon electrode (GCE, d = 3 mm) was polished using 0.1 µM, 0.05 µM,
and 0.05 µM Al2O3 to obtain a mirror-like surface, and then sonicated with acetone and ultrapure
water for 5 min. To prepare the electrocatalytic suspension, 3 mg MC–CeNPs was dispersed in
1 mL CS solution (dissolved in 1 wt % acetic acid, 1 mg mL−1), and the solution was sonicated for
30 min, obtaining a black and homogeneous suspension. Subsequently, 10 µL of MC–CeNPs–CS
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solution was dropped onto pretreated GCE and dried using an infrared lamp. Thus, the MC–CeNPs
modified electrode was prepared, denoted as MC–CeNPs–CS/GCE. The electrodes of MC–CS/GCE
and CS/GCE were obtained through a similar method with the same dosage.

3.4. Characterization

Scanning electron microscope (SEM) images and energy dispersive X-ray detector (EDX) spectra
were recorded on a field emission scanning electron microscope (Nova NanoSEM450, FEI Co., Hillsboro,
OR, USA). Transmission electron microscopy (TEM) images and high resolution transmission electron
microscopy (HRTEM) images were obtained using a JEOL 2100 transmission electron microscope
(Tokyo, Japan). X-ray diffraction (XRD) patterns were recorded on a Bruker D4 X-ray diffractometer
(Karlsruhe, Germany) with Ni–filtered Cu Kα radiation (40 kV, 40 mA). The Brunauer–Emmett–Teller
(BET) surface area was calculated from 77 K N2 adsorption–desorption isotherms by NovaWin 1000e
(Quantachrome, Boynton Beach, FL, USA) and the pore size distributions were derived using the
Barrett–Joyner–Halenda (BJH) model. Raman spectra were recorded using a Raman spectrometer
(Dong Woo 500i, Seoul, Korea). The X-ray photoelectron spectroscopy (XPS) measurements were
performed on a Thermo ESCALAB 250 with Al Kα excitation (New York, NY, USA).

3.5. Electrochemical Measurements

Electrochemical experiments were performed using a CS350H electrochemical workstation
(Wuhan Corrtest Instrument Corp., Ltd., Wuhan, China) and a conventional three-electrode cell
was used. The GCE or modified GCE was employed as the working electrode, a saturated calomel
electrode (SCE), and a platinum wire electrode served as the reference electrode and counter electrode,
respectively. The differential pulse voltammetry (DPV) parameters were as follows: potential range,
0–0.5 V; potential increment, 0.004 V; amplitude, 0.025 s, frequency, 5 Hz. The cyclic voltammetry (CV)
measurements were carried out for a fixed potential range and scan rate.

The electrolytes for the electrochemical characterization were 0.1 M KCl and 1 mM
K3Fe(CN)6/K4Fe(CN)6 solutions. As for the determination of HQ and CC, the supporting electrolyte
(citrate buffer solution (CBS)) was prepared using 0.1 M C6H8O7·H2O and Na3C6H5O7·2H2O; the pH
was adjusted by their proportions.

All of the tests were carried out in the presence of oxygen.

4. Conclusions

In this study, a simple and sensitive electrochemical method was established for the simultaneous
detection of HQ and CC. The prepared nanostructure composite possessed a large specific surface
area, clear pore size distribution, excellent stability, high conductivity, and superior electrocatalytic
ability, which improved the adsorption of analytes on the surface of electrode and provided faster
electron transfer. Additionally, the MC–CeNPs–CS/GCE exhibited excellent performance in the
simultaneous detection of HQ and CC with a low detection limit, wide linear range, and high selectivity
and long-term stability. The sensing platform was applied to detection in real water sample with
satisfactory results.
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