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Abstract: Recyclable nanomaterials are in great need to develop clean technology for applications in
the removal of water contaminants. In this work, easily separable montmorillonite/Fe3O4/humic
acid (MFH) nanocomposites were fabricated through a facile hydrothermal route. It was found the
adsorption ability and stability of MFH was significantly enhanced due to the synergistic effects
between montmorillonite, Fe3O4 nanoparticles and humic acid. The MFH nanocomposites are
highly efficient and recyclable as they can remove at least 82.3% of Cr(VI) and 95.1% of aniline in six
consecutive runs. The adsorption mechanism was investigated by analyzing the kinetic parameters
of pseudo first-order, pseudo second-order, and intraparticle diffusion models and describing the
equilibrium isotherms of Langmuir and Freundlich models. Results indicated different adsorption
mechanisms of Cr(VI) and aniline by MFH. The readily synthesized MFH nanocomposites can act as
effective and practical materials for environmental applications.
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1. Introduction

As one of the most toxic heavy metals and common contaminants in wastewater, Cr can be
found in wastewater from painting, tanning, and metallurgical industries [1,2]. It generally exists in
the form of Cr(III) or Cr(VI) with the latter hundreds of times more toxic than the former. Cr(VI) is
highly hazardous to organs, such as skin, liver, and lung, and even mutagenic to organisms [3].
In addition, it causes liver damage, pulmonary congestion, and skin irritation. Converting Cr(VI)
to Cr(III) is a common and efficient strategy to solve the problem of Cr(VI). Meanwhile, aniline is a
group of emerging contaminants in wastewater from many industrial processes, such as painting,
pharmacy, and rubber [4]. Aniline can greatly harm human and aquatic life as it is highly toxic and
it can accumulate in the environment [5]. It can enter the body through inhalation, digestion and
skin absorption, convert hemoglobin to methemoglobin and result in cyanosis [4]. In recent years,
growing attention has been focused on aniline removal strategies. In practical situations, heavy metals
like Cr(VI) and aniline can coexist in industrial wastewater [6]. Thus, it is significant to achieve
simultaneous removal of Cr(VI) and aniline from industrial wastewater to prevent their damage to the
ecosystem and human health.

In recent years, various techniques of removing contaminants in wastewater have been
investigated, including adsorption [7,8], biodegradation [9,10], photocatalysis [11,12], and biocatalytic
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oxidation [13,14]. Among them, adsorption has been the most widely used and effective approach
in wastewater treatment. A great variety of adsorbents (e.g., active carbon [15], metal oxides [16],
polymeric resins [17], zeolites [18], clays [19] and nano zerovalent iron [20]) have been utilized
to remove Cr(VI) and aniline in wastewater. The application of Fe3O4 nanoparticles (NPs) as a
highly efficient adsorbent attracts great research interest due to the advantages of relatively low cost,
large specific surface area and good adsorption ability.

However, the small size of Fe3O4 NPs may cause problems such as easy oxidation, aggregation
and difficult separation [21]. Dispersing Fe3O4 NPs on clays like montmorillonite (Mt) is an
effective and economic strategy to overcome these problems [22,23]. Like Fe3O4 NPs, Mt can also
adsorb contaminants in wastewater and further enhance the adsorption ability [24,25]. What is
more, the stability and dispersity of Fe3O4 NPs can be improved by coating humic acid (HA)
on the surface [26,27]. HA has strong complexation ability towards heavy metals and organic
pollutants, which can restrict their mobility in water [28]. Besides, both Fe3O4 and HA have been
reported to effectively reduce Cr(VI) to less toxic Cr(III) in many studies, and HA coated magnetite
has also been utilized for Cr(VI) adsorption and reduction (See References [29–31] for detailed
mechanisms). Studies demonstrated that substituted phenols, α-hydroxyl carboxylic acids, oxalic acid,
and α-carbonyl carboxylic acids in HA participated in the reduction reaction of Cr(VI) and lower
pH can make Cr(VI) more easily reduced by improving the redox potential of Cr(VI)/Cr(III) [30,31].
However, to get better adsorption capacity, stability, dispersity, and reducibility, Fe3O4, HA, and their
composite need further modification.

In this study, montmorillonite/Fe3O4/humic acid (MFH) nanocomposites were readily prepared
through a simple hydrothermal route. They were obtained by coating HA on Fe3O4 NPs surface and
then dispersing the particles onto Mt. Apart from the advantage of easy synthesis, MFH also possessed
strong adsorption ability, good stability and high recyclability due to the synergetic effects between
the components. MFH showed great promise for applications in practical contaminants removal
in wastewater.

