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Abstract: Citric acid capped CdS quantum dots (CA-CdS QDs), a new assembled fluorescent probe
for copper ions (Cu2+), was synthesized successfully by a simple hydrothermal method. In this
work, the fluorescence sensor for the detection of heavy and transition metal (HTM) ions has been
extensively studied in aqueous solution. The results of the present study indicate that the obtained
CA-CdS QDs could detect Cu2+ with high sensitivity and selectivity. It found that the existence
of Cu2+ has a significant fluorescence quenching with a large red shifted (from greenish-yellow to
yellowish-orange), but not in the presence of 17 other HTM ions. As a result, Cu2S, the energy level
below the CdS conduction band, could be formed at the surface of the CA-CdS QDs and leads to
the quenching of fluorescence of CA-CdS QDs. Under optimal conditions, the copper ions detection
range using the synthesized fluorescence sensor was 1.0 × 10-8 M to 5.0 × 10-5 M and the limit of
detection (LOD) is 9.2 × 10-9 M. Besides, the as-synthesized CA-CdS QDs sensor exhibited good
selectivity toward Cu2+ relative to other common metal ions. Thus, the CA-CdS QDs has potential
applications for detecting Cu2+ in real water samples.
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1. Introduction

Copper, a cofactor in many important enzymes, is one of the essential trace elements for
the various pathological and physiological activities in the human body [1–3]. Copper is also a
vitally important transition metal which is extensively applied to a lot of respects to industrial and
agricultural produce [4,5]. Despite the deficiency in copper in the body potentially resulting in a
variety of health problems [6,7], excess copper can cause various health problems such as eczema,
kidney disease, gastrointestinal diseases, and damage to serious nervous diseases [8–14]. The high
concentration of copper ions on the water can also cause great influence on aquatic organisms.
What’s more, copper pollution has become a serious environmental issue due to the discharge of
industrial wastewater containing copper (II) ions to surface water [15]. Therefore, China has stipulated
that the maximum level of Cu2+ is 1 mg L−1 (15.7 µM) according to standard GB3838-2002 and
GB5749-2006 [16,17]. Currently, the U.S. Environmental Protection Agency (EPA) action level for
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copper in drinking water is 20.41 µM [18,19]. Therefore, detecting Cu2+ with high sensitivity and
selectivity possesses important meaning for the field of occupational safety and human health.

Until now, great efforts have been devoted to the development of techniques for the determination
of copper (II) in water, such as atomic absorption spectrometry (AAS) [20,21], inductively coupled
plasma-mass spectroscopy (ICP-MS) [22,23], inductively coupled plasma optical emission spectrometry
(ICP-OES) [24,25], anodic cathodic stripping voltammetry (ACSV) [26], electrochemical [27] etc.
However, there are disadvantages of these measuring methods such as being time-consuming, having
complicated procedures and expensive instruments. Thus, simple and rapid testing methods for the
detection of copper ions in an aqueous solution are an urgent need. In recent years, the fluorescence
techniques have received considerable attention owing to their advantages such as feasibilities,
cost-effectiveness, and rapid procedures [28].

Nowadays, semiconductor quantum dots (QDs), contrasting organic fluorophores, have many
obvious advantages of high photobleaching threshold, high fluorescence intensity, narrow excitation,
broad emission bands and excellent photostability [29–32]. Therefore, semiconductor QDs have great
potential applications for solar cells [33,34], light-emitting diodes [35], and ultraviolet absorbers [36,37].
Moreover, QDs as a fluorescence sensor have been extensively studied in determination of copper
ions [2,38–40]. These preponderances of optical properties lead to the increasing use of quantum
dots as the ideal fluorescent probes for the determination of metal ions [41]. Besides, semiconductor
QDs can be further modified by surface ligands and therefore obtain specific fluorescent prober.
So far, these surface ligands with functional groups, including citrate [42], L-cysteine [43,44],
cysteamine [45,46], 3-mercaptopropionic acid [47], thioglycolic acid [48], glutathione [49] and
peptide [50], which have been studied in CdS QDs modification and analytical application. Therefore,
it could be expected that surface ligands modified CdS QDs as fluorescence probe for detecting Cu2+

