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Abstract: Three-dimensional nanocomposite networks consisting of percolated Si nanowires in a SiO2

matrix, Si:SiO2, were studied. The structures were obtained by reactive ion beam sputter deposition of
SiOx (x ≈ 0.6) thin films at 450 ◦C and subsequent crystallization using conventional oven, as well as
millisecond line focus laser treatment. Rutherford backscattering spectrometry, Raman spectroscopy,
X-ray diffraction, cross-sectional and energy-filtered transmission electron microscopy were applied
for sample characterization. While oven treatment resulted in a mean Si wire diameter of 10 nm and
a crystallinity of 72% within the Si volume, almost single-domain Si structures of 30 nm in diameter
and almost free of amorphous Si were obtained by millisecond laser application. The structural
differences are attributed to the different crystallization processes: conventional oven tempering
proceeds via solid state and millisecond laser application via liquid phase crystallization of Si. The five
orders of magnitude larger diffusion constant in the liquid phase is responsible for the three-times
larger Si nanostructure diameter. In conclusion, laser treatment offers not only significantly shorter
process times, but moreover, a superior structural order of nano-Si compared to conventional heating.

Keywords: silicon; nanostructures; percolated networks; nanocomposites; thin films; laser processing;
phase separation; liquid phase crystallization

1. Introduction

Since the introduction of the first transistor [1–3], silicon-based technology has determined the
technological progress in the world significantly, and it has changed the way of life of our society
in many areas. Despite great progress and expectations raised by other materials, silicon is still the
material of choice for the further development of key technologies like nanoelectronics, photovoltaics,
light emitting or energy storage [4,5]. Silicon is the second most abundant element in the Earth’s crust
and, hence, has the potential to promote a sustainable technology progress.

Silicon nanostructures can be based on spherical/dot-like or cylindrical/wire-like geometries.
Nanodots are usually supported by an insulating silicon dioxide matrix, which constrains electrical
conduction [6]. Wire-like nanostructures, on the other hand, are usually not supported by an additional
matrix [4]. However, when they are in direct contact with air, oxidation leads to a few nm-thin native
oxide layer, and additional near-surface defects are formed, lowering the electrical performance of
these structures.

An alternative approach to obtain nm-sized Si structures is the formation of a nanocomposite
of percolated Si in a SiO2 matrix. As first proposed by kinetic Monte Carlo (kMC) simulations [7,8],
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such structures should be formed if a Si-rich oxide, SiOx, undergoes a phase separation into Si and
SiO2 on the nanometer scale, following Equation (1):

SiOx →
x
2

SiO2 +
(

1− x
2

)
Si. (1)

According to the kMC simulations, the Si nanostructures would be interconnected and are
expected to exhibit electrical conductivity in a regime of x ≤ 1.1. The need for alternative
doping mechanisms, such as interface effects, for the Si nanocrystal-SiO2 system was shown
by density-functional theory calculations, predicting ineffective yields for classical phosphorous
doping [9,10]. Furthermore, these structures should exhibit the advantage of a tunable band gap due
to quantum confinement, as predicted by atomistic pseudopotential computations [11], by density
functional theory calculations [12–16] or by molecular dynamics [17]. Müller et al. [7] experimentally
validated percolated Si:SiO2 nanocomposites by forming a Si-rich oxide via implantation of Si ions
into a thin SiO2 layer. Friedrich et al. [18] and Ilday et al. [19] used physical vapor deposition to obtain
SiOx≈1. Chemical vapor deposition was used by Gundogdu et al. [20] for SiO0.8 layer fabrication.

Up to now, the as-prepared silicon oxide thin films were processed in an oven, via rapid thermal
processing [18,19] at temperatures of 950 ◦C–1150 ◦C for 0.5 min to 60 min or by a point-focus laser
beam. After the thermal treatment, the predicted interconnectivity was found [18,19], and even
quantum confinement was observed [19]. However, when working with temperature-sensitive
substrates or layer structures, only a low-temperature or a very short high-temperature process
step can be used for thermal processing in order to keep both unaffected. Such temperature restrictions
exist for example in thin film solar cells by the choice of the substrate (float glass, foil). Many industrial
applications require processing large areas, in a short time with limited heat exposure of the substrate
material. So far, these demands have not been fulfilled for percolated Si:SiO2 nanocomposites.
Moreover, primarily the existence of percolated Si in SiO2 was proven, while the investigation of
structural properties like compositional homogeneity, degree of Si crystallinity, Si grain size and strain
remained open.

A smart technological solution to tackle the above-mentioned requirements is line-focus laser
processing. Thereby, a mono-energetic beam of coherent light is scanned across the material.
This induces heat for a very short time by absorption of light in a defined depth of a thin film, leaving the
substrate comparably cold. Beyond depth selectivity and substrate protection, a line-focused diode
laser beam enables a homogeneous treatment of a full sample. Line-focused laser processing has
not been reported so far for the thermal treatment of SiOx thin films or for the fabrication of
Si nanostructures.