2. Chemicals and Methods

2.1. Chemicals

FeCl3·6H2O (ACS), FeSO4·7H2O (≥99.0%), ammonia solution (25%) and humic acid sodium
salt (AR) were obtained from Aladdin Biochemical Technology Co., Ltd., Shanghai, China.
Na-montmorillonite (cation exchange capacity of 0.9 meq·g−1) was produced in Beishan, Gansu,
China. K2Cr2O7 (≥99.95%) and hydrochloric acid (36.5–38.0 wt%) were provided by Tianjin Guangfu
Fine Chemical Research Institute, Tianjin, China. 1,5-diphenylcarbazide (AR) was provided by
Tianjin Chemart Chemical Technology Co., Ltd., Tianjin, China. Aniline (≥99.5%) was purchased
from Shanghai Macklin Biochemical Co., Ltd., Shanghai, China. Ethanol absolute (≥99.8%) and
NaOH (≥98.0%) were provided by Tianjin Real&Lead Chemical Technology Co., Ltd., Tianjin, China.
Deionized water was utilized throughout the study.

2.2. Fabrication of MFH

As shown in Scheme 1, MFH nanocomposites of different Fe3O4/Mt mass ratios were obtained
using a facile hydrothermal method as follows: 2.7962 g FeCl3·6H2O, 1.9580 g FeSO4·7H2O, 0.2280 g
humic acid sodium salt and 1.5 g Mt (Fe3O4:Mt = 1:20)/0.75 g Mt (Fe3O4:Mt = 1:10)/0.3 g Mt (Fe3O4:Mt
= 1:4)/0.075 g Mt (Fe3O4:Mt = 1:1) was dissolved in 60 mL 50% ethanol in water (v/v) and sonicated
for 3 h. 4.6 mL of ammonia solution was added into the solution kept at 90 ◦C. Then, the suspension
was transferred into a Teflon-lined autoclave (100 mL) and kept at 120 ◦C for 2 h. After the autoclave
was cooled down naturally, the product was separated by centrifugation, washed by water and ethanol
(three times each), and dried in a vacuum oven (60 ◦C, 6 h). For comparison, 2.7962 g FeCl3·6H2O
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and 1.9580 g FeSO4·7H2O was dissolved in 50% ethanol in water (v/v, 60 mL). Following the same
procedure as described above, bare Fe3O4 NPs were obtained.
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2.3. Characterization

Transmission electron microscopy (TEM) was conducted using a Tecnai G2 F20 (FEI, Eindhoven,
The Netherlands) at 200 kV. The Brunauer–Emmett–Teller (BET) method was utilized to calculate the
specific surface area (SBET). Nitrogen adsorption isotherms (T = 77 K) were obtained using an ASAP
2020 adsorption analyzer (Micromeritics, Norcross, GA, USA). Total pore volume (Vtp) and average
pore diameter (Dp) were obtained using Barrett–Joyner–Halenda (BJH) method. A D/max-2500 X-ray
diffraction analyzer (Cu Kα λ = 0.154 nm, 100 mA, 40 kV, 6◦ min−1, Rigaku, Tokyo, Japan) was
used to collect X-ray diffraction (XRD) patterns. Fourier transform infrared spectroscopy (FTIR) was
recorded by Tensor 27 (Bruker Optics, Ettlingen, Germany). X-ray photoelectron spectroscopy (XPS)
was performed on an ESCALAB 250XI (Thermo Fisher, Waltham, MA, USA) for surface analysis.
C element content was measured by TOC-VCPH (Shimadzu, Kyoto, Japan) and those of Si, Al and Fe
elements were detected using inductively coupled plasma optical emission spectrometry (ICP-OES)
iCAP 7400 (Thermo Fisher, Waltham, MA, USA). The content of Cr(VI) was determined using
1,5-diphenylcarbazide by a U-3010 UV-vis spectrophotometer (Hitachi, Tokyo, Japan) (λ = 540 nm) [32].
The concentration of aniline in samples was measured using a U-3010 UV-vis spectrophotometer
(Hitachi, Tokyo, Japan) (λ = 230 nm) [33].