show promise.
Herein, water soluble citric acid capped CdS QDs was synthesized by a simple one-pot

hydrothermal method of cadmium chloride hemi(pentahydrate), thioacetamide and citric acid.
The obtained CdS QDs shows a high sensitivity and selectivity based on fluorescence quenching
of QDs caused by the interactions between QDs surface and Cu2+. The fluorescence intensity was
reduced and a red-shift in emission was observed in the presence of Cu2+. The synthesized CA-CdS
QDs fluorescent probe has been found to response only with Cu2+ and makes their detection easy
about the presence of other interfering metal ions, such as K+, Ca2+, Mg2+, Al3+, Fe2+, Fe3+, Mn2+, Co2+,
Cr3+, Cd2+, Na+, Ni2+, Zn2+, Pb2+, Hg2+, Li+ and La3+. The obtained CA-CdS QDs as fluorescence
sensor shows excellent selectivity and sensitivity in the detection of Cu2+.

2. Materials and Methods

2.1. Materials

Cadmium chloride hemi(pentahydrate) (CdCl2·2 1
2 H2O, Chengdu Kelon Chemical Reagent

Factory, Chengdu, China), thioacetamide (TAA, Tianjin Zhiyuan Chemical Reagent Co. Ltd., Tianjin,
China), Citric acid (C6H8O7, Tianjin Zhiyuan Chemical Reagent Co. Ltd., Tianjin, China), sodium
hydroxide (NaOH, Aladdin, Shanghai, China), trihydroxymethylaminomethane (Tris, Macklin,
Shanghai, China), hydrochloric acid (Chengdu Kelon Chemical Reagent Factory, Chengdu, China)
and all the metal salts were purchased from local supplier as guaranteed-grade reagents, without any
additional purification. The different aqueous solution prepared to use distilled water. The chemical
reagent used in the experiment was listed in Table S1.

2.2. Instrumentations

The transmission electron microscopy (TEM) and high-resolution transmission electron
microscopy (HRTEM) images of the CA-CdS QDs were carried out on a JEM-2100 Electron Microscopy
(200 kV, JEOL, Tokyo, Japan). The SPA-400 SPM atomic force microscope (AFM, JEOL, Tokyo, Japan)
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was applied to surface topography analysis of the sample. X-ray diffraction (XRD, Rigaku D/MAX-3B,
Rigaku, Tokyo, Japan) with a Cu Kα radiation (λ = 1.54056 Å) was used for the crystalline structure
of the CA-CdS QDs. The thermal gravimetric analysis curves (TGA) were obtained on an American
TA SDT-2960 thermal analyzer (TA, New Castle, DE, USA). The element distribution of the sample
was tested on Hitachi S-4800 field emission electron microscopy (FESEM, Hitachi, Japan) with the
energy dispersive X-ray (EDX) device. X-ray photoelectron spectroscopy (XPS) was analyzed by a
K-Alpha system (Thermo fisher, New York, NY, USA) at room temperature. The fluorescence spectra
were measured by the Horiba Fluorolog-3 spectrofluorometer (Horiba, New York, NY, USA) with
an emission slit width set at 3 nm. The fluorescence quantum yield was obtained according to the
following equation [14]:

QY(sample) = (Fsample/Fref)(Aref/Asample)(ηsample
2/ηref

2)QYref (1)

F, A and η are the spectrally integrated photon fluxes (area under the emission spectra), the absorbance
at the excitation wavelength and the refractive index of the solvent, respectively. Rhodamine 6G in
ethanol as the reference standard (QY = 95%). Hamamatsu compact fluorescence lifetime spectrometer
C11367 (Quantaurus-Tau, Hamamatsu, Japan), using an LED light source with λex = 365 nm, was used
to measure the time resolved photoluminescence lifetime decays. Fourier transformed infrared (FTIR)
spectra were performed on an AVATAR360 FT-IR spectrophotometer (Thermo Fisher, New York, NY,
USA) during the range 400–4000 cm-1. Raman spectra were measured at room temperature using a
Renishaw inVia Raman microscope (Renishaw, London, UK). UV-vis spectra were recorded with a
UV-1800 spectrophotometer from Jinghua Instruments (Shanghai, China) with a wavelength range
between 260 nm and 800 nm. An inoLab pH Level 1 (Weilheim, Germany) precision pH meter was
used for testing the pH value.

