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Abstract: Engineering of a “smart” drug delivery system to specifically target tumour cells has been 

at the forefront of cancer research, having been engineered for safer, more efficient and effective use 

of chemotherapy for the treatment of cancer. However, selective targeting and choosing the right 

cancer surface biomarker are critical for a targeted treatment to work. Currently, the available 

delivery systems use a two-dimensional monolayer of cancer cells to test the efficacy of the drug 

delivery system, but designing a “smart” drug delivery system to be specific for a tumour in vivo 

and to penetrate the inner core remains a major design challenge. These challenges can be overcome 

by using a study model that integrates the three-dimensional aspect of a tumour in a culture system. 

Here, we tested the efficacy of a functionalized folic acid-conjugated amphiphilic alternating 

copolymer poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable linker 2,4-

diaminobutyric acid (DABA) to specifically target and penetrate the inner core of three-dimensional 

avascular human pancreatic and breast tumour spheroids in culture. The copolymer was 

quantitatively analyzed for its hydrophobic drug encapsulation efficiency using three different 

chemical drug structures with different molecular weights. Their release profiles and tumour 

targeting properties at various concentrations and pH environments were also characterized. Using 

the anticancer drug curcumin and two standard clinical chemotherapeutic hydrophobic drugs, 

paclitaxel and 5-fluorouracil, we tested the ability of FA-DABA-SMA nanoparticles to encapsulate 

the differently sized drugs and deliver them to kill monolayer pancreatic cancer cells using the WST-

1 cell proliferation assay. The findings of this study revealed that the functionalized folic acid-

conjugated amphiphilic alternating copolymer shows unique properties as an active “smart” tumor-

targeting drug delivery system with the ability to internalize hydrophobic drugs and release the 

chemotherapeutics for effective killing of cancer cells. The novelty of the study is the first to 
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demonstrate a functionalized “smart” drug delivery system encapsulated with a hydrophobic drug 

effectively targeting and penetrating the inner core of pancreatic and breast cancer spheroids and 

reducing their volumes in a dose- and time-dependent manner. 

Keywords: multicellular tumour spheroids; cyclo-RGDfK(TPP) peptide; folate; amphiphilic 

alternating copolymer; targeted drug delivery; paclitaxel; 5-fluorouracil; curcumin; pH-responsive 

 

1. Introduction 

Designing drug delivery vehicles that actively target cancer cells is an area of research interest 

as an alternative treatment of cancer, providing a better quality of life for cancer patients [1]. 

However, it is unknown how these targeted delivery vehicles interact with a three dimensional (3D) 

tumour mass in vivo. Although numerous delivery vehicles can selectively target cancer cells, the 

majority of these studies use two-dimensional cellular monolayer systems [2]. These study models 

do not accurately mimic the complex in vivo interactions that take place between cancer cells and 

their tumour microenvironment. Indeed, many delivery systems show promise in vitro, but these 

approaches do not similarly translate to in vivo applications. The ability of delivery drug vehicles to 

interact with a 3D tumour mass is initially tested in vivo and to monitor the efficacy of this interaction 

process in real-time is lengthy, expensive, complicated and challenging. Recent reports have 

investigated the application of nanoparticles to 3D tumour spheroids to characterize their ability to 

penetrate the mass of cancer cells [3,4]. However, these studies used nanoparticles that do not actively 

target overexpressed receptors on cancer cells. As such, investigating the mechanism(s) of action of 

targeted delivery vehicles and their interaction with 3D multicellular structures serves as an essential 

intermediate step between in vitro and in vivo studies. 

To this end, Minchinton and Tannock [5] reported an eloquent review of the strategies to 

improve drug penetration through tumour mass and the design of selective compounds that have 

the targeted abilities to penetrate tissue [6]. It is noteworthy that 100 nm particles or larger generally 

do not penetrate well throughout the tumour mass, and smaller nanoparticles do not accumulate 

sufficiently in the tumour vasculature by the enhanced permeability and retention (EPR) effect and 

do not achieve good tumour penetration. Interestingly, RGD (Arg-Gly-Asp) peptides have been 

reported to have excellent properties in improving drug penetration into solid tumours due to their 

ability to interfere with the interactions between tumour cells and extracellular matrix (ECM) proteins 

[5,7]. In addition, other reports using αv integrin-targeting peptide, RGD-4C, showed the therapeutic 

efficacy in that the peptide uniquely targeted chemotherapeutic doxorubicin (Dox) to the tumour 

neovasculature and enhanced its inhibitory effect in human breast cancer xenografts in mice [8]. 

Cheresh and colleagues [9] also provided exciting data on their design of an αvβ3-targeted 

nanoparticle carrying Dox capable of controlling the metastatic behavior of pancreatic and renal cell 

cancer in mice. Importantly, they showed that this targeted delivery of Dox to the tumor vasculature 

revealed a 15-fold increase in the therapeutic efficacy of the drug with few or any adverse side effects. 

To mimic the ECM proteins of the tumour microenvironment, Akasov et al. [10] recently 

reported a novel technique using a cyclo-RGDfK peptide modified with triphenylphosphonium 

cation (TPP), known hereafter as cyclo-RGDfK(TPP), that is capable of generating 3D multicellular 

spheroid structures (MCTS). The peptide can easily facilitate one-step MCTS formation and allows 

for the formation of tight spheroids reproducibly. The RGD (Arg-Gly-Asp) is the active motif of the 

extracellular protein, fibronectin, which is known to promote cell-to-cell and cell-to-matrix 

interactions through the interactions with α5β1 integrins. This cyclo-RGDfK(TPP) peptide method 

for spheroid production has been applied to several cancer types including pancreatic and breast 

cancer cell lines [11] and prostate cancer cell lines [12]. The spheroids obtained by this cyclo-

RGDfK(TPP) peptide method allow the characterization of the penetration properties of the drug 

carrier and the release of the drug in the inner core of the 3D multicellular tumour spheroid structure. 
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In the present study, a “smart” functionalized folic acid biomarker was chemically conjugated 

to a pH-responsive, active targeting delivery system using amphiphilic alternating copolymer 

poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable linker 2,4-diaminobutyric 

acid (DABA) [13,14]. The rationale here is that many cancer cells overly express folic acid receptors 

up to two orders of magnitude in ovarian, lung, brain, head and neck, renal cell, and breast cancers 

[15,16]. The selection of folic acid smart biomarker allows for extensive drug delivery treatments 

targeting different types of cancer [17,18]. The functionalized polymer was previously characterized 

in detail using infrared (IR) spectroscopy, nuclear magnetic resonance (HNMR), and dynamic light 

scattering (DLS) confirming both the chemical structure and the pH responsiveness of folic acid-

DABA-PSMA polymers [13]. The synthetic pathway of folate DABA PSMA polymer is described in 

Figure 1 with supplementary data on the comprehensive characterization of the polymer in the 

Supplementary Materials. 

