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Abstract: Molecular dynamics simulations on the indentation process of freestanding and
Pt(111)-supported black phosphorus (BP) monolayer were conducted to study the fracture mechanism
of the membrane. For the freestanding BP monolayer, crack grows firstly along armchair direction
and then zigzag direction during the indentation process. Whereas, for the Pt(111)-supported
BP monolayer, crack growth shows no obvious directionality, with irregular distribution of crack
tips. Further study on stress distribution shows that maximum normal stress component at elastic
stage is in zigzag direction for the freestanding BP monolayer, and in vertical direction for the
Pt(111)-supported BP monolayer. As BP monolayer is remarkably anisotropic for in-plane mechanical
properties and homogeneous for out-of-plane mechanical properties, the difference of stress state
may be a key reason for the different fracture behavior in these two cases. These findings may help to
understand the failure mechanism of BP, when applied in nano-devices.
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1. Introduction

Two dimensional (2D) materials, such as graphene, few layer MoS2, and black phosphorus
(BP), have showed great application potential in many domains due to their unique physicochemical
properties [1–3]. For instance, the fore-mentioned three materials can be used as lubricating films [4–6]
and protective coatings [7], taking advantage of their atomic scale thickness [8], excellent mechanical
properties [9,10], and good thermal conductivity [11]. Due to the large band gap, boron nitride (BN)
can be used as gate insulation layer in micro and nanoeletronic devices [12]. Moreover, the unique
mechanical and electrical properties of BP film make it a promising material in strain-dependent
optoelectronics, flexible electronics, and nano- or micro-electromechanical devices [13]. Due to the high
hole mobility and on-off ratio of photo-induced current, BP can be used to make room-temperature
terahertz (THz) photodetectors [14]. However, most applications of these 2D materials rest on their
structural integrity [15]. For example, when used as lubricating film or protective coatings on rubbing
surfaces, the friction reduction and wear protection effect will vanish once the 2D layers rupture [16].

Studying the deformation and fracture properties of materials is important for avoiding
mechanical failures in applications [17]. Fracture mechanism of 2D material is very different from
bulk materials, as 2D materials are more sensitive to defect [18,19], structural changes [20], bond
breakage and crack tips with atomic sharpness [21,22]. So far, studies on the fracture mechanism of
2D materials are scarce, and most of these studies are limited to graphene and MoS2. Structure of
BP monolayer differs greatly from the truly planar structure of graphene and the sandwich structure
of MoS2. The unique corrugated structure formed by two P atom layers in BP monolayer can lead
to unique mechanical behaviors and properties [23]. For instance, both experiments and molecular
simulations have shown that the mechanical properties of BP layer are highly anisotropic [24,25],
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as the elastic modulus and rupture strength in zigzag direction can be two times larger than armchair
direction [26]. These unusual properties of BP imply a different fracture process and mechanisms.
Nano-indentation is a common approach to calculate the mechanical properties of crystalline materials,
and can be used to study the fracture behavior of layered materials both in experiments and molecular
simulations. For example, using a nano-indentation device, fracture toughness of single-crystal Bi2Te3

can be measured [27].
In this work, molecular dynamics simulations on the indentation process of a freestanding and a

Pt(111)-supported BP monolayer were conducted. Crack formation and propagation were observed.
Stress distribution at different indentation stage, including normal stress and von Mises stress, were
studied. The fracture mechanism of BP monolayer was then illustrated.