2.4. Batch Adsorption Experiments

One-hundred mL water with Cr(VI) (0–40.0 mg·L−1) and aniline (0–100.0 mg·L−1) at pH = 3.0–11.0
was added into in 250 mL flasks. The value of pH was controlled by adding 0.05 M HCl or NaOH.
The solution was agitated at 400 rpm and kept at 25 ◦C. 0.05–0.40 g·L−1 adsorbents were added in
the flasks. Every 5 min during the experiment process (100 min), samples (1 mL) were taken out for
UV analysis. After the nanocomposites were collected using a magnet, they were washed with 50%
ethanol in water (v/v) several times and then dried. To evaluate the reusability, they were reused in
the next five runs. Removal efficiency and equilibrium adsorption capacity qe (mg·g−1) were obtained
using Equations (1) and (2). All experiments were performed in triplicate.

Removal efficiency =
c0 − ct

c0
× 100% (1)

qe =
(c0 − ce)V

m
(2)

c0, ct and ce (mg·L−1): initial, final and equilibrium concentrations, respectively; m (g): the amount of
adsorbent added; V (L): the volume of solution.
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3. Results and Discussion

3.1. Characterization

As shown in Figure 1a, bare Fe3O4 NPs tended to aggregate, which would reduce specific surface
area, dispersity, mobility, and adsorption ability. Following the synthesis procedure in Section 2.2,
HA-coated Fe3O4 NPs were dispersed onto Mt layers to overcome this problem. After sonication, Mt of
fewer layers (See Figure 1b) can be obtained, which possessed higher specific surface area than normal
Mt powder. As both Mt and HA were negatively charged in the form of Na-Mt and humic acid sodium
salt respectively, HA was less likely to compete with Fe3O4 NPs to bind with Mt. The electrostatic
attraction between Fe3O4 NPs and Mt, and between Fe3O4 NPs and HA, along with the electrostatic
repulsion between Mt and HA, functioned as the main interaction forces to disperse HA-coated Fe3O4

NPs onto Mt and maintain the structure stability. The ratio of HA-coated Fe3O4 NPs loaded on Mt
was controlled by varying the ratio between Mt and Fe sources. In Figure 1c–f, different mass ratios
of HA-coated Fe3O4 NPs were loaded onto Mt. According to Table 1, MFH (Fe3O4:Mt = 1:4) had the
highest specific surface area (SBET) among MFH of different mass ratios. With the increase of Fe3O4:Mt
ratio in MFH, the total pore volume (Vtp) of MFH increased, and the average pore diameter (Dp)
narrowed (Fe3O4:Mt < 1:4) and then widened (Fe3O4:Mt > 1:4). Compared with MFH in Figure 1c,d,
the larger SBET and Vtp of MFH in Figure 1e was due to more Fe3O4 NPs loaded onto Mt. However,
when Mt was overloaded with Fe3O4 NPs, the aggregation of Fe3O4 NPs would result in loss of SBET
and increase of Dp compared with MFH in Figure 1e. Therefore, the MFH nanocomposites investigated
in this paper were prepared according to the optimum mass ratio of 1:4 (Fe3O4:Mt). The SBET and Vtp

of as-prepared MFH were increased significantly compared with those of Mt and bare Fe3O4 NPs.
MFH enriched the pollutants by adsorption and significantly improved the removal efficiency [34,35].

Nanomaterials 2018, 8, x FOR PEER REVIEW  4 of 15 

 

sonication, Mt of fewer layers (See Figure 1b) can be obtained, which possessed higher specific 
surface area than normal Mt powder. As both Mt and HA were negatively charged in the form of 
Na-Mt and humic acid sodium salt respectively, HA was less likely to compete with Fe3O4 NPs to 
bind with Mt. The electrostatic attraction between Fe3O4 NPs and Mt, and between Fe3O4 NPs and 
HA, along with the electrostatic repulsion between Mt and HA, functioned as the main interaction 
forces to disperse HA-coated Fe3O4 NPs onto Mt and maintain the structure stability. The ratio of 
HA-coated Fe3O4 NPs loaded on Mt was controlled by varying the ratio between Mt and Fe sources. 
In Figure 1c–f, different mass ratios of HA-coated Fe3O4 NPs were loaded onto Mt. According to 
Table 1, MFH (Fe3O4:Mt = 1:4) had the highest specific surface area (SBET) among MFH of different 
mass ratios. With the increase of Fe3O4:Mt ratio in MFH, the total pore volume (Vtp) of MFH 
increased, and the average pore diameter (Dp) narrowed (Fe3O4:Mt < 1:4) and then widened 
(Fe3O4:Mt > 1:4). Compared with MFH in Figure 1c,d, the larger SBET and Vtp of MFH in Figure 1e was 
due to more Fe3O4 NPs loaded onto Mt. However, when Mt was overloaded with Fe3O4 NPs, the 
aggregation of Fe3O4 NPs would result in loss of SBET and increase of Dp compared with MFH in 
Figure 1e. Therefore, the MFH nanocomposites investigated in this paper were prepared according 
to the optimum mass ratio of 1:4 (Fe3O4:Mt). The SBET and Vtp of as-prepared MFH were increased 
significantly compared with those of Mt and bare Fe3O4 NPs. MFH enriched the pollutants by 
adsorption and significantly improved the removal efficiency [34,35]. 