 

Figure 1. Synthetic pathway to PSMA-folic conjugates. (1) DCC/NHS Folic acid activation; (2) boc-

DABA reacting with FA-NHS in DMSO, room temperature (r.t.) overnight; (3). TFA/DCM wash with 

TEA/DCM and precipitate with water; (4). DCC/NHS with PSMA in DMSO, r.t. overnight. 

Reproduced with permission from Li et al. [13]. 

The carrier function of the SMA copolymer allows the formation of either amphiphilic nanotubes 

or nanosheets at pH 7 depending on the molecular weight of the polymer facilitating the 

encapsulation of hydrophobic drugs in its interior core. The self-assembly process of SMA, only 

observed at neutral pH, is linked to the linearity of the polymer chain, reducing the entropic cost of 

chain association [13]. The SMA structure is pH-responsive being stable only at neutral pH and 

collapses in an acidic microenvironment, releasing the hydrophobic drug on-site from its interior 

core. Owing to the pH-responsive nature of SMA, drugs are released once the nanoparticles reach 

the tumour sites with an acidic pH environment, causing the system to switch from the “off” state to 

the “on” state (see graphical abstract). This structural change with pH from neutral to pH 3 is reflected 

by a decrease in the hydrodynamic radius of the polymer from ~100 nm at pH 7 to a few nm at pH 3 

[15]. The structural change results from an internal stiffening of the polymer backbone when one of 

the acid groups hydrolyzes at pH 7 [19]. The confined inner cavity (2.8 nm) of the nanostructure at 

pH7 results in an increased volume-to-surface ratio that would theoretically further increase the 

delivering efficiency owing to the enhanced permeability and retention (EPR) effect. The EPR effect 
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takes advantage of the leaky vascular tumour structures with poor drainage, which would allow 

nanoparticles of a certain size to enter and accumulate in the tumour tissue [20]. 

In the present study, we investigated the efficiency of the 2.8 nm confined inner cavity of FA-

DABA-SMA polymer to encapsulate the anticancer drug curcumin and two clinical standard 

hydrophobic chemotherapeutics, paclitaxel and 5-fluorouracil (5-FU). Each of the drugs has different 

complex chemical structures and molecular weights (Table 1). We examined their release and 

therapeutic potential on cell viability of human pancreatic PANC-1 cancer. Also, the efficacy of the 

smart targeting and inner core tumour penetration of FA-DABA-SMA loaded with fluorescent 

curcumin was investigated on pancreatic and breast cancer 3D avascular tumour spheroids, as well 

as its ability to reduce spheroid volumes. Currently, targeted nanoparticle-based delivery systems 

have not been applied with cyclo-RGDfK (TPP) mediated tumour spheroid model. The findings in 

this report are the first to demonstrate the novelty and therapeutic efficacy of our hydrophobic drug 

delivery platform and unexpectedly, provide evidence for a specific “smart” targeting of tumour 

spheroids resulting in the inner core penetration. 

Table 1. List of drugs and model drug used in this study. 

Name Chemical Structure Molecular Weight 

Curcumin 

 

368.4 g·mol−1 

5-Fluorouracil (5-FU) 

 

130.1 g·mol−1 

Paclitaxel 

 

853.9 g·mol−1 

2. Materials and Methods 

2.1. Cell Lines 

The PANC-1 (ATCC® CRL-1469™) cells are a human pancreatic ductal epithelial carcinoma cell line. 

The MDA-MB231 cells are a triple negative breast cancer cell line (ATCC® HTB-26™). Cells were grown 

in media containing Dulbecco’s Modified Eagle’s Medium (1 × DMEM, Gibco, Rockville, MD, USA) 

supplemented in 10% fetal calf serum (HyClone, Logan, UT, USA) and 5 µg/mL Plasmocin (InvivoGen, 

San Diego, CA, USA) in a 5% CO2 incubator at 37 °C. 

2.2. Synthesis of Folic-DABA Ligands 

Folic acid is dissolved in anhydrous dimethyl sulfoxide (DMSO) and reacted with 

dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) (FA/DCC/NHS molar ratio = 

1:1.2:1.2) as previously described in detail [13]. Briefly, the reaction is performed under inert nitrogen 

atmosphere at room temperature for 12 h. The resulting activated folate-NHS is filtered to remove 

N,N-dicyclohexylurea (DCU) by-product. The activated folate is dropwise added to a solution of boc-

protected linker boc-2.4-diaminobutyric acid (DABA) (FA/DABA molar ratio = 1:1) in anhydrous 

DMSO with DCC/NHS carried out under inert nitrogen atmosphere at room temperature overnight. 
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The aminated folate (folate-DABA-Boc) (MW = 2000) is dialysed in water and freeze-dried. The dry 

compound is characterized using 1H NMR in DMSO and IR via KBr pellet method. The boc 

protecting group is removed using trifluoroacetic acid and dichloromethane TFA/DCM at 30 °C for 

6 h. TFA is evaporated under heat and vacuum, and the compound is taken up by 

dimethylformamide (DMF) and precipitated using ether. The final folic-DABA compound is filtered, 

air-dried and characterized by 1H NMR as previously described in detail [13]. 

2.3. Synthesis of Folic-DABA-Poly (Styrene-Alt-Maleic Anhydride) (PSMA) Nanoparticles 

Powdered PSMA is added to the coupling agent DCC/NHS together with FA-DABA linker at a 

1:10 ratio and the reaction carried out at room temperature overnight. The crude folic-DABA-PSMA 

is dialyzed in water for one day to remove DMSO solvent and then freeze-dried. The final FA-DABA-

SMA polymers are characterized using 1H NMR and IR as previously described in detail [13] and 

supplemental data. 

2.4. Curcumin Loading Capacity with SMA and FA-DABA-SMA Polymers 

A standard curve of curcumin fluorescence was prepared in DMSO and measured at 520 nm. 

Specifically, 60 mg of curcumin powder is dissolved in 5 mL of DMSO and two-fold serial dilutions 

from 32,500 µM to 0.12 µM final concentrations. The fluorescence intensity was measured using 

Thermo Scientific Varioskan Flash Microplate Reader with 420 nm as the excitation wavelength and 

520 nm as the emission wavelength. Fluorescence data were calculated as average measurements of 

three independent values and were plotted as a function of concentration. 