2. Simulation Details

A hemisphere diamond tip with a radius of 18 Å cutout from a (111)-oriented diamond crystal was
placed right above the freestanding or Pt(111)-supported BP monolayer, as shown in Figure 1. The tip
was set rigid in order to avoid the influence of dangling bonds on its surface. The initial distance
between the diamond tip and BP monolayer is 10 Å. The size of BP monolayer is 105.92 × 105.12 Å2.
Pt is a common substrate to grow graphene and MoS2 on its surface [16,28]. In this work, the Pt(111)
substrate has a thickness of 59.2 Å, and a same horizontal size with BP monolayer. In x and y direction,
periodic boundary conditions were used. In z direction, the simulation box was non-periodic and
shrink-wrapped with a minimum value. During the indentation process, the diamond tip moved
vertically to the BP monolayer, at a speed of 1.0 m/s. The indentation process of freestanding monolayer
at different loading speed was also simulated, and the results can be found in supplementary material.
When indentation speed of the tip is less than 10 m/s, indentation speed has little influence on the
results of indentation process.
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Figure 1. (a) Atomic structure of the black phosphorus (BP) monolayer. P atoms at the top layer are
shown in yellow while P atoms at the bottom layer are shown in blue; (b,c) Left and top view of the
simulation model for the indentation process of a freestanding BP monolayer; (d) Left view of the
simulation model for the indentation process of a Pt(111)-supported BP monolayer.

An embedded atom method (EAM) potential was used to simulate the interaction between Pt
atoms [29]. Stilling Webber potential parameterized by Jin-Wu Jiang [30–32] was used to simulate
the interaction between P atoms in the BP monolayer. Tersoff potential was used to describe the
interaction between carbon atoms in the diamond tip [33]. The covalent interactions between the
diamond tip and the monolayer were neglected, and a C-P Lennard Jones (LJ) potential was used
to model the Van der Waals forces between the diamond tip and BP monolayer. Similarly, a C-Pt LJ
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potential was used to model the Van der Waals forces between the diamond tip and Pt(111) substrate,
and a P-Pt LJ potential was used to model the Van der Waals forces between BP monolayer and Pt(111)
substrate. Parameters for LJ potential are shown in Table 1. Here, in this work, parameters for C-P
LJ potential were taken from Reference [34], and parameters for C-Pt and Pt-P were obtained by
Lorentz-Berthelot mixing rules [35], with the original ε and σ parameters for C-C, Pt-Pt, P-P taken
from References [34,36,37]. Distance between theBP monolayer and Pt(111) substrate is 2.91 Å, which
is the equilibrium distance of these two materials. The cut off radius of LJ potential is set to 10 Å. High
temperature can arouse the fluctuation of atom distances, and induce the fluctuation of atom stress.
In order to avoid the influence of temperature on atom stress and focus on the mechanical effect of the
indentation process, Langevin thermostat was adopted to control a constant temperature of 0.01 K
during the simulations [38]. The extremely low temperature may arouse more gas adsorption of black
phosphorus in practical applications [39], and researchers have tried to minimize surface chemical
reactivity of black phosphorus [40], which may extend the applications of black phosphorus. All the
simulations were carried out with LAMMPS (version 9 December 2014) [41].

Table 1. Parameters of Lennard Jones (LJ) potential used in this simulation.

Pair C-P C-Pt Pt-P

εij [meV] 6.878 38.635 91.209
σij [Å] 3.4225 2.971 2.9565

3. Results and Discussions

3.1. Indentation Process and Fracture Behavior

During the indentation process, the freestanding BP monolayer will go through two different
stages: An elastic deformation stage, and a plastic deformation stage, as shown in Figure 2a. During
the elastic stage, the force displacement curve is smooth and monotonically increasing (see curve on
the left side of point A in Figure 2a). During the plastic deformation stage, the force displacement
curve is rough with sudden drops and sawtooth shaped steps (see curve on the right side of point A in
Figure 2a).
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Figure 2. (a) The force-displacement (FN(d)) curve for the indentation process of the freestanding BP
monolayer; (b) The force displacement curve at elastic stage (corresponding to curve between the two
blue dashed line in Figure 2a), and the dashed line is a nonlinear fit of Formula (1).

Fracture of the freestanding BP monolayer is firstly brittle-like and then ductile-like. During
the indentation process of the freestanding BP monolayer, there are two instantaneous drops in FN

(see Figure 2a, point A→B, C→D). After the two cracks in BP monolayer, the fracture behavior is
ductile-like, with sawtooth shaped steps of FN(d) curve (curve on the right side of point D in Figure 2a).
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After complete rupture of the freestanding monolayer, interaction force between the tip and monolayer
will drop to zero in vertical direction, as shown in Figure 2a.