2.3. Methods

The CdS QDs was synthesized using citric acid as the surface modification through hydrothermal
method [42,48]. In brief, 0.25 mmol CdCl2·2.5H2O and 0.5 mmol citric acid were dissolved in 50 mL
distilled water under magnetic stirring. After 15 min, 1 M NaOH, as a pH regulator, adjust pH values
to 10. Then, 0.0625 mmol TAA was added under magnetic stirring. With another magnetic stirring
for 30 min, the mixture solution was transferred to a 100-mL Teflon-lined stainless-steel autoclave,
which was maintained at 120 ◦C for 2 h and then cooled to room temperature. Finally, a bright yellow
solution was obtained. The obtained solution was transferred to dialyze using a dialysis bag with a
cutoff molecular weight of 3500 Da for 4 h. The synthesized CA-CdS QDs solution was washed with
ethanol and water by centrifugation (8000 rpm) and dried at 40 ◦C for 24 h, a yellow powder was
obtained. The yellow powder was characterized by FTIR, Raman and XRD spectra. The Mapping and
EDS were measured by filter which was soaked in CA-CdS QDs solution

2.4. Selective Detection of Cu2+

To study the sensitivity and selectivity of the proposed system, the following procedure was
carried out. The pH value of synthesized CA-CdS QDs solution was regulated by 0.3 M Tris and
0.3 M HCl buffer solution. After the contrast experiments, the maximum fluorescence quenching
was obtained at pH 8.0. The different concentrations of the aqueous solution for all metal ions were
prepared using distilled water and stored at room temperature. The various concentrations of metal
ion were prepared by mixing the required amount of metal ion solution with CA-CdS QDs solution.
The concentration of interference metal ions was 50 µM. Initially, 0.5 mL 0.3 M Tris buffer solution and
0.25 mL 0.3 M HCl buffer solution was added into a 10 mL calibrated test tube. The solution was diluted
with ultrapure water to 5 mL. Then 0.5 mL CA-CdS QDs and 100 µL various concentrations of Cu2+

were added into the mixture solution. The fluorescence intensity was measured after equilibrating
for 20 min.
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3. Results and Discussion