In this work, millisecond line-focus laser treatment was applied to SiO0.6 thin films, deposited
by ion beam sputter deposition on fused silica. The obtained nanostructures were compared to
those formed by conventional oven treatment. Rutherford backscattering spectrometry (RBS), Raman
spectroscopy, X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM) were
applied for comprehensive compositional and structural sample characterization after deposition and
thermal treatment. The as-deposited films have perfect lateral and depth homogeneity. Experimental
evidence for phase separation into amorphous Si (a-Si) and SiO2 prior to thermal treatment is presented.
Apart of minor Si enrichment at the surface and the interface to the SiO2 substrate, the homogeneous
sample composition is conserved during thermal treatments. The oven treatment resulted in Si:SiO2

nanocomposites whose Si volume fraction has 72% crystallinity and a mean Si diameter of about 10 nm.
The Si volume fraction obtained by millisecond laser treatment was characterized by more than 90%
crystallinity and almost single domain nano-crystals with about a 30 nm mean diameter. The observed
structural differences are explained by different diffusion constants for the solid and liquid states
of matter.
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2. Results

Lateral and depth composition of as-deposited, oven-treated and laser-treated SiO0.6 were studied
by RBS (Figure 1).
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Figure 1. Rutherford backscattering spectrometry (RBS) spectra of SiO0.6 layers on SiO2: as-deposited
(a), after conventional oven (b) and after laser treatment (c). The energy range between 1 keV and
1.7 keV, which shows traces of Ar and W, was omitted for clarity. Squares represent measured data and
lines fitted curves. In (a), single-layer elemental profiles are additionally shown, i.e., red for Si and blue
for O. The roman letters (I, II, III) indicate the major RBS feature types explained in the text.

The energy of backscattered He ions is determined by a kinematic factor [21,22]. The heavier the
target atoms, the smaller the energy loss of the scattered ion and the higher the measured backscattering
energy. Moreover, the energy loss of the scattered ions is proportional to the depth of the scattering
event due to electronic stopping [21,22], and thus, the larger the thickness, the smaller the measured
scattering energy. The RBS intensity is proportional to the concentration of the elements in a sample.
The width of an element-specific signal plateau indicates the thickness of an individual layer.

The RBS spectra of the three studied samples showed the following major features: (I) the Si
signal of the SiO0.6 layer at backscattering energies from 970 keV to about 700 keV, (II) the Si signal
from the SiO2 substrate starting from about 700 keV and (III) the O signal of the SiO0.6 from 610 keV to
lower energies.

Moreover, all three spectra had a peak at the edge of the SiO0.6 oxygen signal in common that was
attributed to a thin intentionally-deposited protective SiO2 top layer. Complementarily, a flattened Si
edge at 970 keV was observed accounting for the reduced Si content in this surface layer compared to
the SiO0.6 film. Correspondingly, a three-layer stack consisting of a SiO2 surface layer, SiO0.6 bulk and
SiO2 substrate was necessary for fitting the main RBS features. Minor constituents, such as tungsten
or argon, which originated from the deposition process, represented less than 0.1% of the sample
composition. An overview of the obtained compositions and areal densities derived from the RBS
measurements is given in Table 1. To correlate areal densities with thicknesses, TEM and spectroscopic
ellipsometry (SE) measurements were conducted, the data of which are also presented in Table 1.
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From the perfect agreement of the RBS data and the corresponding three-layer fit model, it follows
that the elemental depth distribution within the as-deposited and the oven-treated sample was
homogeneous. The RBS spectrum of the laser-treated sample showed an additional peak at the
high-energy edge of the SiO0.6 bulk signal. This observation required the introduction of an additional
Si-rich intermediate layer between the SiO2 surface and the SiO0.6 bulk, termed as Intermediate 1
(Table 1). In a similar way, a steeper slope at the low-energy edge of the SiO0.6 bulk Si signal was
attributed to another Si-rich intermediate layer on its bottom (Table 1, Intermediate 2).

Table 1. Overview of RBS results of SiO0.6 layers on SiO2, as-deposited, oven- and laser-treated.
Atomic fraction (at. %), areal density (ρarea) of silicon and oxygen, the resulting x of SiOx fraction
and thickness obtained by TEM, dTEM, as well as spectroscopic ellipsometry (SE), dSE, for individual
layers observed.