Curcumin powder was loaded into SMA polymers through physical entrapment. Briefly, 1 mg 

of curcumin powder was added to polymer solutions at concentrations of 476 µM, 119 µM, and 95.2 

µM and left on plate rocker overnight for efficient entrapment. The formulated solution (polymers 

loaded with curcumin) was allowed to settle overnight at room temperature. The un-dissolved 

curcumin was collected the following day by carefully removing the supernatant into a new tube 

(which was used to measure the acid-mediated release profile outlined below) without disturbing 

the sediment at the bottom. The precipitate was subsequently dried and re-dissolved in a 400 µL 

DMSO solution and vortexed. An amount of 100 µL of the dissolved precipitate was transferred in 

triplicate to a 96-well flat bottom UV-transparent plate and was measured using Thermo Scientific 

Varioskan Flash Microplate Reader. Fluorescence intensity readings were calibrated using the 

curcumin calibration curve to determine the respective concentration of the precipitate. 

Drug loading efficiency of FA-DABA-SMA polymers was analyzed using the following 

equation: 

Total loaded curcumin − Free curcumin

Total curcumin loaded
% (1) 

2.5. Curcumin-Loaded SMA Polymers Release Profile 

To measure the in vitro release of curcumin, curcumin-loaded SMA polymers were first 

prepared in a solution of phosphate-buffered saline (PBS) at neutral pH as described in the previous 

section. The supernatant was taken from the previous curcumin loading capacity section and was 

collected and further diluted with distilled water to 31.7 µM, 63.4 µM, and 111 µM in a final volume 

of 15 mL. The pH was lowered to 6.0, 5.0, and 4.0 by adding H2SO4 in a dropwise manner. It is 

noteworthy to mention that a strong acid was used as opposed to buffers to ensure that the precipitate 

that was released by the nanopolymers only contained curcumin and did not react with the buffers. 

For each sample, 1 mL of solution was used. At predetermined time intervals (day 1, 2, and 3), the 

released curcumin was collected, dried and resuspended in 400 µL of DMSO. The fluorescence 

intensity readings were taken by measuring the excitation at the wavelength of 420 nm and an 

emission wavelength of 520 nm on a Thermo Scientific Varioskan Flash Microplate Reader. The 

release efficiency was calculated using the following equation: 
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(Mass of curcumin released) 

(Mass of curcumin in the supernatant)
% (2) 

The data are presented as mean ± standard error mean (S.E.M.) based on the measurements of 

the samples from three replicates. 

2.6. WST-1 Cell Proliferation Assay 

The WST-1 assay was used as a measure of cell viability based on the reduction of a tetrazolium 

compound to a soluble derivative [21]. The absorbance that was recorded at 420 nm is directly 

proportional to the number of living cells in culture. At 80%–90% confluence, PANC-1 cells were 

added to 96-well micro-well plates at a density of 5000 cells/well and incubated overnight. The FA-

DABA-SMA particles were synthesized following previously published protocols [14]. Adhered 

PANC-1 cells were then either exposed to increasing concentrations of SMA or FA-DABA-SMA, each 

with a maximum loading of the hydrophobic drugs paclitaxel and 5-FU or left untreated as controls 

for 24, 48, and 72 h. An amount of 100 µL of WST-1 reagent (Roche Diagnostics Division de Hoffman 

La Roche Limitée, Laval-des-Rapides, QC, Canada) diluted to 1:10 in culture medium was added to 

the wells for 2 h before the reading of absorbance at 420 nm for each time point. Cell viability was 

presented as a percentage of control using GraphPad Prism software. The data are presented as mean 

± standard error mean (SEM) based on the measurements of the samples from three replicates. 

The following formula was used to determine cell viability as a percent of control for each time 

point and treatment: 

((Absorbance of cells in a given concentration of drug) − (Media absorbance))  ×  100

(Absorbance of cells alone) −  (Media absorbance)
 (3) 

2.7. Generation of 3D Multicellular Tumour Spheroids 

PANC1 and MDA-MB231 cells were plated at a density of 10,000 cells/well on a 96-well plate. 

The cells were allowed to adhere to the well surface for 3 h after which the cells were treated with 25 

µM and 50 µM cyclo-RGDfK(TPP) peptide (synthesized in the laboratory of Prof S Burov, Saint-

Petersburg, Russia) for PANC-1 and MDA-MB231 cells, respectively, to facilitate spheroid formation 

as previously described elsewhere [10]. Changes in cellular aggregation and spheroid formation were 

observed using inverted phase-contrast microscopy. Spheroids were defined as compact spheroids 

with a distinct border that contained cells which could not be distinguished from one another. In 

contrast, cell aggregates were defined as clusters of cells without a distinct border or rounded 

morphology. 

2.8. Spheroid Volume Measurements as a Measure of Treatment Efficacy 

Changes in spheroid volume measurements were used as a method to determine treatment 

efficacy as similar techniques used in vivo animal studies to correlated changes in tumour volume 

with treatment efficacy. Following complete formation of MCTS, which occurred on the 4th day, 

empty polymers, curcumin loaded SMA and FA-DABA-SMA, and curcumin alone were added 

directly to the wells at the effective concentration of 3 µM [14] for 3 days. The images were acquired 

with a scope-mounted camera (MA USA 02451, Thermo Fisher Scientific, Waltham, England) at 4× 

and 10× magnification on day 1, 2, and 3 following treatment. The radii of MCTS were calculated 

using a scale bar in the captured images. A minimum of 20 spheroids was measured per bar, where 

two separate radii measurements were taken from each spheroid to calculate the volume. The two 

radii measurements were averaged and used to calculate spheroid volume calculations outlined 

below. The following formulae, described in detail elsewhere [22], were used to calculate spheroid 

volumes: 

10 × objective images: V = (4/3)πr3 (4) 

where r is the average radius (microns) 
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4 × objective images: V = (2.5)(4/3)πr3 (5) 

where r is the average radius (microns). For the 4 × objective images, the 2.5 parameter was used to 

normalize the values to the 10 × objective images. 

2.9. Fluorescent Microscopy of Curcumin-Loaded SMA and FA-DABA-SMA Polymers Targeting 3D 

Multicellular Tumour Spheroids 

It is noteworthy that PANC-1 cells were unable to adhere to glass coverslips and thus generating 

spheroids for fluorescence microscopy was not possible, and were instead conducted with 

MDAMB231 cells. MDAMB231 cells were plated at 35,000 cells per glass coverslip on a 24-well plate. 