3.1. Characterization

The compositions and crystalline structures of the obtained CA-CdS were characterized as follows.
The X-ray diffraction pattern of the synthesized CA-CdS QDs was shown in Figure 1a. The peaks of
the pattern indicated the as-synthesized CA-CdS QDs is crystalline and the presence of (111), (220),
and (311) planes agrees well with the cubic zinc blende structure of CdS (JCPDS card no. 10-0454).
The widened XRD diffraction peaks indicate that the synthesized CA-CdS QDs has a small size.
The crystallite sizes were estimated to be 8.2 nm according to Scherrer equation. The nanoparticles
were extracted by adding 0.1 M HCl from this solution. Perhaps, the citric acid ligand adsorbs weakly
onto the CA-CdS QDs surfaces under the acidic condition, resulting in the CA-CdS QDs lead to
rapid aggregation and attributing the structure to the sample. The Raman spectra of the synthesized
CA-CdS QDs carried presented in Figure 1b. Two prominent peaks at ~300 and ~600 cm−1 represent
a well agreement with the first-order longitudinal optical (1LO) phonon peak and the second-order
longitudinal optical (2LO) phonon peak of CdS [51], respectively. These results correspond to the
Raman spectral data reported on the literature [52,53].
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The XPS spectra were analyzed to investigate the composition and chemical states of the
as-synthesized CA-CdS QDs. The resulting survey spectra are presented in Figure 2. The XPS spectra
of O 1s, Cd 3d, S 2p, C 1s, and Na 1s were displayed in Figure 2a, which indicates the existence of
Cd, S, C and O elements. Figure 2b displays the peaks at 404.9 eV and 411.6 eV are in agreeance with
Cd 3d5/2 and Cd 3d3/2 peaks, respectively. In Figure 2c, the characteristic peaks centering at 161.2 eV
and 162.3 eV correspond to S 2p3/2 and S 2p1/2, respectively. The peak at 167.9 eV was assigned
to the form of SO2. As depicted in Figure 2d, the C 1s peaks show their binding energy values at
284.8 eV, 286.3 eV and 288.2 eV, which are ascribed to C–H/C–C, C–OH, and C(=O)O, respectively [54].
The O 1 s spectra Figure 2e indicates three peaks with binding energies at 535.8 eV (Auguer peak of
sodium), 532.8 eV (–C–O–H) and 531.26 eV (–O–C=O), respectively. A simultaneous TGA and DTG
analysis of synthesized CA-CdS QDs by hydrothermal method without calcination at a heating rate of
10 ◦C/min from room temperature to 800 ◦C in N2. The result was shown in Figure S1. The boiling
point of citric acid is approximately 470 ◦C. The molar ratio of the citric acid ligand to CdS is about
1:9. This illustrates that the presence of hydroxyl and carboxylic groups on the surface and citric acid
successfully decorated on the surface of CdS QDs [54].

To further confirm the citric acid decorated on the surface of CdS QDs, Figure 3 shows the FT-IR
spectra of citric acid and citric acid modified CdS QDs. The absorption at 2923 cm−1 was due to
the C–H stretching of citric acid and broad peak appeared at 3000–3600 cm−1 corresponded to the
absorption of hydrogen bonded O–H groups in citric acid. The characteristic peaks of C–C stretching
and C–O asymmetrical appear at 1741 cm−1, and 1471 cm−1, respectively [55]. The citric acid modified
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CdS QDs showed similar FT-IR spectra with three characteristic peaks. The peaks located at 1395 and
2935 cm−1 match well with the C–H bending. The characteristic peaks of C=O stretching and C–O
asymmetrical appear at 1251, and 1588 cm−1, respectively [56]. The results suggest that citric acid
successfully decorated the surface of CdS QDs. The EDX spectrum (Figure 3b) further confirms the
CdS QDs has been successfully modified by citric acid, because C and O elements are attributed to
citric acid. As shown in Figure 3c–f), the element mapping of as-synthesized CA-CdS QDs was carried
out for analyzing the element distribution. The results indicated that uniform distribution of Cd, S and
O throughout was displayed.Nanomaterials 2018, 8, x FOR PEER REVIEW  5 of 18 
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The size, shape and morphologic of CA-CdS QDs were studied by the TEM, HRTEM and AFM
images (Figure 4). It was found that these particles are quasi-spherical and are uniform, which were
approximately 2.5 nm in diameter. The HRTEM image (Figure 4b) indicates a lattice spacing of 3.38 Å,
which corresponds to the (111) plane of the cubic zine blende structure of CdS. AFM was used to
examine further the morphology of synthesized CA-CdS QDs. The typical two-dimensional (2D),
three-dimensional (3D) AFM images were shown in Figure 4c,d, respectively. According to the result,
the size of CA-CdS QDs was recorded. Figure 4e exhibited the histogram of the height of the CA-CdS
QDs, which shows mostly QDs are 2.3 ± 0.5 nm sized.