Sample
Si O TEM Thickness SE Thickness

at. % ρarea at. % ρarea x of dTEM dSE
/ 1015 1

cm2 / 1015 1
cm2 SiOx /nm /nm

as-deposited
surface 33.3 33.3 66.6 66.5 2 14 15

bulk 61.0 1691 38.9 1079 0.64 500 509

oven-treated
surface 33.3 50 66.6 99.8 2 39 40

bulk 60.5 1663 39.4 1084 0.65 501 482

laser-treated
surface 33.3 50 66.6 99.8 2 28 29

intermediate 1 90.0 90 9.9 9.9 0.11 27 24
bulk 61.5 1648 38.4 1031 0.63 479 446

intermediate 2 90 45 10 5 0.11 24 10.7

Based on the fit models, precise numbers for the atomic compositions of the three-film stacks
were derived (Table 1). The SiO0.6 bulk layer of the as-deposited sample contained about 38.9%
atomic oxygen, corresponding to SiO0.64 with an areal density of 2770× 1015 cm−2. Compared to
the as-deposited sample, the oven-treated SiO0.6 film did not show a significant change in bulk
composition. The fitted bulk O content of 39.4% conformed to the bulk O content of the as-deposited
layer within the accuracy of measurement and homogeneity of sample deposition, resulting in SiO0.65.
The surface oxygen peak increased after oven treatment. The protective SiO2 surface layer apparently
grew in thickness to 150× 1015 cm−2 during the oven treatment, i.e., by about 50%. Furthermore,
the laser-treated silicon oxide film did not show a change in the bulk composition (Table 1). Its O content
of 38.4%, resulting in SiO0.63, was the same as for the other two films within the experimental accuracy.
As mentioned before, the oxygen peak superimposed on the high-energy edge of the SiO0.6 bulk layer
was stronger than in the as-deposited and oven-treated one. Moreover, a peak at the high-energy edge
of the SiO0.6 Si signal was unambiguously apparent (Figure 1). At the same time, a minimum was
seen next to the oxygen peak towards lower energy. Both features were described by a thin Si-rich
layer, referred to as Intermediate 1, underneath the protective SiO2 surface layer with an areal density
of 100× 1015 cm−2 and a low O content of 10%. To improve the fitting of the low-energy slope of
the SiO0.6 layer Si signal, an additional Si-rich second intermediate layer with an areal density of
50× 1015 cm−2 and an oxygen content of 10% was introduced between the bulk SiO0.6 and the silica
substrate. This analysis indicated that contrary to oven treatment, laser processing led to the formation
of Si-rich interlayers at both interfaces of the SiO0.6 bulk layer.

Raman spectroscopy and X-ray diffraction are complementary methods for the analysis of phase
and micro-structure, lattice strain and crystal size effects in silicon [23,24]. The Raman spectra of
as-deposited, oven- and laser-treated SiO0.6 showed distinct differences in the range from 400 cm−1
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to 600 cm−1, where the F2g crystal vibration of crystalline Si (c-Si) and the broad line of a-Si were
observed [25–29] (Figure 2).
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Figure 2. Raman spectra of SiO0.6 layers on SiO2: as-deposited (a), after conventional oven (b) and
after laser treatment (c). Grey squares represent measured spectral data points and solid lines fitted
spectra. Dashed lines indicate the expected positions of the TO-like band associated with a-Si and the
F2g phonon mode of c-Si.

Prior to thermal processing, the observed spectrum showed only one broad line (full width
at half maximum (FWHM ≈ 100 cm−1)) with the peak maximum at 485 cm−1. It corresponded to
that of a-Si [27,30] and indicated a phase separation of SiO0.6 into a-Si and SiO2 occurring already
during the deposition and not only after high-temperature processing, as predicted and reported in
the literature for this material system. After oven tempering, the spectrum had a sharp strong line
at slightly less than 521 cm−1 with an extended low-energy shoulder. Fitting this Raman spectrum
with one Breit–Wigner function (BWF, asymmetry factor q = −7.2) and two Gaussians gave line
positions (relative integral intensities) of 519 cm−1 (60%), 500 cm−1 (6%) and 482 cm−1 (34%). This is
the typical Raman signature of so-called micro-crystalline silicon, consisting of nanocrystalline and
amorphous Si fractions [31,32]. The sharp peak at 519 cm−1 was attributed to the F2g phonon mode
of the nanocrystalline silicon fraction (c-Si). Its FWHM of 7.9 cm−1 was two- to three-times larger
than the natural linewidth of single-crystalline silicon at room temperature reported in the literature
(≈3.5 cm−1) [33,34] or that of a reference Si wafer sample (2.8 cm−1). The shoulder peak with the
intensity maximum at 482 cm−1 represented the a-Si fraction in the sample, and the intermediate line
at 500 cm−1 was attributed to defective Si (def-Si), i.e., wurtzite-type or near-surface Si [32,35–37].
Laser treatment of the SiO0.6 resulted in a structure, the Raman spectrum of which exhibited only one
single strong peak at first glance (Figure 2). The best line fitting results (r2 = 0.996) were obtained
assuming a BWF (FWHM = 5 cm−1) and a Gaussian line with Raman shifts (relative integral intensities)
of 517 cm−1 (86%) and 470 cm−1 (14%).

The crystalline Si volume fraction ρc is often estimated from the integral Raman intensities by
Equation (2) [38]:

ρc =
Ic−Si + Ide f−Si

Ic−Si + Ide f−Si + yIa−Si
(2)
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The ratio of the crystallite size-dependent integrated Raman cross-sections, y = ∑c−Si / ∑a−Si,
determines the Raman line shape of nanocrystalline Si [38,39]. Provided that a BWF line shape gave
the best fitting results for the c-Si Raman profile, a minimum crystallite size of L ≥ 15 nm, and thus,
the minimum y-value of y = 0.65 was reported in the literature [38]. On the other hand, this criterion
for the estimation of the crystallite size is rather weak, and thus, the mean Si crystallite size was
determined here from X-ray diffraction and was then used to apply Equation (2). Another diagnostic
criterion to estimate the Si crystallite size from Raman data consists in the use of the correlation
between F2g linewidths and crystallite sizes determined by X-ray diffraction. Comparing our FWHM
of 7.9 cm−1 and 5.0 cm−1 with such a correlation from the literature [24] gave values of approximately
8 nm and > 15 nm for the oven- and laser-treated samples.

None of the three Raman spectra showed any contribution of SiO2, neither at first glance, nor
during spectra fitting. Its absence was caused by its low Raman cross-section due to the energy gap of
the order of 9 eV [40,41].

In Figure 3i, XRD intensities of as-deposited, oven-, as well as laser-treated SiO0.6 are shown
over the scattering vector Q = 2

λ sin(Θ), with λ being the incident beam wavelength and Θ the
scattering angle. The subfigures (ii) and (iii) show Williamson–Hall (WH) plots of the oven- and
laser-treated samples.
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Figure 3. (i) XRD patterns of SiO0.6 layers on SiO2: as-deposited (a), after conventional oven (b) and
after laser treatment (c). The broad peak at about 2.4 nm−1 originated from the a-SiO2 matrix and
silica substrate. Measurement data are shown by grey squares. The solid lines represent fitted curves.
(ii,iii) The determined diffraction peak width is plotted vs. its position; the linear regression was made
for Williamson–Hall analysis to retrieve crystallite size D and micro-strain ε for the oven- (ii) and
laser-treated (iii) sample.

