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Abstract: In the present study, nanoscale rod-shaped manganese oxide (MnO) mixtures were
successfully prepared from graphitic carbon nitride (C3N4) and potassium permanganate (KMnO4)
through a hydrothermal method. The as-prepared MnO nanomixtures exhibited high activity in the
adsorption and degradation of methylene blue (MB). The as-synthesized products were characterized
by scanning electron microscopy (SEM), transmission electron microscopy (TEM), surface area
analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Furthermore,
the effects of the dose of MnO nanomixtures, pH of the solution, initial concentration of MB, and
the temperature of MB removal in dye adsorption and degradation experiments was investigated.
The degradation mechanism of MB upon treatment with MnO nanomixtures and H2O2 was studied
and discussed. The results showed that a maximum adsorption capacity of 154 mg g−1 was obtained
for a 60 mg L−1 MB solution at pH 9.0 and 25 ◦C, and the highest MB degradation ratio reached 99.8%
under the following optimum conditions: 50 mL of MB solution (20 mg L−1) at room temperature
and pH ≈ 8.0 with 7 mg of C, N-doped MnO and 0.5 mL of H2O2.

Keywords: hydrothermal method; manganese oxide; adsorption; degradation; nanomixtures

1. Introduction

Water pollution is currently among the major environmental challenges and has attracted
increasing research attention. The wide use of dyes has resulted in organic pollution in water, and
dyes are considered a severe threat to ecosystems [1–6]. As untreated dyes are very active and stable,
adsorption followed by oxidative degradation has emerged as a practical and effective technique to
accelerate the treatment of dye effluent pollution. Thus, the following technological systems have
been developed for the removal of dyes from water: physical adsorption [7], biodegradation [8,9]
and chemical reaction and adsorption [10]. In recent years, photocatalytic decomposition [11–13] and
chemical oxidation reduction have become highly efficient techniques for the degradation of methylene
blue (MB) in water.

Over the last decades, nanomixtures, mostly nanorods/nanotubes-like structured, have been
widely used for contaminant adsorption/removal [14–17]. Cavallaro et al. [15] investigated
comprehensively the effect of anionic surfactants (sodium dodecanoate and sodium dodecylsulfate)
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on pristine halloysite nanotubes (HNT), which was beneficial for the solubilization and delivery of
hydrophobic compounds from such hybrid materials. Recently, the oxidation degradation of dyes in
water using environmentally benign oxidants has attracted considerable attention [18–21]. On this
basis, some nontoxic and low-cost metal oxides have been widely used as catalysts for the oxidation of
organic compounds [22–25]. Huang et al. [26] reported the application of Prussian blue (PB)-modified
γ-Fe2O3 magnetic nanoparticles (PBMNPs) in the degradation of MB. The PBMNPs were used as
peroxidase-like catalysts with H2O2 as the oxidant to completely degrade MB. The optimal conditions
were as follows: pH range of 3 to 10, degradation temperature of 25 ◦C and degradation time of
120 min. However, the preparation process for the PBMNPs was very complicated and involved the
use of toxic chemicals. Wolski et al. [27] investigated the effects of ZnO, Nb2O5 and ZnNb2O6 on the
degradation of dyes, and MB could be completely degraded under optimal conditions. Nevertheless,
the as-reported metal oxides (Nb2O5 and ZnNb2O6) were highly toxic and expensive.

In recent years, the synergistic application of metal oxides and H2O2 as peroxidase-like catalysts
and an oxidant, respectively, in the degradation of dyes has been reported. Metal oxides can catalyze
the generation of active oxygen (such as hydroxyl radicals (HO•), peroxides (HO2