 
Figure 1. TEM of (a) bare Fe3O4 NPs; (b) Mt single layer obtained by sonication, different mass ratios 
of MFH nanocomposites: (c) Fe3O4:Mt = 1:20; (d) Fe3O4:Mt = 1:10; (e) Fe3O4:Mt = 1:4; (f) Fe3O4:Mt = 1:1. 

Table 1. The specific surface area and porous features of different materials. 

Material SBET (m2∙g−1) Vtp (cm3∙g−1) Dp (nm) 
Bare Fe3O4 NPs 77.24 0.24 7.5 

Mt powder 53.72 0.12 8.6 

MFH nanocomposites (Fe3O4:Mt, mass ratio) 

1:20 62.13 0.13 8.0 
1:10 76.45 0.15 7.6 
1:4 98.86 0.19 6.5 
1:1 73.46 0.20 7.7 

Figure 1. TEM of (a) bare Fe3O4 NPs; (b) Mt single layer obtained by sonication, different mass ratios of
MFH nanocomposites: (c) Fe3O4:Mt = 1:20; (d) Fe3O4:Mt = 1:10; (e) Fe3O4:Mt = 1:4; (f) Fe3O4:Mt = 1:1.
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Table 1. The specific surface area and porous features of different materials.

Material SBET (m2·g−1) Vtp (cm3·g−1) Dp (nm)

Bare Fe3O4 NPs 77.24 0.24 7.5

Mt powder 53.72 0.12 8.6

MFH nanocomposites
(Fe3O4:Mt, mass ratio)

1:20 62.13 0.13 8.0
1:10 76.45 0.15 7.6
1:4 98.86 0.19 6.5
1:1 73.46 0.20 7.7

The XRD patterns of Mt, Fe3O4 NPs and MFH are shown in Figure 2. For the XRD pattern of
Mt, there were four diffraction peaks at 2θ = 20.4◦, 35.9◦, 54.1◦ and 62.2◦. As for bare Fe3O4 NPs,
the characteristic peaks at 2θ = 30.2◦, 35.8◦, 43.3◦, 52.6◦, 57.2◦, and 62.6◦ can be found. In the XRD
pattern of MFH, the typical diffraction peaks of both Mt and Fe3O4 NPs can be seen, demonstrating
their high crystallinity and the successful dispersion of Fe3O4 NPs onto Mt. Particularly, the peak
of Mt at 2θ = 20.4◦ showed a slight shift to 2θ = 19.6◦ in MFH. It could be explained by that as the
insertion of larger hydrolyzed iron species replaced Na+ in initial Mt, the planar stress increased and
thus resulted in the shift to lower angle in XRD pattern [36,37]. Note that as an organic component HA
does not diffract and thus cannot be distinguished by XRD.
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To clarify the coating of HA on Fe3O4 NPs, FTIR was carried out. In Figure 3a, the band at ~1030
cm−1 was attributed to the stretching vibration absorption of Si-O of Mt [38]. In the Fe3O4 curve
(Figure 3b), the main absorption was observed at around 582 cm−1, corresponding to Fe–O bending
vibration [39]. In Figure 3c, the typical C=O stretching of carboxylate in HA was located at ~1680
cm−1, and the band (~1350 cm−1) can be attributed to –CH2– scissoring [40]. In Figure 3d, all the
characteristic bands of Mt, Fe3O4 NPs and HA mentioned above can be seen, verifying the formation
of MFH. The C=O stretching in MFH (featured at ~1550 cm−1) showed blue shift compared with that
of free HA (~1680 cm−1). This change can also provide evidence that the carboxylate anions of HA
interacted with the surface of Fe3O4 NPs.
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Besides, XPS was performed for surface composition analysis. The existence of Mt in MFH can be
verified by the characteristic peaks of Al 2p and Si 2p (Figure 4b,c). Fe3O4 NPs can be confirmed by
the peaks at 724.8 eV (Fe 2p1/2), 710.7 eV (Fe 2p3/2) and 530.2 eV (O 1s) (Figure 4d,e). The two split
peaks of O 1s at 530.0 eV and 532.0 eV were assigned to Fe–O and hydroxyls, respectively. Besides,
since spectrum of C 1s in MFH (Figure 4f) was distinguished, the existence of organic HA can also be
verified. In summary, XPS indicated that the oxidation of Fe3O4 NPs was prevented by coating HA
on Fe3O4 NPs surface and dispersing HA-coated Fe3O4 NPs onto Mt layers. As shown in Figure 4g,
the Cr 2p3/2 peak of MFH after removal experiments can be split into two peaks at 574.3 and 573.2 eV
(the characteristic peaks of Cr(VI) and Cr(III)), respectively, suggesting that both Cr(VI) and Cr(III)
existed on MFH surface [41,42]. Therefore, it can be concluded that Cr(VI) can be reduced to Cr(III)
species (e.g., Cr(OH)3) and precipitated on MFH surface.
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The total organic carbon (TOC) content of raw HA was measured to be 43.81% (mass fraction).
According to the dosage of HA used in MFH synthesis, the TOC content of as-prepared MFH was
calculated to be 5.68%, which was very close to the measured value (5.34%). Besides, according
to ICP-OES, the contents of Si, Al and Fe in MFH were 4.24%, 1.60% and 50.13%, respectively.
As the contents of Si and Al in raw Mt were 24.18% and 8.86% respectively, theoretical contents
of Si, Al and Fe in MFH were calculated to be 4.13%, 1.51%, and 49.4%, respectively. Therefore,
the chemical compositions of as-prepared MFH were close to the initial dosage, which suggested the
firm combination between Mt, Fe3O4 NPs and HA.