After 3 h, the cells were treated with 50 µM cyclo-RGDfK(TPP) peptide to facilitate spheroid 

formation as previously described elsewhere [10]. Changes in cellular aggregation and spheroid 

formation were observed using inverted phase-contrast microscopy. Following complete formation 

of MCTS, curcumin loaded SMA and FA-DABA-SMA were added directly to wells at a concentration 

3 µM. Following 0.5 h and 6 h of treatment times, coverslips were removed from the wells and 

mounted on slides using DAPI containing fluorescent mounting media. MCTS were analyzed with 

Carl Zeiss Imager 2 fluorescence microscope at 100× and 200× magnification. 

2.10. Statistical Software 

GraphPad Prism version 6.00 (La Jolla, CA, USA) for Windows was used to generate graphical 

representations and conduct statistical analyses of data. Comparisons between two groups from 2–3 

independent experiments were made by one-way analysis of variance at 95% confidence using the 

unpaired t-test and Bonferroni’s multiple comparison tests or uncorrected Fisher’s least significant 

difference for comparisons between more than two groups. The SkanIt™ Software (Thermo Fisher 

Scientific, Waltham, England) for Windows was used to generate fluorescence intensity data. 

3. Results and Discussion 

3.1. Characterization of Hydrophobic Drugs Encapsulation by SMA and Release Profiles 

The uptake and release profile of hydrophobic drugs by SMA copolymer were examined using 

curcumin, paclitaxel, and 5-FU. These drugs were individually studied for two main reasons: (a) all 

three drugs vary in molecular weight, and thus it was essential to ascertain the ability of our design 

platform to encapsulate drugs with different molecular weights and chemical structures; and (b) 

examine their release profiles in different pH environments. Ongoing research in our laboratory is 

now investigating the encapsulation capacity and release profiles of combining these hydrophobic 

drugs using the functionalized FA-DABA-SMA copolymer to specifically target and penetrate the 

inner core of 3D avascular tumour spheroids in culture. 

Curcumin is initially used in these studies for its hydrophobicity as a model drug and its 

fluorescence properties. The encapsulation process of curcumin by our copolymer might be 

indicative of other therapeutic properties of hydrophobic drugs within the hydrophobic core, and its 

targeting effect visualization by fluorescence microscopy. Second, curcumin has a molecular weight 

that falls between the two hydrophobic chemotherapeutic drugs of interest in this study (Table 1), so 

that the encapsulation capacity of the design platform can be accurately elucidated. Third, the 

fluorescent property of curcumin allows for an accurate quantitative uptake profile of curcumin by 

the copolymer. A calibration curve was obtained with various known amounts of solubilized 

curcumin in DMSO recording the fluorescence intensity at 520 nm (data not included). This 

calibration curve was used to estimate the amount of curcumin encapsulated in SMA as well as its 

release profile at different pH values. 

To study the uptake profile of the curcumin, three solutions of different SMA concentrations 

were prepared in phosphate-buffered saline, pH 7.4. An equal amount of curcumin (1 mg) was added 

to each concentration of the SMA in aqueous solutions, which was mixed on a rocker plate overnight 
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to facilitate the encapsulation of the curcumin within the hydrophobic core of SMA. Following this 

encapsulation process, the mixture was allowed to settle overnight at room temperature for the excess 

insoluble curcumin to sediment. The supernatant containing the curcumin loaded SMA copolymer 

was then removed, and the excess sedimented curcumin was dried and dissolved in DMSO. The 

amount of curcumin after encapsulation is presented in Figure 2. The encapsulation efficiency was 

then calculated and is presented in Table 2. The results reveal a very high ratio of encapsulation for 

curcumin (~98%) using three different concentrations of SMA in solutions. 

Table 3 illustrates the release profiles obtained for the three SMA concentrations encapsulated 

with curcumin after dilution in water. The curcumin loaded SMA showed viscosity which required 

further dilution to measure accurate release profile. The release of curcumin was monitored over 

three days at three different indicated pH solutions in Table 3. It is clinically relevant to measure the 

release profile over the course of three days as the drug released at the site of a tumour may need an 

extended period to be therapeutically useful. Data presented in Figure 3 reveal a slow and constant 

release of curcumin over three days as the pH lowers from 7.4 to 4 (approximate values). 

 

Figure 2. The remaining amount of the 1 mg curcumin following its encapsulation in SMA at indicated 

concentrations. The data represent the mean ± SEM of triplicates. 

Table 2. The curcumin encapsulation efficiency of three different concentrations of SMA. 

SMA Polymer Concentration Curcumin Precipitation Encapsulation efficiency 

92.5 µM 13 µg 98.7% 

119.0 µM 11 µg 98.9% 

426.0 µM 6 µg 99.4% 

Table 3. Release efficiency of curcumin at day 3 at pH 4, 5, and 6 of a final concentration of 31.7, 63.4, 

and 111 µM of SMA diluted in water from initial SMA concentrations in Figure 2 and Table 2. 

Concentration of SMA 
pH 4 pH 5 pH 6 

Mass % Released Mass % Released Mass % Released 

31.7 µM 6.14 µg 7.0% 3.68 µg 5.5% 3.47 µg 5.27% 

63.4 µM 13.33 µg 20.1% 10.22 µg 15.4% 5.11 µg 7.7% 

111 µM 17.53 µg 26.6% 8.79 µg 13.3% 5.30 µg 8% 

This slow release property of SMA encapsulated curcumin could theoretically allow the gradual 

release of a hydrophobic drug over several days, maximally reducing cell proliferation and inducing 

cell death as observed previously in the case of curcumin [14]. The release efficiency at day 3 is 

summarized in Table 3. The data clearly show that the drug release profile is highly dependent on 

the pH and copolymer concentration. This pH dependency is consistent with the changes observed 
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where the self-assembled nanotube conformation changes to random individual chains when 

exposed to a low pH environment. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. The release profile of curcumin as a function of pH over 3 days for three different SMA 

concentrations (a) 31.7 µM; (b) 63.4 µM, and (c) 111 µM. The pH of the solutions was adjusted to 

approximately 6, 5, and 4. The data represent the mean ± SEM of triplicates. 

3.2. SMA and FA-DABA-SMA Polymers Encapsulated with Curcumin Targeting Breast Tumour Spheroids 

We have previously shown the ability of FA-DABA-SMA to actively bind to the overexpressed 

folic acid receptors on PANC-1 cells and be internalized by receptor-mediated endocytosis [14]. 
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Figure 4 reproduced with permission from our previous report shows curcumin-induced cell death 

of monolayer PANC1 cell viability assays using empty SMA and FA-DABA-SMA, and curcumin 

loaded FA-DABA-SMA [14]. The data indicated that when curcumin loaded FA-DABA-SMA was 

used at 0.3, 1, and 3 µM concentrations on PANC-1 cell viability, the results demonstrated that 

although the lower concentrations of curcumin (Cur)-loaded FA-DABA-SMA did not cause cell 

death, the 3 µM Cur/FA-DABA-SMA demonstrated significant toxicity and cell death. The toxicity at 

3 µM after 72 h of treatment, compared with empty SMA and FA-DABA-SMA, confirms the on-site 

release of curcumin by the FA-DABA-SMA delivery platform. However, these studies were 

conducted on 2D monolayer PANC1 cells and did not recapitulate the tumour in a host 

microenvironment of cell–cell and cell–extracellular matrix (ECM) interactions that drug delivery 

nanoparticles would encounter in vivo. 