-) and superoxide
anions (HO2

•)) upon H2O2 treatment, and this active oxygen can catalyze the degradation of dyes
in water [28]. Saha et al. reported a novel method to prepare nanodimensional copper ferrite which
exhibited high activity in the degradation of dyes in water with H2O2 as an oxidant [29]. The researchers
used ethylenediaminetetraacetic acid and citric acid as the complexing agent and the fuel, respectively,
in a modified complexometric method to prepare CuFe2O4, which had the capability to degrade 96% of
the total MB. Because of its size-, structure- and morphology-dependent characteristics, and the variety of
unique physical, chemical and functional properties, hausmannite (MnO) has been widely investigated
in the fields of materials science, chemistry and physics. Zhang et al. prepared MnO nanocrystals
of various sizes and shapes by soft-template self-assembly and studied the synthetic conditions and
degradation mechanism of MB with H2O2 treatment [30]. In their report, cetyltrimethylammonium
bromide (CTAB), polyvinyl pyrrolidine (PVP) and P123 were used as structure-directing agents;
manganese sulfate was used as the source of manganese; and the size and shape of MnO could
be controlled by varying the growth time, reaction temperature, surfactant, and manganese source.
The as-prepared MnO showed a very high capacity for (above 99.7%) MB degradation.

Recently, Because of its excellent chemical and thermal stabilities and nontoxicity, graphitic carbon
nitride (g-C3N4) [31–35], a novel 2D material, which was prepared through simple and green pyrolysis
of melamine, has been used in many applications, such as energy conversion, biomedical applications
and hydrogen production. According to the literature, g-C3N4 can absorb aromatic pollutants via the
conjugated π region, which makes g-C3N4 a potential effective adsorbent. In this paper, the preparation
of MnO Nanomixtures through a hydrothermal method with C3N4 as the source of carbon and nitrogen
and potassium permanganate (KMnO4) as the source of manganese was investigated. The effects of
the hydrothermal reaction time, molar ratio of C3N4 to KMnO4, and hydrothermal temperature on the
adsorption capacity for MB were studied. In addition, the adsorption and degradation properties of
the as-prepared product were systematically studied, and thermodynamic and kinetic analyses of the
adsorption–degradation process were performed through experiments.

2. Materials and Methods

2.1. Materials

All reagents were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd, Shanghai,
China. All reagents were of analytical reagent (AR) grade and were used as received without
further treatment.
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2.2. Synthesis of C3N4

C3N4 was prepared by heating melamine (10 g) at 650 ◦C for 4 h in an air atmosphere. After the
heat treatment, a light yellow solid was obtained.

2.3. Synthesis of MnO Nanomixtures

MnO nanomixtures were prepared via a hydrothermal method with C3N4 as the source of carbon
and nitrogen and potassium permanganate (KMnO4) as the source of manganese. Typically, certain
amounts of C3N4 power and KMnO4 were put into a 100 mL hydrothermal reactor. The molar ratios
of C3N4 to KMnO4 were 2.0, 4.0 and 6.0, and the mass concentration of the reactants (C3N4 + KMnO4)
in the solution was 12%. The hydrothermal temperature was set as 180 ◦C, and the hydrothermal
reaction times were 24 h and 30 h. The as-prepared MnO nanomixtures with a hydrothermal reaction
time of 30 h were denoted MnO-X (X = 2, 4, and 6), where X represents the reactants molar ratio of
C3N4 to KMnO4. The sample prepared with a molar ratio of 4.0 and a hydrothermal reaction time of
24 h was denoted as MnO-24.

2.4. MB Adsorption and Degradation Experiments

In the adsorption experiments, 50 mL of 10−60 mg L−1 MB aqueous solutions containing 5 mg
of the MnO nanomixtures adsorbent were stirred at different temperatures (293.15−333.15 K) and
different pH values (3.0–11.0) for MB adsorption. After an adsorption time of 20–300 min, the adsorbent
solution was centrifuged, and the supernatant was examined by a UV-Vis spectrophotometer (TU-1900,
Beijing Persee Instruments Co. Ltd., Beijing, China) to determine the MB concentration. The maximum
wavelength of MB absorption was observed at λ = 665 nm.