To study the recyclability, magnetic hysteresis loops of MFH were plotted in Figure 5.
The saturation magnetization (Ms) of Fe3O4 NPs and MFH were measured to be 74.3 and 51.1 emu·g−1,
respectively. The decrease of Ms was resulted from the total contents of Mt and HA in MFH,
which turned out to be 31.2% after calculation [28]. The composition value agreed well with that the
initial dosage and calculation value of ICP-OES and TOC (30.6%). With a relatively high Ms, MFH can
be easily separated from water by a magnet.Nanomaterials 2018, 8, x FOR PEER REVIEW  7 of 15 

 

 
Figure 5. Magnetic hysteresis loops of Fe3O4 NPs and MFH nanocomposites. 

3.2. Simultaneous Removal of Cr(VI) and Aniline 

In Figure 6, the performance of MFH for removing Cr(VI) and aniline was demonstrated and 
compared with that of Mt, Fe3O4 NPs and HA. The removal efficiency of both Cr(VI) and aniline was 
MFH > Fe3O4 > Mt > HA. 84.8% of Cr(VI) and 89.2% of aniline could be removed by MFH in about 40 
and 50 min, respectively. By comparing with the longer time and lower removal efficiency by Fe3O4 
NPs, Mt and HA, the enhanced adsorption ability of MFH can be verified. As stated above, the 
specific surface area of MFH (98.86 m2·g−1) was much larger than that of both Mt (53.72 m2·g−1) and 
Fe3O4 NPs (77.24 m2·g−1), which enriched the pollutants by adsorption and significantly improved 
the removal efficiency. Mt can adsorb contaminants in wastewater and further enhance the adsorption 
ability of Fe3O4 NPs. Coating HA onto Fe3O4 NPs greatly improved the stability and dispersity and 
further adsorbed more heavy metals and organic pollutants. Besides, HA also worked as reductant to 
reduce Cr(VI) to Cr(III) [29–31]. Therefore, the synergistic effects between Fe3O4 NPs, Mt and HA 
contributed greatly to the improvement of adsorption ability and removal efficiency in MFH.  

 
Figure 6. Simultaneously removing (a) Cr(VI) and (b) aniline using various adsorbents.  
(c0(Cr(VI)) = 40.0 mg·L−1, c0(aniline) = 100.0 mg·L−1, c(adsorbent) = 0.1 g·L−1, T = 25 °C, pH = 3.0). 

3.3. Adsorption Kinetics 

Adsorption kinetics helps to understand the mechanism, and the obtained data can be used to 
build mathematical models for interpreting interactions. To figure out the mechanisms in 
adsorption, pseudo first-order, pseudo second-order and intraparticle diffusion models (Equations 
(3)–(5)) were used for fitting the data from experiments. 