The absorption spectra (Figure 5a) exhibits the absorption edges of the CA-CdS QDs, showing
a large blue shift compared with the bulk CdS absorption peak at 515 nm [57]. Generally, the blue
shift of absorption peak was caused by quantum confinement [58]. The absorption edge, obtained by
the intersection of the sharply decreasing region of the spectrum with the baseline, corresponds to
band gap of 2.84 eV [47]. As shown in Figure 5b, according to the linear between (αhυ)2 and photon
energy (hυ) [59–61], the band energy was determined to be 2.81 eV. In contrast of the band gaps of
CA-CdS QDs by the two methods mentioned above, the same result could be concluded. Based on
the effective mass approximation, the Brus equation was applied for determining the grain size of
CA-CdS QDs [61–65]:

E(QDs) = Eg + (h2/8µR2) − (1.8e2/4πεε0R) (2)
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where Eg is the band gap of the bulk CdS (2.42 eV), h is the reduced Plank’s constant (6.625 ×
10−34 J· s), R is the radius of particle, e is the charge of the electron (1.6 × 10−19 C), ε0 is the vacuum
dielectric constant (ε0 = 8.854 × 10−12 F/m), ε is the semiconductor dielectric constant (5.7), µ = (1/me

+ 1/mh)−1, me and mh are effective masses of the electrons and holes, respectively, and m0 is the free
electron mass (m0 = 9.108 × 10−31 kg). With the effective masses of electrons (me = 0.19 m0) and
holes (mh = 0.8 m0) the grain size of synthesized CA-CdS QDs was calculated to be 2.01 nm, which is
consistent with the AFM and HRTEM. A large Stokes shift was observed, which is ascribed to be due
to the surface defect emission [49]. The emission spectrum (Figure 5c) manifests that the emission
peak remains little changed with the variation of excitation wavelength in the range of 400–430 nm.
The result suggests that the maximum emission spectrum is obtained at an excitation wavelength of
420 nm. The CA-CdS QDs emitted greenish yellow color was exhibited on the corresponding CIE
1931 chromaticity diagram (Figure 5d) with a corresponding CIE coordinates at (0.44, 0.50) and the
correlated color temperature (CCT) is 3652.7 K. The quantum yield of the CA-CdS QDs was calculated
to be 18.82% when the original solution was diluted 200 times. Thus, the CA-CdS QDs will have good
application prospects in analytical chemistry.
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3.2. Selective Fluorescence Quenching of CA-CdS QDs by Cu2+

Generally, the selectivity is a pivotal parameter for the fluorescence sensors. The fluorescence
intensity of the sensors should be affected only by the target ions without interfering with other
metal ions, which is still a difficult subject due to many metal ions having potential effects on the
QDs fluorescence intensity. To assess the selectivity of the proposed fluorescence sensors system,
the influences of various coexistence ions on the fluorescence intensity of CA-CdS QDs system were
studied. In this work, the response to other commonly metal ions such as Na+, Ba2+, K+, Al3+, Mg2+,
Cr3+, Hg2+, Mn2+, Cd2+, Co2+, Cu2+, Pb2+, Ca2+, Fe3+, Fe2+, La3+, Zn2+ and Ni2+ ions at a concentration
of 50 µM were monitored in aqueous solutions, respectively.

As shown in Figure 6a, a fluorescence quenching was observed with the addition of Cu2+, while a
large red shift appeared. The fluorescence area was used to check the quenching considering the
important red shift. Besides, contrasting the fluorescence area of CA-CdS QDs before and after add
interfering ions (Figure 6b), it can be easily observed that a significant fluorescence quenching upon
addition of Cu2+. Hg2+ and Cr3+ ions have slightly quenched the fluorescence area. These results
suggested that only Cu2+ causes a measurable fluorescence quenching with a large red shift to CA-CdS
QDs. The pure citric acid was handled through hydrothermal using the same process as preparing the
CA-CdS QDs, in order to eliminate the effects of citric acid. As shown in Figure S2a, the possibility for
citric acid decomposes into carbon dots is minimal, because of the undetectable fluorescence intensity
compared with CA-CdS QDs. The fluorescence spectrum of ultrapure water, citric acid solution after
the heat treatment in the absence and in the presence of Cu2+ are shown in Figure S2b. The result
indicates that the fluorescent center in citrate acid is caused by the back of the water. Hence, Citric acid
has no effect on the fluorescence detection system and the CA-CdS QDs can be applied as a selective
fluorescence sensor for Cu2+ by the fluorescence quenching.
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3.3. Mechanism for the Interaction Between Cu2+ and CA-CdS QDs