Indentation of 2D materials is a common approach to measure their elastic modulus and rupture
strength [42]. With BP monolayer regarded as a linear isotropic elastic material, the indentation process
of the freestanding BP monolayer can be approximated as central point loading on a clamped circular
membrane [43]. The relationship between indentation force and displacement at elastic stage can be
deduced as Formula (1) shows [44]:

F = σ0
2Dπ(h − h0) + E2Dq3(h − h0)3/a2, (1)

wherein, F is the point load at the center of the membrane, h is vertical displacement of the tip,
h0 = 1.0 nm is the initial distance between the diamond tip and BP monolayer, h − h0 can represent
the deflection at the center point approximately, a is the radius of BP monolayer, σ0

2D and E2D is the
pretension and elastic modulus of the membrane, q = 1/(1.05 − 0.15ν − 0.16ν2) is a dimensionless
constant, and ν = 0.4 is the Poisson ratio of BP in the perpendicular direction [45].

The elastic modulus of BP monolayer can be obtained through a nonlinear fit of the smooth curve
(curve on the left side of point A) in Figure 2a to Formula (1), as shown in Figure 2b. The result of E2D

is 43.66 GPa, greater than Earmchair and less than Ezigzag obtained by first-principle calculations [46].
There are also two different stages during the indentation process of Pt-supported BP monolayer:

An elastic deformation stage and a plastic deformation stage, as shown in Figure 3a. Differently
with the freestanding BP monolayer, the elastic deformation stage (blue ellipse area in Figure 3a) of
Pt-supported BP monolayer is shorter.Nanomaterials 2018, 8, x 5 of 10 
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In the elastic deformation stage of nano-indentation process, Hertz contact model can be used
to evaluate the hardness of the substrate. For the Hertz contact of a rigid ball with an elastic plane,
the relationship between load and the indentation depth can be expressed by Formula (2):

F = (4/3)(1 − ν1
2)R0.5h1.5/E (2)

wherein, F is the interaction force in the vertical direction between the diamond tip and the substrate,
R = 1.8 nm is the radius of the diamond tip, h is the indentation depth, E is the elastic modulus of the
substrate, and ν1 is the Poisson’s ratio of the substrate. Here we take ν1 = 0.35 for Pt(111) substrate,
and ν1 = 0.4 for BP-covered Pt(111) substrate.

Elastic modulus of Pt(111) and BP-covered Pt(111) substrate can be deduced by fitting the FN(h)
curve at elastic stage to Formula (2), as shown in Figure 3b. It can be found that the simulation results
are in good agreement with Hertz contact theory. Elastic modulus of Pt(111) in this work is 223.5 GPa,
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which is very close to results of theoretical calculations by Romasco [47]. Elastic modulus of BP-covered
Pt(111) in this work is 112.9 GPa.

The indentation hardness of the substrate can be defined as Formula (3):

H = Fmax/Ac, (3)

wherein, Fmax is the maximum indentation force at elastic stage, and Ac is the corresponding projected
contact area. For the hemisphere indentation tip used in this work, the projected contact area can be
calculated by Formula (4). Fmax = 28.84 nN for Pt substrate and 22.95 for BP/Pt substrate.

Ac = π(2Rhmax − hmax
2) (4)

In Formula (4), R is the radius of the diamond tip and hmax is the maximum indentation force
at elastic stage. hmax = 0.161 nm for Pt substrate and 0.211 nm for BP/Pt substrate. The indentation
hardness of Pt substrate and BP/Pt substrate can be calculated by Formulas (3) and (4). The indentation
hardness of Pt(111) substrate is 22.95 GPa, and the indentation hardness of BP/Pt substrate is 10.22 GPa.