1ln( ) lne t eq q q k t− = −  (3) 

2
2

1

t ee

t t
q qk q

= +  (4) 

Figure 5. Magnetic hysteresis loops of Fe3O4 NPs and MFH nanocomposites.

3.2. Simultaneous Removal of Cr(VI) and Aniline

In Figure 6, the performance of MFH for removing Cr(VI) and aniline was demonstrated and
compared with that of Mt, Fe3O4 NPs and HA. The removal efficiency of both Cr(VI) and aniline
was MFH > Fe3O4 > Mt > HA. 84.8% of Cr(VI) and 89.2% of aniline could be removed by MFH in
about 40 and 50 min, respectively. By comparing with the longer time and lower removal efficiency by
Fe3O4 NPs, Mt and HA, the enhanced adsorption ability of MFH can be verified. As stated above, the
specific surface area of MFH (98.86 m2·g−1) was much larger than that of both Mt (53.72 m2·g−1) and
Fe3O4 NPs (77.24 m2·g−1), which enriched the pollutants by adsorption and significantly improved
the removal efficiency. Mt can adsorb contaminants in wastewater and further enhance the adsorption
ability of Fe3O4 NPs. Coating HA onto Fe3O4 NPs greatly improved the stability and dispersity and
further adsorbed more heavy metals and organic pollutants. Besides, HA also worked as reductant
to reduce Cr(VI) to Cr(III) [29–31]. Therefore, the synergistic effects between Fe3O4 NPs, Mt and HA
contributed greatly to the improvement of adsorption ability and removal efficiency in MFH.
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(c0(Cr(VI)) = 40.0 mg·L−1, c0(aniline) = 100.0 mg·L−1, c(adsorbent) = 0.1 g·L−1, T = 25 ◦C, pH = 3.0).

3.3. Adsorption Kinetics

Adsorption kinetics helps to understand the mechanism, and the obtained data can be used to
build mathematical models for interpreting interactions. To figure out the mechanisms in adsorption,
pseudo first-order, pseudo second-order and intraparticle diffusion models (Equations (3)–(5)) were
used for fitting the data from experiments.

ln(qe − qt) = ln qe − k1t (3)

t
qt

=
1

k2q2
e
+

t
qe

(4)

qt = kit1/2 + C (5)

qe and qt (mg·g−1): the mass of contaminants adsorbed on adsorbent at equilibrium and t, respectively;
k1 (min−1), k2 (g·mg−1·min−1) and ki (mg·g−1·min−1/2): the pseudo first-, second-order and the
intraparticle diffusion rate constants, respectively; C: a constant.

These three models were tested for the adsorption of Cr(VI) and aniline on MFH in this study.
The results are shown in Table 2.

Table 2. Adsorption kinetic models using MFH at T = 298 K.

Model Parameter Cr(VI) Aniline

qe,exp (mg·g−1) 339.25 ± 2.42 292.16 ± 2.06

Pseudo first-order
qe,cal (mg·g−1) 340.31 ± 2.97 293.83 ± 2.64

K1 (min−1) 0.132 ± 0.002 0.109 ± 0.001

R2 0.986 ± 0.001 0.911 ± 0.002

Pseudo second-order
qe,cal (mg·g−1) 341.19 ± 2.80 294.22 ± 2.31

k2 (g·mg−1·min−1) 0.0165 ± 0.0003 0.0274 ± 0.0005

R2 0.929 ± 0.001 0.982 ± 0.001

Intra particle diffusion
ki (mg·g−1·min−1/2) 8.24 ± 0.01 11.37 ± 0.02

C 0.103 ± 0.001 0.307 ± 0.002

R2 0.942 ± 0.001 0.975 ± 0.001

Seen from Table 2, for Cr(VI), the pseudo first-order model showed the best fit and a close value
of qe,cal to qe,exp. As for aniline, R2 of the pseudo second-order model (R2 = 0.982) was the highest,
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indicating that the adsorption of aniline by MFH followed the pseudo second-order kinetic model.
It suggested that chemisorption may limit the rate of aniline adsorption. Meanwhile, the intraparticle
diffusion model (R2 = 0.975) also exhibited a good fit. Therefore, the adsorption of aniline on MFH
may mainly occur in two steps: first, diffusion from water to MFH surface; second, the intraparticle
diffusion between the pores of MFH. Cr-bentonite [43], activated carbon [44] and multi-walled carbon
nanotubes [45] with similar mechanisms to MFH can be referenced for better understanding.