The existence of Cu2+ leads to the fluorescence quenching of CA-CdS QDs in solution. Red shift
appears on the band-edge emission from the fluorescence spectrum. The red shift can be considered that
a new energy level below the conduction band (CB) of CdS was formed due to photochemical reduction
of some pre-adsorbed Cu2+ by the CA-CdS QDs [60]. The XPS spectra of elements in the CA-CdS QDs
after the interaction with Cu2+ are presented in Figure S3. According to the Figure S3f, the Cu 2p3/2
peaks shown at 932 and 933.1 eV can be assigned to the Cu+ and Cu2+ states, respectively. The peaks
appearing at about 952 and 954.1 eV are ascribed to the existence of Cu+ and Cu2+, respectively. As a
result, Cu2S exists on the surface of CA-CdS QDs. The lower solubility products (Ksp) of either CuS
or Cu2S than that of CdS (the Ksp of CuS, Cu2S, and CdS are 8 × 10−37, 3 × 10−49 and 1 × 10−27

respectively) [60]. Thus, it can be guessed that Cu+ and Cu2+ could precipitate out of the solution
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and sulfides deposit at the CA-CdS QDs surface. Moreover, the fluorescence spectra of CA-CdS QDs
showed substantial red shift upon addition of Cu2+. It can be concluded the exclusive Cu2S deposition
at the surface of CA-CdS QDs.

In order to verify the proposes of the exclusive Cu2S deposition at the surface of CA-CdS QDs,
the UV–vis spectra of CA-CdS QDs with 0, 1, 5, 10, 30 and 50 µM were measured, respectively,
and displayed in Figure 7a. The absorbance peak is unchanged at all of the absorbance spectra at
390 nm while the new absorption peak arises at 525 nm. The results suggest that the change of
absorption spectra is not attributed to the growth of large CA-CdS particles due to the absorption
of bulk CdS at 515 nm, which further confirms Cu2+ bind onto the surface of CA-CdS QDs and get
reduced to Cu+ upon addition of Cu2+. In order to improve understanding the interaction between
CA-CdS QDs and Cu2+, the fluorescence lifetime decay curves of CA-CdS QDs in the absence and
presence of Cu2+ were measured. As shown in Figure 7b, it can be easily found that the fluorescence
lifetime would consistently be shortened upon addition of Cu2+. All the decay lifetime curves can be
fitted by a three-exponential formula [66–68] as:

I = A1exp(−t/τ1) + A2exp(−t/τ2) + A3exp(−t/τ3) + c (3)

where τ1, τ2 and τ3 are the components of the fluorescence lifetimes, respectively. A1, A2 and A3

are the corresponding fitting parameters, and c is a constant. These parameters of fitted values are
shown in Table 1. The results suggest that the fluorescence lifetime τ dropped from 38.6 ns to 12.1 ns
upon addition of Cu2+. It means that the electron-hole recombination process is accelerated due to the
presence of Cu2+.
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Table 1. The fitted values of the fluorescence lifetime decay curves.

Sample τ A1 τ1 A2 τ2 A3 τ3

CA-CdS QDs 38.6 432.267 0.711 137.739 3.958 39.992 53.070
CA-CdS QDs with Cu2+ 12.1 541.551 0.552 118.948 3.272 30.542 22.198

The energy-level diagram of Cu2+ adsorbed on the surface of the CA-CdS QDs is displayed
in Figure 8. Sulfur vacancies are easily formed into the surface of CA-CdS QDs. A great quantity
of electrons will be excited from the valence band (VB) to the CB when the sample is under UV
light. Meanwhile, photogenerated holes are produced at the VB. Subsequently, the mechanism of the
coordination interaction between CA-CdS QDs and Cu2+ is as follows [69]:
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In the absence of Cu2+