For the as-deposited film, no diffraction peaks were observed. The broad feature at ≈2.4 nm−1,
which was also seen in the other diffraction patterns, originated from the amorphous SiO2 substrate
and matrix. Therefore, the as-deposited film was X-ray amorphous and did not exhibit a crystalline
phase. Oven treatment led to the evolution of three diffraction peaks at about 3.19 nm−1, 5.22 nm−1

and 6.11 nm−1, which corresponded to the (111), (220) and (311) lattice planes of Si [42]. The observed
linewidths were broad and showed an increase with increasing scattering vector. After laser
treatment, diffraction peaks at the same positions were observed, but with higher intensity, as well as
narrower linewidth. The increased intensity can be correlated with an increased scattering volume of
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well-ordered lattice planes (i.e., a higher density of crystallites in the layer) and the smaller linewidth
results from larger crystallite sizes, compared to the oven-treated sample.

The observed peaks assigned to Si lattice planes were fitted by Lorentzians. From the obtained
peak positions and the assigned Miller indices, the mean lattice spacing was calculated as 5.425(7)Å
and 5.424(1)Å for the oven- and laser-treated films, respectively. These values differed at most by
0.007 Å or 0.13% from the literature value of 5.431 Å [42] for the lattice spacing of strain-free silicon.
In the subsets of Figure 3, the fitted and, for instrumental resolution, corrected integral widths are
plotted against the peak positions following the method by Williamson and Hall [43]. From linear
regression, the Si crystallite size and the micro strain, the varying of the lattice parameter, ε, can be
calculated following β = 1/D + 2εQ. For the oven-treated sample, a crystallite size of 11 nm and
a lattice parameter variation of 1.0% were retrieved. After laser processing, larger Si crystallites of
22 nm and less lattice parameter variation (0.2%) were apparent. Together, the obtained mean lattice
parameter and Williamson–Hall analysis of line broadening with the increasing scattering vector
suggest a slightly compressed Si crystal lattice. This could be the result of vacancies in the Si lattice.

X-ray reflectivity studies (not shown) of as-deposited, oven- and laser-treated samples showed
an increase in surface roughness after laser treatment to about 7 nm, whereas the as-deposited and
oven-treated sample exhibited a surface roughness of about 3 nm.

Having determined the mean crystallite sizes by XRD, the corresponding values were used
to calculate the integrated Raman cross-sections, y = ∑c−Si / ∑a−Si, for insertion into Equation (2).
This gave y-values of 0.74 and 0.51, and crystalline Si volume fractions (CVF) of 72% and 92% for the
oven- and laser-treated samples, respectively.

While Raman spectroscopy and X-ray diffraction allowed structural characterization on an
integral scale, TEM revealed the details of the microstructure up to atomic resolution in selected,
spatially-confined sample regions. High-resolution cross-sectional TEM micrographs (Figure 4a) of the
as-deposited SiO0.6 layer did not show any hints of crystalline Si.

10 nm 10 nm

a) b)

Figure 4. High-resolution TEM image of SiO0.6 layers: as-deposited (a) and after conventional oven
treatment (b).

After oven treatment, areas with clearly noticeable lattice fringes were visible, and a selection
of them is marked in Figure 4b. Lattice planes were randomly oriented, and regions with the same
orientation had dimensions as large as 12 nm. The TEM lamella thickness was of the order of a few
10 nm and hence much larger than the observed crystallite size. Therefore, one should keep in mind



Nanomaterials 2018, 8, 525 8 of 18

that separated single crystallites might appear to form a connected path, due to the projection of the
depth information onto a 2D image.

In Figure 5a, an image of laser-crystallized SiO0.6 is shown.

20 nm

a) b)

c)

10x d  = 3.1nm111  

10x d  = 3.1nm111  

Figure 5. High-resolution TEM image of laser-crystallized SiO0.6 layers. (a) Si (111) lattice fringes
expand across the whole field of view. The matrix surrounding the crystal is assumed to be SiO2.
(b,c) show enlargements of diagonal opposite areas of (a).

Across the whole field of view, a single orientation of Si lattice planes was visible, i.e., only a single
grain and no grain boundaries were seen. The two insets (b,c) depict enlargements of the diagonal
corners of a crystalline Si grain. The matrix surrounding this Si crystallite was amorphous SiO2.
An infinitesimally thin a-Si layer at the interface cannot be excluded, but was not visible due to the
lack of mass contrast between SiO2 and Si. The distance of 10 distinct lattice planes was measured
and yielded approximately 3.1 nm, resulting in a mean lattice plane spacing of 3.1 Å. This value agrees
with the Si (111) lattice spacing of 3.14 Å [42].