The reusability of the MnO nanomixtures adsorbent was also investigated via 10 consecutive
adsorption/desorption cycles. Briefly, the MnO nanomixtures with MB adsorbed were stirred in 50 mL
of HCl solution (0.1 M) for 120 min, and then, the adsorbent was washed three times with distilled
water. The adsorbed MB was desorbed from the MnO nanomixtures adsorbent, and the recovered
MnO nanomixtures adsorbent was used to adsorb MB in another cycle. This cycle of adsorption and
desorption was performed 10 times. The amount of MB adsorbed (qt) was calculated according to
Equation (1):

qt =
(C0 − Ct)V

W
(1)

where C0 is the initial concentration of MB (mg L−1), Ct is the concentration of MB at contact time t
(mg L−1), V is the volume of the MB solution (L), and W is the weight of the adsorbent (g).

The MB degradation process was carried out in a 100 mL beaker containing 50 mL of a MB
dye solution (20 mg L−1 or 40 mg L−1), 0.5 mL of 30% H2O2, and 7 mg of MnO nanomixtures.
The degradation time was varied from 0 h to 24 h, and the MB concentration was monitored by
a UV-Vis spectrophotometer.

2.5. Characterization

MnO nanomixtures were characterized by X-ray diffraction (XRD, SMART LAB, Rigaku,
Akishima, Japan) with CuKa radiation (λ = 1.54 Å), scanning electron microscopy (SEM, Field Emission
Gun FEI QUANTA FEG 250, FEI Corporate, Hillsboro, OR, USA), transmission electron microscopy
(TEM, HT7700, High-Technologies Corp., Ibaraki, Japan) and X-ray photoelectron spectroscopy (XPS,
ESCALAB 250Xi XPS, Thermo Fisher Scientific, San Jose, CA, USA). The Brunauer−Emmett−Teller
(BET) method was utilized to calculate the specific surface areas (ASAP2420 surface area analyzer,
Micromeritics, Norcross, GA, USA). The pore volume and pore size were calculated from the
adsorption–desorption isotherms using the Barrett−Joyner−Halenda (BJH) model. The total pore
volume (Vtotal) was estimated from the amount adsorbed at a relative pressure (P/P0) of 0.998.
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2.6. Kinetic, Adsorption and Degradation Isotherm Models

The kinetics of the adsorption process were studied through kinetic models in our work.
The pseudo-first-order kinetic model (2) and pseudo-second-order kinetic model (3) were adopted to
fit the experimental data.

ln
(
qe − qt

)
= lnqe − k1t (2)

t
qt

=
1

k2qe
2 +

t
qe

(3)

In these equations, qe represents the equilibrium absorption capacity (mg g−1), qt represents the
absorption amount (mg g−1) at an absorption time of t (min), and k1 and k2 are the pseudo-first-order
rate constant (min−1) and the pseudo-second-order rate constant (g mg−1·min−1), respectively.

The Langmuir isotherm model (4) was adopted to investigate the surface properties, adsorbate
affinity and adsorption capacity of MnO nanomixtures.

Ce

qe
=

1
qmb

+
Ce

qm
(4)

In this equation, qe (mg g−1) is the equilibrium adsorption capacity, qm (mg g−1) is the maximum
adsorption capacity (corresponding to complete monolayer coverage), Ce (mg L−1) is the adsorbate
concentration at the adsorption equilibrium, and b (L mg−1) is a constant. The kinetics of the
degradation process was also investigated via the pseudo-first-order kinetic model (2).

2.7. Thermodynamic Evaluation of the Adsorption Process

The thermodynamics of the adsorption process were obtained from Equations (5)–(7).

Kc =
qe
Ce

(5)

∆G0 = −RTlnKc (6)

lnKc =
∆S0

R
− ∆H0

RT
(7)

In these equations, ∆G0 is the standard Gibbs free energy change, ∆H0 is the standard enthalpy
change, ∆S0 is the standard entropy change, qe is the equilibrium adsorption capacity, Ce (mg L−1) is
the adsorbate concentration at the adsorption equilibrium, Kc is the distribution coefficient, R is the
molar gas constant (8.314 J mol−1 K−1), and T is the adsorption temperature (K).