CdS + hυex → CdS
(
e−/h+

)
→ CdS

(
e−tr /h+tr

)
(4)

CdS
(
e−tr /h+tr

)
→ CdS + hυ1(570 nm) (5)

In the presence of Cu2+

CdS + hυex → CdS
(
e−/h+

)
+ CdS

(
e−tr /h+tr

)
(6)

CdS
(
e−tr /h+tr

)
+

(
V2+

S ·Cu+
)
→ CdS

(
h+tr

)
+

(
V2+

S ·Cu+e−
)

(7)

CdS
(
e−tr /h+tr

)
+

(
V2+

S ·Cu+
)
→ CdS +

(
V2+

S ·Cu+e−
)
+ heat (8)

CdS
(
h+tr

)
+

(
V2+

S ·Cu+e−
)
→ CdS +

(
V2+

S ·Cu+
)
+ hυ2(610 nm) (9)

Process 4: A great quantity of electrons will be excited from the VB to the CB when the sample is under
UV light.
Process 5: The photogenerated electrons in the shallow or deep trap recombinated with the hole in the
VB of CA-Cd QDs sent out yellow emission (~570 nm).
Process 6: The same process as the process 4.
Process 7: The ultra-small Cu2S are formed on the surface of CA-CdS QDs result in the presence of
Cu+ sites. An electron was trapped by Cu+ sites.
Process 8: Recombination of shallow or deep trapped electrons in the CB with hole in the VB of
CA-CdS QDs and some electron were trapped by Cu2+ sites with a new nonradiative channel.
Process 9: Recombination of shallow or deep trapped electrons in the CB with hole in the VB of
CA-CdS QDs and sent out an orange emission (~610 nm).
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Besides on these results, Cu2+ was absorbed at the surface of CA-CdS QDs and was reduced
immediately to Cu+ at the low concentrations of Cu2+. Therefore, a new channel for electron-hole
recombination was created because of the adsorbed Cu2+, both radiative and nonradiative. Thus,
the electron-hole recombination process was accelerated and lead to reduced lifetime [70–72].

3.4. Effect of pH on the Fluorescence Quenching by Cu2+

Basically, pH value acts an important role in the present fluorescence sensors system, which can
influence the deprotonation or protonation process of the CA-CdS QDs [73]. In this work, the charge
on the surface of the QDs would up to the degree of deprotonation of the carboxyl groups and
may influence the electron-hole recombination process, thereby causing the fluorescence quenching.
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Thus, the pH value of this system was studied in the range of 6.0–10.0 with a 0.3 M Tris and 0.3 M
HCl. As shown in Figure 9a, the fluorescence quenching is observed at all pH values. Besides,
the fluorescence spectra show a large red shift due to the existence of Cu2+. As presented in Figure 9b.
Maxima fluorescence area of the CA-CdS QDs was obtained at pH 8.0. The fact can be attributed to
CA-CdS QDs was relatively more stable at pH 8.0 [42]. Citric acid dissociation will happen in the
solution, if the H3A to represent the citric acid molecules and citric acid in the liquid phase is the H3A,
H2A−, HA2− and A3− four forms coexist. When temperature is fixed, the form proportion is only
affected by the pH value. The pKa1, pKa2 and pKa3 values of Citric acid were 3.13, 4.76 and 6.40,
respectively. At low pH (pH < 6.0), the main existence of citric acid is H2A and HA2−. With pH value
rises, the main formation of citric acid in solution was converted from HA2− to A3−. When it comes to
8, the solution of CA-CdS QDs reaches its most stable state due to A3− with Cd2+ complexing constant
is greater than the H2A- and HA2-. But if the pH is too high, a large number of OH combine with Cd2+

to form Cd(OH)2. As a result, the fluorescence intensity of quantum dots decreases. Therefore, at pH
8.0, the CA-CdS QDs provided the maximum fluorescence area and quenching area. Therefore, the pH
8.0 of sensing system was used in this work.
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3.5. Sensitive Fluorescence Quenching of CA-CdS QDs by Cu2+