 

Figure 4. Comparison of the cell viability of PANC-1 cells at 72 h treated with SMA, FA-DABA-SMA, 

and Cur-encapsulated FA-DABA-SMA at different doses using the WST-1 assay (n = 5). Reproduced 

with permission from Li et al. [14]. 

Here, breast triple-negative MDA-MB231 tumour spheroids were generated using the cyclo-

RGDfK (TPP) peptide method as previously described [10,11]. It is noteworthy that PANC-1 cell 

aggregates do not adhere to glass coverslips, and thus were not a viable model for fluorescence 

studies. When spheroids were formed, the previously effective concentration of 3 µM SMA and FA-

DABA-SMA loaded with curcumin [14] was tested for 0.5 and 6 h to assess the polymer’s interactions 

with the breast tumour spheroids. As shown in Figure 5 following 0.5 h exposure to 3 µM SMA 

loaded curcumin (cur-SMA) or 3 µM FA-DABA-SMA loaded curcumin (cur-FA-DABA-SMA), there 

was a marked difference in the uptake of curcumin by the spheroids between the SMA polymer and 

the functionalized FA-DABA-SMA template. The FA-DABA-SMA polymer was shown to dock on 

and be taken up by the tumour cells at the outer surface of the spheroids; whereas, SMA loaded 

curcumin polymers showed fluorescence data similar to the untreated spheroids. Following 6 h of 

exposure to 3 µM cur-SMA or 3 µM cur-FA-DABA-SMA, the only FA-DABA-SMA polymer revealed 

high penetration properties to the core of the spheroid as depicted by the decrease in the amount of 

visible DAPI stained cancer cell nuclei. These findings demonstrate that the functionalized FA-

DABA-SMA polymer loaded hydrophobic drug effectively target 3D tumour spheroids and release 

their therapeutic drug cargo to the inner core of the 3D spheroid structure. 
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Figure 5. Fluorescent images at 200× objective demonstrating the variation between tumour spheroid 

uptake of curcumin loaded SMA and FA-DABA-SMA after 0.5 h and 6 h. (A) Untreated MDA-MB-

231 breast cancer cell MCTS. (B) 3 µM Curcumin loaded SMA, and 3 µM curcumin-loaded FA-DABA-

SMA was added to MDA-MB-231 spheroids for 0.5 h. (C) 3 µM Curcumin loaded SMA, and 3 µM 

curcumin-loaded FA-DABA-SMA was added to MDA-MB-231 spheroids for 6 h. The image scale bar 

represents 100 µm. Abbreviations: SMA, poly (styrene-alt-maleic anhydride); FA, folic acid; DABA, 

2,4-diaminobutyric acid; Cur, curcumin; Auto, auto-fluorescence. 

3.3. Changes in Tumour Spheroid Volume of PANC-1 and MDA-MB231 Cells Following Treatment with 

Empty and Curcumin Loaded SMA and FA-DABA-SMA Polymers 

To further evaluate the anticancer effects curcumin loaded SMA and FA-DABA-SMA, changes 

in the spheroid volumes of PANC-1 aggregates (Figure 6) and MDA-MB231 spheroids (Figure 7) 

were measured and displayed. These findings revealed the biocompatibility of the polymers, as well 

as the cytotoxic effect of only curcumin, and curcumin loaded FA-DABA-SMA at 3 µM polymer 

concentrations. These results are consistent with reported observations linked to the inherent 

properties of curcumin suppressing the proliferation of a wide variety of cancer cells such as 

pancreatic, multiple myeloma, and colorectal cancer [13,23–27]. Also, the findings in this study using 

the fluorescent property of curcumin revealed that only the functionalized FA-DABA-SMA loaded 

curcumin is internalized through a proposed folic acid receptor-mediated endocytosis to be localized 

in the nucleus. A substantial reduction of cell viability was observed at 3 µM concentration for both 

empty FA-DABA-SMA and curcumin-loaded FA-DABA-SMA. 



Nanomaterials 2018, 8, 588 12 of 20 

 

 

Figure 6. Changes in PANC-1 cell aggregate volume following exposure to 3 µM empty and curcumin 

loaded SMA and FA-DABA-SMA and 3 µM curcumin only. (A) Phase contrast images at 4× objective 

of changes in spheroid volume over the course of three days following exposure to 3 µM empty and 

curcumin loaded SMA and FA-DABA-SMA and 3 µM curcumin only. A total of 10,000 cells were 

plated per well in a 96 well plate for a total of 7 days (4 days for cell aggregate formation followed by 

3 days of treatment). (B) Cell aggregate volume was measured daily following treatment using V = 

(4/3) πr3 where π = 3.1415 and r = average radius (µm). Radius was measured using a scale bar. Cell 

aggregate volume shown in the graph represents a cell aggregate volume ± standard error (error bars). 

Results were compared by a one-way ANOVA at 95% confidence using Fisher’s LSD test. The data 

presented in the graph are the combined results of two independent experiments that showed similar 

results. Notes: The control is represented by the spheroids that were untreated. Indicated p-values are 

a comparison between treated vs. untreated cells (n = 26 cell aggregates). The image scale bar 

represents 100 µm. The insets are magnified 300%. Phase contrast images are not a complete 

representation of all the spheroids that were measured and plotted in the bar graph. Abbreviations: 

SMA, poly(styrene-alt-maleic anhydride); FA, folic acid; DABA, 2,4-diaminobutyric acid; Cur, 

curcumin; CA, cell aggregate. 

Since curcumin-loaded FA-DABA-SMA were able to reduce cell viability, we tested their 

therapeutic effects on reducing tumour spheroid volumes. Here, PANC-1 and MDA-MB231 tumour 

spheroids were made using a previously determined concentration of 25 µM cyclo-RGDfK (TPP) 

peptide. PANC-1 cells formed loose cell aggregates consistent with other reports [11], where in 

contrast, the MDA-MB231 cells formed compact spheroids with a distinct border and cells that were 

indistinguishable from one another. Both PANC1 and MDA-MB231 spheroid structures were fully 

formed on the 4th day following cyclo-RGDfK (TPP) peptide. 