3. Results and Discussion

The XRD patterns of the as-prepared MnO nanomixtures samples are shown in Figure 1.
As presented in Figure 1, the peaks of (111), (200), (220), (311) and (222) were attributed to MnO [36],
which indicated that MnO nanomixtures were successfully prepared via a novel hydrothermal
self-assembly method. We also investigated the effect of the hydrothermal reaction time on the
formation of MnO nanomixtures. We found that other manganese oxides were produced when the
hydrothermal reaction time was less than 30 h. In the experiment, manganese oxide was the only
product when the hydrothermal reaction time exceeded 30 h.

The nitrogen adsorption–desorption isotherms are shown in Figure 2a, and the pore size
distribution curves are shown in Figure 2b. As seen in Figure 2a, all the curves corresponded to
type-IV isotherms, and hysteresis loops could be clearly observed, illustrating the presence of a pore
structure. The high P/P0 of the hysteresis loops indicated a large pore size distribution, which was
in accordance with the pore size distribution curves. As shown in Figure 2b, the as-prepared MnO
nanomixtures samples exhibited a micro-mesoporous structure. The surface properties, consisting of
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the specific surface area (SBET), micropore surface area (Smicro), average pore diameter (Daverage) and
total pore volume (Vtotal), are listed in Table 1. MnO-4 showed the largest surface area and total pore
volume, which were beneficial for adsorption. As presented in Table 1, the molar ratio of C3N4 to
KMnO4 and the hydrothermal reaction time exerted obvious effects on the textural properties, in which
shorter hydrothermal reaction times and higher or lower molar ratios affected the hydrothermal
self-assembly process.Nanomaterials 2018, 8, x FOR PEER REVIEW  5 of 17 
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Table 1. Surface characterization of different samples.

Entry SBET (m2/g) Smicro (m2/g) Daverage (nm) Vtotal (cm3/g)

MnO-2 30.6 6.3 22.81 0.175
MnO-4 38.7 8.5 23.09 0.193
MnO-6 35.5 1.0 21.46 0.127

MnO-24 33.9 1.6 15.97 0.168

SEM images of the as-prepared MnO nanomixtures samples and TEM images of MnO-4 are
shown in Figures 3 and 4. The nanoscale rod-shape of C, N-doped MnO can be clearly seen in Figure 3;
this product was formed via the polymerization of C3N4 and oxidation by KMnO4. As shown in
Figure 3d, the amount of rod-shaped MnO nanomixtures particles in MnO-24 was less than that in
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the other samples, which was caused by the shorter hydrothermal reaction time. When the molar
ratio of C3N4 to KMnO4 was more than 4.0, many linked spherical particles were formed, as shown
in Figure 3c; there particles formed through the polymerization of excess C3N4 in the hydrothermal
process. As presented in Figure 4a,b, nanoscale rod-shaped MnO nanomixtures particles were clearly
observed. The lattice fringe spacing was determined from Figure 4c and was attributed to the presence
of manganese.
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Figure 4. TEM images (a,b) and high resolution image (c) of MnO-4.