3.4. Adsorption Isotherm

For the evaluation of adsorption capacity and the interpretation of mechanism, Langmuir and
Freundlich models were utilized in this study. The former (Equation (6)) is based on the assumptions of
monolayer adsorption and identical adsorption sites. The latter (Equation (7)) describes heterogeneous
surface and adsorption sites [43,46].

ce

qe
=

1
bqm

+
ce

qm
(6)

ln qe = ln K +
1
n

ln ce (7)

qm (mg·g−1): the maximum capacity for monolayer adsorption; b (L·mg−1): a constant; K (mg1−(1/n)

L1/n·g−1): a constant; n: an empirical parameter [47,48].
According to Table 3, the adsorption of Cr(VI) and aniline on MFH followed Langmuir and

Freundlich models, indicating monolayer and multilayer adsorption, respectively. As displayed
in Table 4, MFH possessed higher adsorption capacity towards both Cr(VI) and aniline than some
reported magnetic materials [49–52].

Table 3. Adsorption isotherm models using MFH at T = 298K.

Model Parameter Cr(VI) Aniline

Langmuir

qm (mg·g−1) 374.19 ± 3.11 393.53 ± 3.32

b (L·mg−1) 0.018 ± 0.001 0.096 ± 0.001

R2 0.995 ± 0.001 0.941 ± 0.001

Freundlich

K (mg1−(1/n) L1/n g−1) 0.121 ± 0.001 16.58 ± 0.09

n 1.87 ± 0.01 3.74 ± 0.02

R2 0.907 ± 0.002 0.993 ± 0.001

Table 4. Adsorption capacities of various magnetic adsorbents for Cr(VI) and aniline from wastewater.

Adsorbate Adsorbent Adsorption Capacity (mg·g−1) Condition Reference

Cr(VI)

Fe3O4@mTiO2@GO 117.94 pH = 2.0, T = 303 K [49]

Graphene oxide decorated
with magnetic cyclodextrin 120 pH = 3.0, T = 298 K [50]

PPY/Fe3O4 243.9 pH = 2.0, T = 298 K [51]

MFH nanocomposites 374.19 pH = 3.0, T = 298 K this study

Aniline
Fe3O4-activated carbon 90.91 pH = 6.0, T = 293 K [52]

Fe3O4/graphene 202.84 pH = 3.0, T = 298 K [46]

MFH nanocomposites 393.53 pH = 3.0, T = 298 K this study

3.5. Effect of pH

Figure 7 shows that removing of both Cr(VI) and aniline was affected by pH. The adsorption
rate was slowed dramatically if pH increased. Zero point charge pH (pHZPC) of MFH in this study
was measured to be 4.3 (±0.4) by acid–base titration method [53]. Solid surfaces of MFH had positive
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and negative charges when pH was higher and lower than pHZPC, respectively. As the surface charge
can be affected by pH, the surface of MFH will become more positively charged when pH decreases
and thus will have stronger electrostatic attraction with Cr(VI) anions. Adsorption is often affected
by electrostatic repulsion and attraction between adsorbent and adsorbate [30]. Stronger electrostatic
repulsion due to higher pH will lead to less adsorption of Cr(VI) anions. As Equation (8) shows,
studies have revealed that lower pH could enhance the redox potential of Cr(VI)/Cr(III), making Cr(VI)
more easily to be reduced to Cr(III) [30]. Although unmodified Fe3O4 has reduction capacity and can
reduce Cr(VI), Fe2+ in HA-Fe3O4 turned out not participate in Cr(VI) reduction [30,54,55]. On the
contrary, higher pH leads to stronger electrostatic repulsion between them and thus the decrease of
adsorption [2]. Moreover, at higher pH, the adsorption of Cr(III) species (e.g., Cr(OH)3) onto MFH
surface reduces the adsorption ability towards contaminants [56]. On the other hand, aniline will
be more protonated at lower pH (Equation (9)), which strengthens the electrostatic attraction with
the negative carboxylic ions of HA in MFH. Increasing pH will significantly reduce the interaction
between aniline and MFH. It can be concluded that lower pH is preferred to remove both Cr(VI) and
aniline by MFH in wastewater. This tendency agrees well with previous studies on their individual
removal [49–52,56].

HCrO4
− + 7H+ + 3e− 
 Cr3+ + 4H2O (8)

C6H5−NH2 + H+ 
 C6H5−NH3
+ (9)Nanomaterials 2018, 8, x FOR PEER REVIEW  10 of 15 
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(c0(Cr(VI)) = 40.0 mg·L−1, c0(aniline) = 100.0 mg·L−1, c(MFH) = 0.10 g·L−1, T = 25 ◦C).