At 3 µM concentrations of empty SMA and FA-DABA-SMA polymers, 3 µM curcumin loaded 

SMA, 3 µM FA-DABA-SMA and 3 µM curcumin alone were added to the spheroids in culture. With 

3D modelling systems, the therapeutic effects of these treatments were measured for changes in 

spheroid volumes similar to in vivo tumour volume measurements in humans or pre-clinical animal 

model of human cancer. 

As shown in Figure 6, untreated PANC-1 spheroid aggregates continued to increase in spheroid 

volume as depicted in Figure 6B. Empty SMA showed a significant decrease in spheroid volume (p < 0.05) 

after 48 h after which time the spheroid volume continued to increase. Curcumin-loaded SMA and FA-

DABA-SMA both showed a gradual decrease in cell aggregate volume. However, curcumin encapsulated 

FA-DABA-SMA demonstrated consistently significant decreases in spheroid volume after 48 h (p < 0.05) 

and 72 h (p < 0.0001) relative to untreated spheroid aggregates. In contrast, curcumin loaded SMA only 

demonstrated a significant decrease in spheroid volume (p < 0.0001) after 72 h. Unexpectedly, empty FA-
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DABA-SMA caused a significant decrease in spheroid volume (p < 0.05) after 48 h and (p < 0.0001) after 72 

h when compared to untreated spheroid aggregates. The same observation was obtained previously when 

empty FA-DABA-SMA was applied to the PANC-1 cells caused a decrease in cell proliferation (Figure 5). 

To explain these observations, other studies have reported that the binding of folic acid to its receptor can 

mediate a downstream signalling cascade that is able to inhibit the cellular survival processes including 

cell proliferation [28,29]. Our data are consistent with these reports. Taken collectively, the therapeutic 

efficacy of FA-DABA-SMA loaded drug polymer may, in fact, be twofold. Binding of the folic acid on the 

functionalized polymer to folate acid receptors may inhibit a cellular survival activity that negatively 

affects tumor spheroid growth in addition to penetrating to the inner core of the tumor spheroid to unload 

its drug cargo. Phase contrast images showed a decrease in spheroid volume as depicted by an increase 

in single cells adhering to the wells in the monolayers and detaching from the cell aggregates. Similarly, 

untreated MDA-MB231 spheroids also continued to increase in spheroid volume as indicated in Figure 

7B. The MDA-MB231 spheroids showed a spheroid volume decrease following treatment with the 

polymers, similarly to those results with PANC-1 spheroid aggregates. Surprisingly, both curcumin 

encapsulated SMA and FA-DABA-SMA showed a similar decrease in spheroid volume when compared 

with untreated spheroids. 

 

Figure 7. Changes in MDA-MB231 spheroid volume following exposure to 3 µM empty and curcumin 

loaded SMA and FA-DABA-SMA and 3 µM curcumin only. (A) Phase contrast images at 4× objective 

of changes in spheroid volume over the course of three days following exposure to 3 µM unloaded 

and curcumin loaded SMA and FA-DABA-SMA and 3 µM curcumin only. A total of 10,000 cells were 

plated per well in a 96 well plate for a total of 7 days (4 days for spheroid formation followed by 3 

days of treatment). (B) Spheroid volume was measured daily following treatment using V = (4/3) πr3 

where π = 3.1415 and r = average radius (µm). Radius was measured using a scale bar. Spheroid 

volume shown in the graph represent spheroid volume ± standard error (error bars). Results were 

compared by a one-way ANOVA at 95% confidence using Fisher’s LSD test. The data presented in 

the graph are the combined results of two independent experiments that showed similar results. 

Notes: The control is represented by the spheroids that were untreated. Indicated p-values vs. 

untreated cells (n = 38). The image scale bar represents 100 µm. The insets are magnified 300%. Phase 

contrast images are not the complete representation of all the spheroids that were measured. 

Abbreviations: SMA, poly(styrene-alt-maleic anhydride); FA, folic acid; DABA, 2,4-diaminobutyric 

acid; Cur, curcumin. 

One possible explanation is that the tight MDA-MB231 spheroid structure may render them 

resistant to the anticancer effects of curcumin. A similar finding was reported by Akasov et al. [10] 

where breast cancer spheroids generated from MCF-7 cells were more resistant to the cytotoxic effects 
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of curcumin when compared to monolayer cells. The findings in this report describe the efficacy of 

this unique delivery system in the treatment of pancreatic and breast tumour spheroids and its ability 

to disable the survival mechanism(s) of tumours with acquired chemoresistance. 

3.4. The Effects of Clinical Standard Hydrophobic Chemotherapeutics Drug Loaded Functionalized FA-

DABA-SMA Polymers on Cell Viability Using Monolayer Cancer Cells 

The functionalized FA-DABA-SMA polymers encapsulated with clinically standard 

chemotherapeutics 5-FU and paclitaxel were also examined for the therapeutic effectiveness 

following their release from the polymer’s hydrophobic core using monolayer of PANC1 cells in 

culture. The therapeutic effects of the polymer released 5-FU and paclitaxel on PANC1 cell viability 

are presented in Figures 8 and 9. Significant suppression of cell proliferation is observed in Figure 8 

at low concentrations of the drugs. The decrease over time is also indicative of a slow release of the 

drugs over 72 h, which is consistent with results presented in Table 3. The most significant trend 

highlighted in the cell viability study is the very similar effect obtained at different concentrations of 

FA-DABA-SMA loaded with 5-FU as well as 5-FU directly in contact with the cells (Figure 8). Based 

on the release profile obtained with curcumin, the concentration of 5-FU released from the 1.0 µM 

FA-DABA-SMA loaded 5-FU is estimated at a maximum of 0.83 µM, and it has the same effect as 1.0 

µM 5-FU in direct contact with the cells. This similar trend reveals the active and sustained release of 

the encapsulated drug on the cancer cells over time. Indeed, the injection concentration needed for 

direct delivery of a hydrophobic drug would be much higher to obtain a sufficient concentration of 

1.0 µM to the cancerous cell to be treated. Additionally, a significant clinical challenge in treating 

cancer patients is the cardiotoxic effects of 5-FU chemotherapy, and to overcome this adverse effect; 

it is proposed that drug delivery vehicles directly target cancer cells [30]. The data depicted in Figure 

8 demonstrate that the functionalized FA-DABA-SMA loaded drug polymers are not only able to 

bind to folic acid receptors that are overexpressed on cancer cells, but are also able to exert cytotoxic 

effects with an equal significance when compared with a drug directly applied to the cells in culture. 