XPS was performed to analyze the chemical nature of MnO-4; the results are shown in Figure 5.
Figure 5a reveals the presence of C, K, O, N and Mn, which corresponded to peaks at 285 eV, 300 eV,
535 eV, 410 eV and 650 eV, respectively. As presented in Figure 5b, five peaks were observed (284.6 eV,
285.3 eV, 285.9 eV, 287.4 eV and 289.0 eV), and these peaks were attributed to C–N–C, C–C, C–O, C=O,
and O–C=O groups. This result indicated that C3N4 was oxidized by KMnO4 in the hydrothermal
self-assembly process. The peaks shown in Figure 5c corresponded to C=O (531.0 eV), COOH (532.0 eV)
and C–O–C (535.0 eV). As shown in Figure 5d, two peaks [7] were observed at 400.3 eV and 398.8 eV,
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which were assigned to N–C3 and C–N–C, respectively. The presence of N–C3 was beneficial for MB
adsorption [37]. The peaks at 641.8 eV and 653.4 eV corresponded to Mn 2p, which indicated the
presence of manganese.
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The effect of the different samples on the MB adsorption amount was investigated, and the result
is shown in Figure 6. As seen in Figure 6, MnO-4 and MnO-6 exhibited larger adsorption amounts than
MnO-2, which was attributed to the higher reactant molar ratio of C3N4 to KMnO4. C3N4 introduced
a π-conjugation system in MnO nanomixtures during the hydrothermal process, which could improve
the adsorption capacity. Meanwhile, a moderate dosage of KMnO4 could improve the surface area
to increase the adsorption of MB. From the comparison of the adsorption amounts of MnO-4 and
MnO-24, the hydrothermal reaction time exerted an effect on the adsorption capacity, in which MnO-4
had a higher adsorption capacity of up to 137 mg g−1 in a 20 mg L−1 MB solution at 20 ◦C. The zeta
potentials of MnO-2, MnO-4, MnO-6 and MnO-24 in water were as follows: −29.8 mV, −42.3 mV,
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−37.1 mV, and −34.7 mV, respectively. MB is a cationic dye; thus, the lower the zeta potential is,
the better the adsorption.
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The effect of the MB concentration on the adsorption capacity is shown in Figure 7a, in which
the adsorption capacity was observed to increase with the MB concentration. The higher the MB
concentration, the shorter the adsorption equilibrium time was. The MB adsorption efficiency was
up to 96% for an MB concentration of 10 mg L−1 at 150 min. As seen in Figure 7b, an equilibrium
plateau was reached, which indicated that MnO-4 acted as a monolayer adsorbent in MB absorption.
The Langmuir model was adopted to investigate the adsorption process on the MnO-4 surface, and
the results are shown in Figure 7c. The correlation coefficient (R2) of the fitted curve was 0.996, which
indicated that adsorption occurred through a Langmuir process, meaning that it was a monolayer
process. This analysis result was in accordance with the results of Figure 7b.

The effect of the MB solution pH on the adsorption capacity was studied, and the results are
presented in Figure 8, in which the maximum adsorption capacity was achieved with a strong basic
MB solution and the adsorption capacity increased with the solution pH. This result was attributed
to the electrostatic interaction between the MB molecules and MnO nanomixtures. In the previous
discussion, the zeta potentials exerted an effect on the adsorption capacity, as MB is a cationic dye.
In an acidic solution, the zeta potentials of MnO nanomixtures were positive, which inhibited MB
adsorption. In contrast, at lower pH values, the zeta potentials were negative and lower. Therefore,
MnO-4 had a high adsorption capacity in a basic MB solution. Meanwhile, the nitrogen doping of
MnO could improve the alkalinity of the solution, which was beneficial for MB adsorption.

The pseudo-first-order and pseudo-second-order kinetic models were used to analyze the
kinetics of the adsorption process. The theoretical adsorption capacity of MnO-4 calculated from
the pseudo-first-order model was 194 mg g−1, and that calculated from the pseudo-second-order
model was 164 mg g−1 (Table 2), which fit well with the experimental data (154 mg g−1). As shown in
Figure 9, the R2 values obtained from the pseudo-second-order model were better than the R2 values
obtained from the pseudo-first-order model. In conclusion, the pseudo-second-order model was more
suitable for investigation of the MB adsorption process.
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Table 2. Parameters of pseudo-first-order kinetic model and pseudo-second-order kinetic model for
the adsorption of MB in MnO nanomixtures.

Entry
Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

K1 qe (mg g−1) K2 qe (mg g−1)

MnO-2 0.019 43.70 0.00031 150.38
MnO-4 0.025 194.03 0.000097 164.12
MnO-6 0.021 122.85 0.00012 111.48