None of the techniques applied so far provided information about the spatial distribution
and connection of the individual Si and SiO2 phases within the thin layer, i.e., about whether
a nano-sized percolated structure was formed. Therefore, energy-filtered transmission electron
microscopy (EFTEM) was used to resolve the spatial distribution of separated Si and SiO2 (Figure 6).
For the Si distribution, electrons with an energy loss of 17 eV, due to the excitation of silicon plasmons,
were used, while the complementary SiO2 distribution (not shown here) was obtained by imaging
with electrons, which exhibited an energy loss of about 27 eV.
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a) as-deposited

10 nm 20 nm 80 nm

b) oven-treated c) laser-treated

Figure 6. Cross-sectional Si plasmon-loss filtered TEM images (Eloss = 17 eV) of SiO0.6 layers:
as-deposited (a), after conventional oven (b) and after laser treatment (c).

Although illuminating the particular region of the TEM lamella only for the EFTEM analysis,
which was conducted as fast as possible to avoid electron-beam-induced specimen decomposition,
the cross-sectional image of as-deposited SiO0.6 (Figure 6a) showed a distinct image contrast between
Si (bright) and SiO2 nanoparticles (dark). The corresponding Si feature size was estimated to be
about 2 nm. This result confirmed the occurrence of phase separation upon deposition. As the
structure size was much smaller than the specimen thickness, by EFTEM, a conclusion about whether
a projection of a number of isolated particles or a percolated structure was present cannot be drawn.
After oven processing (Figure 6b), the Si plasmon-loss filtered TEM image revealed a coarsened
microstructure with a feature size of about 10 nm. Again, it was not definite whether the observed
Si structures were fully percolated. The laser-processed film (Figure 6c) consisted of, compared to
oven-treated structures, a similar Si morphology with a much broader size. The measured mean bar
width yielded 30 nm. Since these structure sizes were comparable to the TEM specimen thickness,
the formation of a percolated Si network was unambiguously shown in this case. Friedrich et al. [18]
and Liedke et al. [8] reported percolated Si structures with a mean feature size of 3 nm for Si:SiO2

systems with a lower Si volume concentration. Based on the EFTEM analysis (Figure 6), the higher Si
volume fraction compared to Friedrich et al. [18], Liedke et al. [8] and percolation theory, it was
deduced that three-dimensional percolated Si structures were present in all SiO0.6 thin films of
our study.

3. Discussion

In the previous section, the formation of percolated a-Si:SiO2 networks during ion beam sputter
deposition at 450 ◦C is shown. The occurrence of phase separation during deposition is independently
shown by Raman and EFTEM, in contrast to previous studies of this material system. By thermal
treatment, crystallization of a-Si and coarsening of the initial network occurred. In the following, (i) the
structural and compositional homogeneity of the samples, (ii) the structural properties of the three
layer types, (iii) the origin of the different structure sizes and (iv) the processes leading to the formation
of Si-rich interface layers are discussed.

3.1. Structural and Compositional Homogeneity

As-deposited, oven- and laser-treated SiOx films of this study were shown to have the same bulk
composition of SiO0.64±0.06.

The lateral composition was checked at five 1 mm2 large areas of the initial 20 mm× 20 mm
as-deposited sample. It was found to be the same within experimental accuracy. A measurement
uncertainty of 2% for the total areal density and the areal density of the elemental Si results in
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an uncertainty for x of ±0.06. Across the whole as-deposited sample, a thickness variation of 10% was
observed by RBS.

Comparing the depth compositions, the total areal densities per element of all three samples
retrieved by RBS agree very well within the experimental accuracy and sample homogeneity.
Layer thicknesses obtained by TEM and SE agree within experimental accuracy (5%) and sample
thickness homogeneity. Total layer thickness differs between as-deposited and thermally-treated films
by <5%. Hence, no loss in material occurred after thermal treatment. The formation of new layers and
growth of oxide layers occurred at the expense of the as-deposited SiO0.6 layer.

All presented measurements were conducted randomly on the 5 mm× 5 mm cut-out of the initial
sample. No dependency of the measurement results on sample position was found. Hence, observed
structures of the as-deposited, oven- and laser-treated SiO0.6 layers are homogeneous across
the samples.

It can be stated that deposition, as well as thermal treatment are suitable for large area,
homogeneous formation of Si:SiO2 nanostructures.

3.2. Comparison of Structural Properties

A comparison of the structure properties and treatment parameters is shown in Table 2.

Table 2. Treatment parameters and selected structure properties of as-deposited, oven- or laser-treated
SiO0.6 layers. CVF, crystalline Si volume fraction.

As-Deposited Oven Laser

treatment realization
exposition time - 270 min ≡ 16,200 s 17× 10−3 s
temperature - 950 ◦C n/a

resulting structure properties
bulk composition SiO0.64 SiO0.65 SiO0.63
EFTEM structure size 2 nm 10 nm 30 nm
XRD grain size n/a 11 nm 22 nm
Raman CVF 0% 72% 92%

Oven treatment of the as-deposited, phase-separated Si:SiO2 structure leads to a coarsening of
the as-deposited morphology and to crystallization of the main fraction of the initially amorphous Si.
The result is a coexistence of crystalline and a minor fraction of a-Si. The crystallites have a random
orientation and a mean grain size of 11 nm. XRD analysis yields a lattice parameter variation of
about 1%, with a tendency to smaller values of the lattice parameter.

Silicon nanostructures obtained by laser treatment of SiO0.6 exhibit a three-times larger structure
size than those obtained by oven processing. Its crystalline volume fraction is much higher,
i.e., almost no amorphous Si phase was observed. Obtained Si crystallites exhibit a mean grain size of
22 nm and are extended for up to 100 nm. The XRD lattice parameter is reduced by 0.2% compared to
a Si powder reference. No signs of crystallized SiO2 were found for both thermal processing methods.