Compared with bare Pt substrate, load for BP-covered Pt substrate is smaller before rupture as
shown in Figure 3a, which indicates BP coating on Pt surface will not enhance the load bearing capacity
of the substrate like graphene and MoS2 monolayer [16,48]. The maximum load BP/Pt substrate can
bear at elastic stage is 52.82 nN, which far exceeds 5.45 nN for the freestanding BP monolayer, hence
the stress state in these two cases can be very different. While crack formation and propagation in
the freestanding BP monolayer complete in a very short time, the Pt(111)-supported BP monolayer
undergoes a plastic deformation stage (see curves with sawtooth shaped steps from point A to D,
in Figure 3a), before completely rupture during the indentation process, which means the fracture of
the Pt(111)-supported BP monolayer is ductile-like. After the complete rupture of the Pt-supported BP
monolayer, the force-displacement curve nearly overlapped with curve of bare Pt substrate, as shown
in Figure 3a.

Figure 4 shows the fracture behavior of the freestanding and Pt(111)-supported BP monolayers.
Cracks in the freestanding BP monolayer are directional and occur in order, while cracks in the
Pt(111)-supported BP monolayer are of no directionality and out of order. Crack in the armchair
direction shown in Figure 4b corresponds to the sudden drop of force-displacement curve from point
A to B in Figure 2a, and crack in the zigzag direction shown in Figure 4d corresponds to the sudden
drop from point C to D in Figure 2a.
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Figure 4. (a–d) Top view of the freestanding BP monolayer during the indentation process, and Figure a,
b, c, d correspond to point A, B, C, D in Figure 2a respectively; (e–h) Top view of the Pt(111)-supported
BP monolayer during the indentation process, Figure e, f, g, h correspond to point A, B, C, D in
Figure 3a respectively.
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As elastic modulus in the zigzag direction can be two times higher than armchair direction [24],
the mean stress in zigzag direction will also be higher than armchair direction at the same deflection
of the freestanding BP monolayer. The higher stress in zigzag direction may be a reason why crack
grows firstly in a direction perpendicular to zigzag direction (i.e., in the armchair direction). In order
to further study the relationship between stress state and the fracture behavior, stress distributions at
different indentation stage were investigated next.

3.2. Stress Distribution

Stress field is a key factor to identify the crack propagation behavior of materials. Here, Virial
stress tensor, together with Voronoi volume calculated by LAMMPS were applied to calculate the
atomic Virial stress [49] using Formula (5):

σab = Sab/Vvoronoi (5)

wherein, a and b take on value x, y, z to generate the six components of the symmetric atom-stress
tensor, Vvoronoi is the per-atom Voronoi volume calculated by VORONOI package of LAMMPS, and Sab
is the per-atom Virial stress tensor. The tensor form of the Virial stress can be converted into a scale
value by the von Mises formulation for the yield criterion [50], as shown in Formula (6):

σs =
√

1/2*
√

[(σx − σy)2 + (σy − σz)2 + (σx − σz)2 + 6(τxy
2 + τyz

2 + τzx
2)] (6)

For the indentation process of the freestanding BP monolayer, stress distributions before the first
crack generated (corresponding to point A in Figure 2a, which is also the end of elastic deformation
stage) and before the second crack started to grow (corresponding to point C in Figure 2a) were studied,
as shown in Figure 5.
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Figure 5. (a–d) Distribution of σx, σy, σz and σs in the freestanding BP monolayer before the generation
of the first crack (corresponding to point A in Figure 2a); (e–h) Distribution of σx, σy, σz and σs in
the freestanding BP monolayer before generation of the second crack (corresponding to point C in
Figure 2a). The black sharp angles in Figure 5e represent the crack propagation tips.
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Stress distribution in the freestanding BP monolayer at elastic stage is non-centrosymmetric,
especially for σy and σs, as shown in Figure 5a–d. The stressed range in zigzag direction is much larger
than armchair direction, which is a result of the higher in-plane elastic modulus in zigzag direction
of BP monolayer. The maximum normal stress component is 4.26 GPa for σy at the rectangle-boxed
atoms in Figure 5b, where the first crack generates.