In contrast, other reports have shown the release of a drug by an amphiphilic polymer carrier capable 

of self-assembly often results in lower effectiveness of the drug in the reduction of cell proliferation 

compared to the drug alone directly in contact with the cell [31–33]. This decrease in effectiveness can 

translate to a reduction of up to 50% in cell death [31]. The functionalized FA-DABA-SMA loaded 

hydrophobic drug polymers showed a slow release profile over 3 days avoiding the initial burst 

release and allowing for a more extended treatment window and potential reduction in side effects. 

A similar trend in reducing cell viability by FA-DABA-SMA loaded with paclitaxel is observed 

in Figure 9. The large and complex chemical structure of the hydrophobic paclitaxel molecule 

released from the polymer efficiently suppressed the growth of the PANC1 cells even at low 

concentrations. Also, the slow release observed for the paclitaxel is consistent with the slow release 

profile observed for curcumin previously reported in Table 3 and Figure 8. With paclitaxel, there is 

clear evidence for the gradual and consistent decrease in cell viability over time. Surprisingly, the 

different concentrations of the FA-DABA-SMA polymer encapsulated with the indicated 

chemotherapeutic drugs had a significant effect on the cell viability and suggested that a constant 

release of the drug could be prolonged at higher concentrations. 

The high therapeutic effects observed for the delivery of hydrophobic drugs with various 

molecular weights and different chemical structures implies the chemical design of the FA-DABA-

SMA delivery platform releases drugs efficiently and slowly with no loss of activity. Similarly, the 

subsequent decrease in cell proliferation at low drug concentrations would suggest a direct 

internalization of the drug to the nucleus. While the release of curcumin with SMA as a carrier was 

observed in the cytoplasm, fluorescence microscopy demonstrated that the FA-DABA-SMA polymer 

encapsulated with curcumin was internalized and targeted to the nucleus leading to cell death [14]. 

Boshnjaku et al. [34] recently reported on the nuclear localization of the folate receptor and its novel 

activity as a transcription factor. The report showed that folate receptor alpha (FRα) translocates to 

the nucleus and interacts with promoter regions of genes such as Fgfr4 to regulate their expression. 

Therefore, direct access of the drug to the nucleus may be associated with the interaction between the 
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folate-conjugated polymer and the folic acid receptors of the cells triggering receptor-mediated 

internalization. 

 

Figure 8. Cell viability of PANC-1 cells at 72 h treated with 0.3 µM FA-DABA-SMA/5-FU, 1.0 µM FA-

DABA-SMA/5-FU, 3.0 µM FA-DABA-SMA/5-FU, and 1.0 µM of 5-FU using the WST-1 assay. 5-FU 

was encapsulated at maximum loading capacity in each sample. The data represent the mean ± SEM 

of n = 5 independent experiments. 

 

Figure 9. Comparison of the viability of PANC-1 cells at 72 h treated with 0.3 µM FA-SMA/Paclitaxel, 

1.0 µM FA-DABA-SMA/Paclitaxel, 3.0 µM FA-SMA/Paclitaxel, 0.3 µM of Paclitaxel, and 3.0 µM of 

Paclitaxel using the WST-1 assay. Paclitaxel was encapsulated at maximum loading capacity in each 

sample. The data represent the mean ± SEM of n = 5 independent experiments. 

4. Conclusions 

A novel approach to study the effects of a “smart” drug delivery system on 3D multicellular 

PANC-1 cell spheroid aggregates and breast tumour spheroids was investigated to resemble the 
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interactions that would likely occur in vivo. For the first time, folic acid functionalized SMA polymers 

could interact with breast tumour spheroids and deliver encapsulated curcumin time-dependently 

to the inner core of the spheroid. Additionally, tumour volume measurements have shown that FA-

DABA-SMA encapsulated with hydrophobic drugs is the far more effective delivery system when 

compared with SMA as it shows a gradual, yet consistently significant decrease in spheroid volume 

over the course of three days. A surprising observation from this study revealed that the empty FA-

DABA-SMA polymers are capable of reducing spheroid volume, which suggests that the folic acid 

functionalized polymer may exert its therapeutic effects in combinatorial and sequential delivery 

effects, independently but yet, in a significant manner. The binding of folic acid to its receptor may 

inhibit cell proliferation while receptor-mediated internalization may allow direct interaction 

between the drug and the nucleus leading to cancer cell death. Additionally, the influence on cell 

viability by the folic acid functionalized polymer may be attributed to the novel mechanism of action 

of the FRα whereby the receptor acts as a transcription factor that localizes to the nucleus to regulate 

gene expression [34]. It is possible that a reduction in spheroid volume following treatment with 

empty FA-DABA-SMA results from an unknown mechanism of action mediated through folic acid 

binding to its receptor. 

In the present study, curcumin was used for its hydrophobicity properties but also, it acts as a 

fluorescent probe for tracing drug uptake in our FA-DABA-SMA copolymer in the spheroid studies. 

The data depicted in Figure 4 and reported by Li et al. [14] demonstrate that the lower concentrations 

of curcumin-loaded FA-DABA-SMA did not cause cell death but instead, the 3 µM curcumin/FA-

DABA-SMA had significant toxicity and cell death. Importantly, the toxicity effects of curcumin/FA-

DABA-SMA at 3 µM after 72 h of treatment of cancer cells, compared with empty SMA and FA-

DABA-SMA, confirms the on-site release of curcumin by the FA-DABA-SMA delivery platform [14]. 

Turmeric is the main source of curcumin. Chemically, curcumin ((1,7-bis(4-hydroxy-3-

methoxyphenyl)-1,6-heptadiene-3,5-dione), is also called diferuloylmethane and is the primary 

natural polyphenol found in the rhizome of Curcuma longa (turmeric) [35]. However, the exact 

mechanism(s) of action and its bioactive components have only recently been investigated and 

eloquently reviewed [36]. Curcumin can target multiple signalling molecules thereby providing 

multiple health benefits [36]. Most of these benefits are due to its antioxidant and anti-inflammatory 

effects [37]. Potential therapeutic effects of curcumin as an anti-inflammatory agent, include 

neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases [38]. 

Also, curcumin has been reported to induce apoptosis in human colorectal carcinoma by regulating 

expression of Prp4 and p53 [25] or through regulation of the function of MDR1 and reactive oxygen 

species [24].  