A decrease of the Raman frequency of the peak associated with crystalline Si is observed for
both oven- (2 cm−1) and laser- (4 cm−1) treated samples. A decrease in the resonance frequency of the
collective lattice motion can be caused by phonon confinement or by an increased mean lattice spacing
compared to the reference due to the presence of strain [24,44–48] or by an increased temperature [29].
The grain sizes derived by EFTEM and complementarily by XRD analysis yield structure sizes too
large for phonon confinement, since for this effect, a typical size below 10 nm has to be reached [4].
Sample heating during Raman measurement was excluded, since no dependence of the applied laser
power on the Raman signal was found.

XRD measurements shown above yield a deviation of the mean lattice spacing compared to bulk
silicon. The observed lattice parameter were at most 0.13% smaller than for the bulk Si literature value,
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suggesting a compressed silicon lattice. Likewise, Williamson–Hall analysis yielded a lattice parameter
variation of the order of 1.0% for oven- and 0.2% for laser-treated films. On the other hand, a down-shift
of the Raman peak of 2 cm−1 to 4 cm−1 would suggest an expanded lattice, due to a tensile stress of
1.7 GPa to 3.6 GPa [49,50]. Such stress would lead to a lattice expansion of 0.39–1.38%. Hence, Raman
results seem to contradict the XRD results. However, due to the measurement geometries applied,
XRD probes the out-of-plane Si lattice distances, whereas Raman in the applied 180◦ scattering
geometry is sensitive to the in-plane Si geometries. During heat treatment, relaxation of stresses at
Si-SiO2 interfaces takes place, which is reduced and eventually inhibited during cooling. The thermal
expansion coefficient for the SiO2 substrate (α ≈ 0.5× 10−6 K−1 [51]) is much smaller than the thermal
expansion coefficient for Si (α ≈ 2.6× 10−6 K−1 [52,53]). It follows that the contraction of the Si
phase in the thin film is inhibited mainly by the relatively lower contraction of the SiO2 substrate.
This in-plane tensile stress results in an in-plane expansion of the lattice. To compensate the in-plane
expansion, a compression of the out-of-plane Si lattice components follows.

3.3. Origin of Different Structure Sizes

An objective is to gain insight into the formation processes, leading to Si:SiO2 nanocomposites.
In general, during the thermal treatments, two processes must take place: (a) growth of the structure
size of the as-deposited nano-network of the Si:SiO2 nanocomposite and (b) crystallization of the
Si phase. The initial point is a mixture of as-deposited a-Si and SiO2, as was observed by Raman,
as well as by EFTEM measurements. Certainly, a fully phase-separated material with sharp interfaces
cannot be assumed after deposition. Most likely, transition regions between the two phases with
an amorphous SiOx exist, where thermal treatment leads to an enhanced phase separation.

Generally, during the growth of the as-deposited Si:SiO2 nano-composite, diffusion of Si- and/or
O- atoms has to take place in the silicon and/or silica phase. Bulk diffusivity of Si-and O atoms in the
silica phase is rather low (Si: 1× 10−19 cm2 s−1 [54,55]; O: 1× 10−16 cm2 s−1 [55]) for the temperature
applied during oven treatment. Similarly, Si self-diffusion by self-interstitial or vacancy transport is
limited to 1× 10−17 cm2 s−1 [55] at 950 ◦C. The diffusion of O atoms in silicon by interstitial transport,
on the other hand, reaches diffusion constants of 1× 10−11 cm2 s−1 at 950 ◦C, which is five orders
of magnitude larger than any other regarded diffusion possibilities. In addition to bulk diffusion,
Si and O atoms can diffuse along grain boundaries, which is about 4–8 orders of magnitude faster [56].
Approaching the melting point of a material, the diffusivity of grain boundary diffusion converges to
the bulk diffusivity [55]. Hence, the relevant transport for the coarsening of the Si:SiO2 nanocomposite
is the one of O atoms in the silicon matrix by interstitial transport and the transport of Si and O atoms
along grain boundaries.

Observed in this work are a considerable smaller structure size and lower crystalline volume
fraction after oven treatment compared to laser processing, while the treatment time is seven orders of
magnitude longer. The temperature for oven treatment is 950 ◦C, whereas the temperature achieved
during laser processing cannot be estimated easily, since physical properties like thermal conductivity
and heat capacity are not known for the nanocomposite material investigated. Furthermore,
the absorption coefficient might change during laser treatment. A viable, legitimate estimation
of the laser-induced temperature by analytical [57] or numerical [58] methods would therefore require
rigorous and careful considerations, beyond the scope of this work. However, the energy input for laser
treatment can be estimated as follows. During laser treatment, an energy of 98 J cm−2 is applied to the
sample, taking the optical laser power and dwell time into account. When regarding the absorption of
the laser wavelength by the SiO0.6 layer, 21 J cm−2 are absorbed by the material. In contrast, an energy
of 210 J cm−2 is needed to heat the substrate and the thin film, about 0.1 J cm−2 is due to the SiO0.6

film. It is straightforward that a more evolved nanostructure requires more energy to be formed,
i.e., it requires either longer processing times or higher temperatures. Therefore, since the processing
time during laser treatment is much shorter, a higher temperature must have been achieved.
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When considering a solid state process, the diffusion constant of O atoms in the Si-phase rises
to 4× 10−9 cm2 s−1, just below the melting point of silicon [59]. This represents an increase by three
orders of magnitude, not sufficient to explain the observed coarsening of the laser-treated Si:SiO2

nanocomposite structure. A further rise in temperature, resulting in a process occurring in the liquid
state, leads to a sudden increase of the diffusion of O atoms in the Si-phase to 3× 10−4 cm2 s−1 [59],
i.e., by five orders of magnitude. A similar rise upon melting is expected for the diffusion along grain
boundaries. This now fully conforms with the experimental findings. We therefore conclude that
during laser treatment, growth and enhanced phase separation occurs in the liquid state of silicon.
The temperature window can now be assumed to range from the melting temperature of a-Si to that
of SiO2, i.e., from 1200 ◦C [60,61] to 1705 ◦C [62,63], since a breakdown of the general, percolated
morphology would be expected for a system consisting of two liquids.