In order to evaluate the potential application of the CA-CdS QDs, the effects of various
concentrations Cu2+ were investigated. The fluorescence intensity of CA-CdS QDs gradually quenching
with the concentration increasing of Cu2+ has been shown in Figure 10a. The fluorescence quenching
can be seen with a large red shift. As shown in Figure 10b,c, the calibration curve between A0/A
(where A0 and A are the fluorescence area of the CA-CdS QDs in the absence and presence of
Cu2+, respectively) and the concentration of Cu2+ are observed in the ranges of 0.01–5 µM and
7–50 µM, respectively. The correlative coefficient R2 is 0.995 and 0.998, respectively, indicating that
the experimental data have a good agreement with the fitting curves. Based on a signal-to-noise ratio
(S/N) of 3, the limit of detection (LOD) was calculated to be 9.2 nM.

Compared with other fluorescence sensor in Cu2+ sensing performances shown in Table 2,
the linear rang of this work is superior and outstanding LOD corresponding to the linear range
of 0.01–5 µM is extremely low. In addition, the current system has better sensitivity. In order to
study the anti-interference of the proposed system, the relative fluorescence area (A0/A) have been
displayed (Figure 11). As a result, the sensing of Cu2+ is slightly influenced by the presence of generally
coexisting ions. Therefore, the proposed sensing system has a potential application in detecting Cu2+

at low concentration levels with slightly influenced in the presence of interfering ions.
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Table 2. Comparison of different fluorescence sensor in Cu2+ sensing performances.

Fluorescent Probe Linear range
(µM)

Detection Limit
(µM)

Sensitivity
(µM) Ref.

zinc-dopedAgInS2 QDs 0–340 0.0273 0.004 [2]
ZnSe QDs 1–6 0.47 0.22 [29]

PEG@ZnO QDs 0.01–0.2/2–10 0.0033 0.1768 [30]
CdTe-L QDs 0.515–15 0.015 0.4626 [31]

Cys-CdS QDs 2–10 1.5 0.001 [32]
CA-CdS QDs 0.01–5 0.0092 0.06 This work
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3.6. Application in Real Water Samples

In order to confirm the feasibility of the proposed sensors, Cu2+ ions in tap water as real water
samples were studied. As Table 3 shows, the recoveries of Cu2+ ions were found to be above 95%.
The results indicated that the satisfactory recoveries are obtained with relative standard deviation
(RSD) less than 4.0%. The method is detecting successfully the real water samples, which attests
the feasibility of the present sensor for the detection of Cu2+ ions with good accuracy and reliability.
Therefore, the proposed QDs have potential applications for detecting Cu2+ ions as chemical and
biological sensors.

Table 3. Analytical results of tap water samples.

Samples Spiked (µM) Found (µM) Recovery (%, n = 5) RSD (%, n = 5)

Tap water 10 9.97 99.7 2.9
20 19.16 95.8 3.2

4. Conclusions

In summary, citric acid capped CdS QDs has been synthesized through a simple hydrothermal
method. A detailed characterization showed that citric acid successfully decorated on the surface of
CA-CdS QDs. The CA-CdS QDs shows the excellent selectivity and sensitivity for Cu2+. The presence
of Cu2+ leads to the fluorescence quenching of CA-QDs with a large red shift (from 570 to 610 nm).
A linear relationship was obtained between the fluorescence response and the concentration of Cu2+

from 0.01 µM to 50 µM. The limit of detection (LOD) is 9.2 nM, which is far below the detection line
of either EPA or Chinese standard. Moreover, the sensor exhibits good selectivity toward Cu2+ in
the presence of other common metal ions. Therefore, the proposed sensor of CA-CdS QDs has the
potential application in the determination of Cu2+.
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Figure S3: The (a) survey, (b) Cd 3d, (c) S 2p, (d) C 1s, (e) O 1s and (f) Cu 2p XPS spectra for the CA-CdS QDs after
interaction with Cu2+; Table S1: Chemical reagents used in the experiment.
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