For effective targeting of solid tumours, many of the chemotherapeutic drugs originating from 

the neovasculature tumour blood vessels can only penetrate three to five cells, and this interaction 

has been proposed for their limited efficacy with the subsequent development of chemoresistance 

[6]. Thus, the therapeutic efficacy of anticancer drugs is limited to their poor penetration into the 

tumour mass in addition to their adverse side effects on healthy cells, which limit the dosage of the 

drug that can be administered safely to patients. To improve the tumour drug penetration, Sugahara 

et al. [7] identified a tumour penetrating peptide which enhances the efficacy of anticancer drugs by 

targeting αvβ3 specifically expressed on the endothelium of tumour vessels. Here, they designed a 

tumour penetrating peptide, iRGD (CRGDK/RGPD/EC), chemically conjugated to a 

chemotherapeutic drug which facilitated the penetration of the drug deep into the tumour mass by 

binding to αv integrins. The report further discloses the mechanism of iRGD facilitated penetration 

into the tumour mass. iRGD is proteolytically cleaved in the tumour mass to produce CRGDK/R 

truncated peptide. This truncated peptide dissociates from its initial interaction with the integrins 

and preferentially binds to neuropilin-1 (NRP-1). The CRGDK/R truncated peptide, and NRP-1 

complex with co-administration of anticancer drug facilitates tumour mass penetration. 

In the present study, the 3D spheroid model using cyclo-RGDfK (TPP) peptide may be better 

suited for in vitro cancer research. Akasov et al. [10] showed that the 3D spheroid formation by using 

synthetic cyclo-RGDfK (TPP) peptide closely mimics the natural ECM proteins binding to α5β1 
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integrins on the cell membrane [10]. The cyclo-RGDfK (TPP) peptide promotes the self-assembly of 

cancer cells reproducibly in one single step. The mechanism of FA-SMA loaded curcumin 

nanoparticles transported through tumour spheroid mass by free diffusion in extracellular space may 

be facilitated by cyclo-RGDfK (TPP) and α5β1 integrin interactions as depicted in Figure 10 and 

described by Sugahara et al. [7]. In Figure 10, other FA-DABA-SMA nanoparticles can involve cell 

binding to folic acid receptors and go through cellular internalization or change their conformation 

into individual chains via pH change, thereby effectively releasing their cargo. It is noteworthy that 

when the uptake of folate-conjugated liposomes was compared between folate receptor expressing 

tumours and folate receptor plus inflammatory lesions, both folate-targeted and non-targeted 

liposomes accumulated more readily at sites of inflammation than in solid tumours [39]. RGD-

conjugated nanoparticles might hold promise for chemo drug delivery to solid tumours through their 

ability to interfere with integrin-ECM interactions. The therapeutic potential can enable penetration 

into solid tumours, by interfering directly with tumour neovasculature and integrin-mediated 

growth signalling by cancer cells [5]. 

In conclusion, pH-sensitive and biocompatible functionalized folic acid conjugated SMA 

copolymers are excellent carriers for the delivery of hydrophobic therapeutic drugs in a safe, effective 

and controlled manner. This delivery system can penetrate the inner core of breast tumour spheroids 

in a time- and dose-dependent manner. These unique properties of the folate-conjugated amphiphilic 

alternating copolymer may provide promising clinical applications, particularly overcoming the 

adverse cytotoxic side effects of chemotherapeutics on healthy cells. 

 

Figure 10. The proposed mechanism of nanoparticle transport and penetration through 3D tumour 

spheroid mass. FA-SMA loaded curcumin nanoparticles are transported through tumour spheroid 

mass by free diffusion in extracellular space. Some nanoparticles can involve cell binding to folic acid 

receptors and go through cell internalization or change their conformation into individual chains 

thereby effectively releasing their cargo. This schematic illustrates a pH-responsive, “smart” active 

polymeric delivery system using folate functionalized amphiphilic alternating copolymer 

poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable linker 2,4-diaminobutyric 

acid (DABA). The “off state” occurs at a neutral pH when the polymer self-assembles into an ordered 

nanotube conformation (as depicted in the top right panel) and is capable of encapsulating a 

hydrophobic agent, such as curcumin as pictured above. In an acidic tumour microenvironment, these 

nanotubes change their conformation into individual chains thereby effectively releasing their cargo. 

These curcumin loaded nanotubes are proposed to interact with 3D tumour spheroids through FA-

DABA-SMA binding to the overexpressed folic acid receptors on pancreatic cancer cells (1) and are 

internalized through receptor-mediated endocytosis (2). The hydrophobic drug is then released 

intracellularly (3). While the cancer cells adhere to each other to generate a spheroid, the nanotubes 
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containing curcumin are capable of penetrating the inner of a spheroid and delivering the therapeutic 

agent as shown in the fluorescence image. Scale bar represents 100 µm. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Two 

different conformations of the quadrimers of SMA at pH 7 corresponding to two chiralities (SR−RR−SR and 

SR−SR−SR). The structures are very linear, and the orientations of the benzene groups are similar. Reproduced 

with permission from [S1], Figure S2: Two different conformations of the quadrimers of SMA at pH 3 

corresponding to two chiralities (SR RR sr and SR SR SR). The first structure has a steplike conformation and the 

second a well-like conformation. Reproduced with permission from [S1]. Figure S3: Front view and side view of 

the configuration of the tubular association of SMA dodecamers at pH 7 at the molecular mechanical level. 

Reproduced with permission from [S3], Table S1:  Comparison of the inner and outer diameter of the tubular 

structure of SMA at pH7 obtained from ab initio molecular modelling and neutron scattering. Reproduced with 

permission from [S2], Figure S4. DLS results of (a) pure 0.05 wt % SMA solution (reprinted with permission from 

[S4]) (b) 1 wt % PSMA-DABA-FA with mean zeta potential of −39.89 mV. The presented line in the graph is a 

guide for the eyes. Reproduced with permission from [S4], Figure S5: FA-DABA-PSMA oligomer at pH 7 at #1 

carboxylic acid using ONIOM Model: central trimer optimized to DFT, outer two to PM6. Reproduced with 

permission from [S4], Figure S6: 2,4-DABA variant folate-conjugated PSMA quadrimer bonded at the #2 

carboxylic acid at pH 3. Each monomer forms a ~90° angle with its neighbour. Reproduced with permission from 

[S4]. 
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Abbreviations 

5-FU fluorouracil 

Cur curcumin 

DABA 2,4-diaminobutyric acid 

ECM extracellular matrix 

EPR enhanced permeability and retention 

FA-SMA folate functionalized SMA 

FRα folate acid receptor alpha 

MCTS multicellular tumour spheroid(s) 

MDA-MB231 human triple negative breast cancer cell line 

NRP1 neuropilin-1 

PANC-1 human pancreatic cancer cell line 

PEG polyethylene glycol 

pHe extracellular pH 

RGDfK Arg-Gly-Asp-D-Phe-Lys 

SMA poly(styrene-alt-maleic anhydride) 

TPP triphenyl phosphonium cation 

Wt weight 
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