Crystallization during oven treatment is regarded as a classical nucleation and growth process.
The observation of many randomly-oriented nanocrystals supports the mechanism of nucleation at
various places and subsequent growth by heat treatment. During laser processing, vast Si crystallites
and an almost full crystallization of the Si-phase were obtained. A thermal process via liquid state
leads to a contraction of the Si-phase, since Si has a higher density in the liquid (2.52 g/cm3 [64–66])
than in the solid (crystalline Si: 2.33 g/cm3; amorphous Si: 2.29 g/cm3) phase. SiO2, on the other hand,
expands little during heating [51]. During solidification and cooling, the Si-phase expands, while being
confined in the low-expansion material SiO2. Since the density of crystalline Si is higher compared to
the amorphous state, full crystallization is favorable.

The vast Si grains can be explained, in contrast to nucleation and growth, by a process similar to
explosive crystallization [67,68]. There, latent heat, released during solidification and crystallization,
causes melting of adjacent silicon, resulting in a self-propagating liquid region traveling through the
as-deposited amorphous Si:SiO2 layer. Now, the scanning laser controls the velocity of this process.
The crystallization occurs along the moving liquid-solid interface with already crystallized Si acting as
the seed for the growing crystal grains.

Ideally, the crystallite size would have shown a sudden increase from that of the solid-state to
liquid phase crystallization after a threshold power density was achieved. Such a threshold could
not be detected in the present study. On the other hand, laser-induced liquid phase crystallization of
silicon on glass was demonstrated for 808 nm laser irradiation at lower power densities than that used
here [69,70].

As an alternative mechanism for laser treatment-induced crystallization, enhanced atomic
diffusivity due to local electronic excitations shall be briefly discussed. It was reported for the
crystallization of amorphous TiO2 and TiON, respectively, upon UV laser irradiation [71,72].
This process is based on randomly-distributed local atomic excitations and resulted in
statistically-distributed TiO2 nanocrystals in an amorphous matrix as observed in the work of
Teodorescu et al. [72]. Hence, even though the conditions for electronic excitations of a-Si by
a laser energy of 1.53 eV (808 nm), i.e., a direct bandgap of approximately 1.7 eV, are nearly fulfilled,
the resulting phase and microstructure of the laser-treated Si:SiO2 nanocomposite precludes such
a crystallization pathway.

In conclusion, both, almost full crystallization and vast Si grains, support the assumption of a
process occurring in the liquid state.

3.4. Formation of Interface Layers

During thermal treatment, surface and interface layers grow or even evolve. After oven treatment,
the initially-deposited SiO2 cover layer more than doubles in thickness. Following laser treatment,
the cover layer also grows in size, and additional silicon-rich interface layers form.

The growth of the cover layer can be explained by further oxidation during thermal treatment.
Oven processing was conducted in Ar atmosphere, but residual and effused O2 from the as-deposited



Nanomaterials 2018, 8, 525 13 of 18

layer, as well as O atoms from interstitial positions in the Si-phase can still cause oxide formation.
Laser treatment was done at normal atmospheric conditions.

Additional Si-rich interface layers observed for laser-treated samples can be explained by the
presence of the adjacent silicon oxide surface layer, as well as the silica substrate. At first, SiO2 grows
at the interface with these layers, favored by a lower surface energy of the planar layers compared to
SiO2 nanostructures, leading to an enhanced wetting and preferred growth of the SiO2 at the substrate
and surface oxide layer. For a certain distance to these interface layers, due to the diffusion length
of O atoms during thermal treatment, a volume depleted of oxygen forms. Hence, the formation
of a silicon-enriched intermediate layer is caused. In principle, this process should also occur for
oven-treated samples. Since diffusion during oven treatment is low compared to laser processing,
this effect was not resolved for the treatment process used in this study.

4. Materials and Methods

4.1. Sample Deposition and Processing

SiO0.6 films of 500 nm in thickness were prepared by reactive ion beam sputter deposition [73,74]
on 20 mm× 20 mm fused silica substrates. An argon ion beam of 1 keV energy and 35 mA current
from a 3 cm Kaufman-type ion source (Ion Tech inc., Fort Collins, CO, USA) was applied to sputter
a 6” silicon target (99.999%). The ion-source-to-target distance was 18 cm, and the target was tilted by
an angle of 22◦ with respect to the ion beam. The sample was positioned 18 cm away from the target
and heated to 450 ◦C by a boron nitride heater. The base pressure was 2× 10−5 Pa, and the working
pressure was 8× 10−3 Pa. By injection of 1.5 sccm oxygen into the sputtering chamber, that raised the
working pressure by 1× 10−3 Pa, and a stoichiometry of SiO0.6 was obtained. For protection against
post-deposition oxidation, a 15 nm SiO2 top layer was deposited. After cutting the as-deposited
sample, a comparative post-deposition treatment was performed by two approaches. Three individual
isothermal oven treatments of 90 min at 950 ◦C with intermediate cooling, all under Ar atmosphere,
were applied to one part of the sample. The other part was laser-treated at ambient conditions using
a 808 nm radiation of an Activation Line 450 diode laser (LIMO, Dortmund, Germany) emitting
a Gaussian-shaped line focus of 11 mm× 0.1 mm and a maximum power density of 11.7 kW cm−2.
A dwell time, assumed to be the width at 1

e2 of the maximum power density passing by the feed rate of
the supposed ideal laser beam, of 13 ms was used.