As the first crack generates, on an integrated the freestanding BP monolayer, and the second crack
generates on a cracked membrane, mechanisms for the generation and growth of the two cracks can be
very different. Crack tips with atomic sharpness were found before the second crack started to grow,
as shown in Figure 5e. While the first crack start from atoms of high tensile stress, the second crack
start from the crack tips formed during the indentation process. The position and direction of the crack
tips determine the growth behavior of the second crack.

For the indentation process of the Pt(111)-supported BP monolayer, stress distribution at the end
of elastic stage(corresponding to point A in Figure 3a) is more concentrated as shown in Figure 6,
which is a result of the higher contact stiffness and smaller indentation depth. It can be found that
the contact area between the diamond tip and the Pt-supported BP monolayer is elliptical, which
is consistent with the theoretical model for anisotropic materials by Ciavarella and coworkers [51].
The maximum normal stress component is −31.83 GPa (the minus sign indicates the direction of stress)
for σz at the rectangle-boxed atoms in Figure 6c, where plastic deformation appears. The maximum
of σz far exceeds that of σx (−8.64GPa, see Figure 6a) and σy (−10.28GPa, see Figure 6b), which
means the mainly deformation of the Pt(111)-supported BP monolayer at elastic stage is out-of-plane
compression. The maximum of σz for the freestanding BP monolayer at the end of elastic stage
is 4.18 GPa (see Figure 5c), far below that of the Pt(111)-supported BP monolayer, which means
deformation of out-of-plane compression in the freestanding BP monolayer is far smaller than the
Pt(111)-supported BP monolayer.
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Figure 6. (a–d) Distribution of σx, σy, σz and σs in the Pt(111)-supported BP monolayer at the end
of elastic deformation (corresponding to point A in Figure3a); (e–h) Distribution of σx, σy, σz and
σs in the Pt(111)-supported BP monolayer at plastic deformation stage (corresponding to point C in
Figure 3a). The black sharp angles in Figure 6g represent the crack propagation tips.

The fracture of the Pt(111)-supported BP monolayer mainly depends on the local stress state of
out-of-plane compression. While the BP monolayer is remarkably anisotropic for in-plane mechanical
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properties, it is homogeneous for out-of-plane mechanical properties. Therefore, the fracture behavior
for supported BP monolayer can be influenced greatly by the local morphology of the indenter. Unlike
the freestanding BP monolayer, crack tips in the Pt(111)-supported BP monolayer at plastic deformation
stage (corresponding to point C in Figure 3a) is unordered and asymmetric, as shown in Figure 6g.

4. Conclusions

In conclusion, the fracture mechanism of BP monolayers under indentation was studied by
molecular dynamics simulations. Fracture in a freestanding BP monolayer is firstly brittle-like and
then ductile-like, with two cracks generating in order. Stress distribution and crack propagation in the
freestanding BP monolayer show obvious directivity. Fracture in a Pt(111)-supported BP monolayer is
ductile-like, with a plastic deformation stage following the elastic deformation stage. Stress distribution
and crack propagation in the Pt(111)-supported BP monolayer do not show obvious directivity.
While in-plane stretch is the main deformation for the freestanding BP monolayer, out-of-plane
compression is the main deformation for the Pt(111)-supported BP monolayer. The difference
between in-plane and out-of-plane mechanical properties leads to the different fracture behavior
of the freestanding and Pt(111)-supported BP monolayers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/9/682/s1,
Figure S1: The force-displacement (FN(d)) curve for the indentation process of the freestanding BP monolayer
at different indentation speed; Figure S2: (a–d) side view of freestanding model during the indentation process,
and Figure a, b, c, d correspond to point A, B, C, D in Figure 2a of the manuscript respectively. (e-h) cutaway
view of Pt(111)-supported model during the indentation process, Figure e, f, g, h correspond to point A, B, C, D in
Figure 3a of the manuscript respectively.
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