MnO-24 0.022 234.40 0.000047 160.67

MB adsorption experiments were performed at different temperatures, and the results are shown
in Figure 10a. At the same time, the plot of ln Kc versus 1/T for MnO-4 is demonstrated in Figure 10b.
As presented in Figure 10a, a higher adsorption capacity was obtained at a higher temperature, which
indicated that a high temperature was beneficial for MB adsorption. The ∆G0, ∆H0 and ∆S0 values
of MB adsorption on MnO-4 were calculated from Equations (6) and (7) [38] to be −7.4 kJ mol−1,
21.5 kJ mol−1 and 97.0 J mol−1, respectively. The value of ∆G0 was negative, which demonstrated
that spontaneous MB adsorption occurred on the MnO-4 surface. In addition, the value of ∆S0 was
positive, which was attributed to an increase in the chaos at the adsorbent/solution interface during
MB adsorption in MnO-4. In addition, the value of ∆H0 was below 40 kJ mol−1, as demonstrated by
the physisorption of MB in MnO-4, and the positive value indicated that the process was endothermic,
which was in accordance with the experimental results.
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Repeated experiments were conducted to investigate the reusability of MnO-4 for MB adsorption,
and the results are shown in Figure 11. The adsorption capacity was 137 mg g−1 in the first cycle,
and 96% of the adsorption capacity, corresponding to 132 mg g−1, was retained in the last cycle.
Therefore, this reusability indicated that MnO-4 was a good adsorbent for MB. Meanwhile, the
obtained MnO-4 exhibited excellent adsorption capacity, which could be roughly compared with other
reported absorbents shown in Table 3.
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Table 3. Comparison of the adsorption capacities of different absorbents from previous reports with
that of C, N-MnO-4.

Adsorbent mg g−1 Reference

Wheat shells 21.5 [39]
Chitosan-modified zeolite 37 [40]

Fe3O4@Ag/SiO2 nanospheres 128.5 [41]
α-Fe2O3@carboxyl-functionalized yeast composite 49.5 [42]

N, O-codoped porous carbon 100.2 [43]
Kaolin 52.7 [44]

C, N-doped MnO 154 Present work

The degradation efficiency of MB in MnO nanomixtures was investigated in this work. As shown
in Figure 12a, MnO nanomixtures exhibited high degradation efficiency under different MB
concentrations (99.8%, ≈142 mg g−1 at a MB concentration of 20 mg L−1). As presented in Figure 12b,c,
the MB solution exhibited a sharp absorption band at 656 nm in the UV-Vis spectrum, and this
absorption band obviously decreased with increasing degradation time. The degradation kinetics were
well fitted by the pseudo-first-order model shown in Figure 12d, and the theoretical De (the degradation
amount at the degradation equilibrium) value was 146 mg g−1, which was in good agreement with the
experimental data. This analysis result indicated that the pseudo-first-order model could effectively
describe the MB degradation process in MnO nanomixtures [45–52].
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The degradation mechanism of MB in MnO nanomixtures was proposed (Figure 13). Active
superoxide anions and/or peroxide species could form in the H2O2-MnO system according to previous
reports [16,53], and these species could oxidize MB. As shown in Figure 13, H2O2 was used as an
oxidant to form various superoxide anions and peroxide species, and C; N-doped MnO was used
as a catalyst to catalyze the decomposition of H2O2. Mn(III)/Mn(II) played an important role in
the MB degradation process and contributed to ideal MB degradation in C, N-doped MnO. Present
obtained MnO nanomixtures demonstrated potential applications in self-assembled materials design
and composites for wide applications [54–65].Nanomaterials 2018, 8, x FOR PEER REVIEW  13 of 17 
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4. Conclusions

In summary, novel nanoscale rod-shaped MnO nanomixtures were successfully prepared via
a hydrothermal self-assembly method with C3N4 as the source of carbon and nitrogen and potassium
permanganate (KMnO4) as the source of manganese. The as-prepared materials exhibited good
MB adsorption and degradation with H2O2 as the oxidant. The maximum adsorption capacity
was 154 mg g−1, and the optimum degradation efficiency was 99.8%. The adsorption process was
very well fitted by the pseudo-second-order model, and the degradation process was very well
fitted by the pseudo-first-order model. MB adsorption occurred through physicorption, and MB
degradation was caused by a chemical reaction. Meanwhile, MnO nanomixtures exhibited excellent
reusability. The as-prepared MnO nanomixtures are potential and effective materials for extensive
pollutant removal.
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