3.6. Effect of MFH Dosage

The effect of MFH dosage on the simultaneous removal of Cr(VI) and aniline was investigated,
as shown in Figure 8. The results indicate that no great improvement was achieved at a higher dosage,
which should provide more adsorption sites and thus contribute to contaminants removal. However,
excessive MFH cannot effectively improve the adsorption efficiency due to the concentration limit
of contaminants. Therefore, 0.10 g·L−1 turns out to be the optimized dosage of MFH for both Cr(VI)
and aniline.
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Figure 8. Simultaneously removing (a) Cr(VI) and (b) aniline at various MFH dosages.
(c0(Cr(VI)) = 40.0 mg·L−1, c0(aniline) = 100.0 mg·L−1, pH = 3.0, T = 25 ◦C).

3.7. Mutual Effect between Cr(VI) and Aniline

Experiments were carried out to find whether Cr(VI) and aniline affected the removal of each
other. As shown in Figure 9, when c0(aniline) and c0(Cr(VI)) were increased from 0 to 200 mg·L−1 and
0 to 100 mg·L−1 respectively, their corresponding removal efficiency barely improved. Since the upper
limits of their initial concentrations were relatively high compared with actual wastewater, it can be
assumed that they have no remarkable influence on the adsorption of each other by MFH. It is most
likely that they are adsorbed by MFH in different mechanisms (Cr(VI), Langmuir, pseudo first-order
kinetic; aniline, Freundlich, pseudo second-order kinetic), and the adsorption force is much stronger
than the interaction between them.Nanomaterials 2018, 8, x FOR PEER REVIEW  11 of 15 
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Figure 9. (a) Removing Cr(VI) with various initial concentrations of aniline by MFH. (c0(Cr(VI)) =
40.0 mg·L−1, c(MFH) = 0.10 g·L−1, pH = 3.0, T = 25 ◦C). (b) Removing aniline with various initial
concentrations of Cr(VI) by MFH. (c0(aniline) = 100.0 mg·L−1, c(MFH) = 0.10 g·L−1, pH = 3.0, T = 25
◦C).

3.8. Effect of NaCl Content

Inorganic salts of high contents, especially NaCl, can also be found in actual wastewater.
In general, NaCl mainly comes from the salinity in initial water or that produced by adding chemical
agents in the process. Since the high salinity may have influence on the removal of contaminants in
actual wastewater, the effect of NaCl was also studied. Seen from Figure 10, the efficiency of Cr(VI)
removal was slightly reduced with NaCl content increasing from 0 to 30% in wastewater. Therefore,
it can be concluded that NaCl in wastewater has low effect on Cr(VI) removal, which follows Langmuir
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monolayer adsorption. On the other hand, the removal efficiency of aniline dramatically decreased
with NaCl content increasing from 0% to 30% in wastewater. Negatively charged Cl− may compete
with carboxylic ions of HA in MFH to bind with the protonated aniline at low pH, and positively
charged Na+ may compete against the protonated aniline for adsorption sites. As a result, the diffusion
of aniline to MFH exterior surface and even the intraparticle diffusion in pore structures is impeded.
Thus, the aniline removal efficiency drops and the influence will become more significant when the
content of NaCl in wastewater increases.
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(c0(Cr(VI)) = 40.0 mg·L−1, c0(aniline) = 100.0 mg·L−1, c(MFH) = 0.10 g·L−1, pH = 3.0, T = 25 ◦C).

3.9. Reusability

In a single run, the batch experiment was carried out as described in Section 2.4 and then the
MFH were recycled from solution using a magnet, washed with 50% ethanol in water (v/v) several
times and dried. The reusability was evaluated by reusing the reclaimed MFH in the next five runs.
As Figure 11 shows, ≥82.3% of Cr(VI) and ≥95.1% of aniline can be removed in six consecutive cycles,
demonstrating excellent reusability and structural stability.Nanomaterials 2018, 8, x FOR PEER REVIEW  12 of 15 
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4. Conclusions
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NPs for the simultaneous removal of Cr(VI) and aniline from wastewater. The adsorption of Cr(VI) and
aniline by MFH obey different mechanisms, Cr(VI)—Langmuir isotherm, pseudo first-order kinetic;
aniline—Freundlich isotherm, pseudo second-order kinetic. Furthermore, the MFH nanocomposites
possess good separation ability, stability, and reusability, making them promising materials for
applications in water contaminants removal.
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