4.2. Characterization

Elemental composition and depth distribution of the SiO0.6 thin films before and after
post-deposition treatment were analyzed by RBS (Transformatoren- und Röntgenwerk, Dresden,
Germany) using helium ions with an energy of 1.7 MeV from a Van de Graaff accelerator. The obtained
spectra were fitted with the help of the SIMNRA [75] software (version 6.06, Max-Planck Institut für
Plasmaphysik, Garching, Germany).

The thin film thicknesses were determined by rotating compensator spectroscopic ellipsometry
(SE; M-2000FI from J. A. Woolam Co., Lincoln, NE, USA). The ellipsometric angles Psi and Delta were
recorded in the range from 210 nm–1680 nm at a fixed angle position of 75◦. Thickness was obtained
by fitting a layer stack model based on reference data for the refractive indices to the measured data.
The resulting simulated stack for the as-deposited sample consists of three parts, a fused silica substrate,
a bulk layer, which was described by a Bruggeman effective medium approximation (EMA) with
different amounts of silicon dioxide [76] and amorphous [40] silicon and a silicon dioxide top layer.
For the thermally-treated samples, Bruggeman EMAs were expanded by adding contributions of
crystalline [76] silicon. To validate the obtained thicknesses, selected samples were cross-checked with
profilometry using a DEKTAK 8000 (Veeco, Mannheim, Germany) equipped with a 12.5 µm stylus,
and punctually by cross-sectional TEM.
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Raman spectra were measured with a micro-Raman LabramHR spectrometer (Horiba, Bensheim,
Germany). For excitation, the beam of a frequency-doubled Nd:YAG laser with a wavelength of 532 nm
was focused on the samples using a long-working distance objective with 100-fold magnification.
The laser power density on the sample was minimized to 3 kW cm−2 (0.1 mW laser power) in order
to avoid any thermally- or photo-induced transformation of Si. The collected Raman-scattered light
was dispersed by an 1800 mm−1 holographic grating and recorded with a liquid nitrogen cooled
CCD detector.

X-ray diffraction was performed with an Empyrean Θ-Θ 4-circle diffractometer (Panalytical,
Almelo, Netherlands) using the 0.154 nm Cu-Kα line. A parallel beam was established using a parabolic
X-ray mirror and a 2 mm fixed mask. An anti-scatter slit of 1.4 mm and a 1/8◦ fixed divergence slit
were used to form the beam incident on the sample at 1◦. For the diffracted beam, Soller slits (0.04 rad)
and a parallel plate collimator with an opening of 0.27◦ were used. A proportional Xenon point
detector scanned a 2Θ range of 10–32◦ and 44–60◦ with a step size of 0.05◦ and a counting time of 80 s
per step.

Cross-sectional transmission electron micrographs were obtained using an image Cs-corrected
Titan 80–300 (FEI, Eindhoven, The Netherlands) microscope, which was equipped with a Gatan
Imaging Filter 863. The primary electrons were accelerated to 300 kV. In addition to high-resolution
TEM, energy-filtered TEM (EFTEM) with electrons exhibiting an energy loss of 17 eV due to the
excitation of the valence band plasmons in Si was used for imaging the amorphous and crystalline
silicon fractions. Complementarily, SiO2 was imaged using electrons with an energy loss of 27 eV
(not shown here). EFTEM analysis was done with a slit width of 5 eV. TEM specimens of as-deposited
and oven-treated samples were obtained by classical TEM specimen preparation, i.e., by sawing,
grinding, dimpling and final Ar+ ion milling. For the laser-treated sample, a similar microscope (FEI
Tecnai F30) was used for the analysis, and TEM lamella preparation was carried out using a focused
ion beam with 30 keV for rough and 5 keV for subtle cutting. The zone of interest was protected by a
sputtered 1.5 µm-thick layer of platinum.

5. Conclusions

Three-dimensional, percolated Si:SiO2 networks were obtained by reactive ion beam deposition
of thin films with a measured stoichiometry of SiO0.64±0.06. Subsequent oven and diode line-focused
laser treatment led to different degrees of Si crystallization and structural coarsening. For the first
time, diode line-laser scanning was applied as thermal treatment to SiOx films for the creation of
Si:SiO2 nanostructures.

In contrast to predictions and previous studies on percolated Si:SiO2 networks [7,8,18],
phase separation into amorphous silicon and silica occurred during the deposition of SiO0.6 layers.
During oven treatment, coarsening of the as-deposited structure morphology in a solid state
regime occurred by diffusion of O atoms, as well as by grain boundary diffusion. Simultaneously,
partial crystallization of the Si-phase by nucleation and growth into nano-sized, randomly-oriented
crystallites were observed. In contrast, almost perfect, fully-crystalline Si and further coarsened
structures were obtained by laser processing for considerably shorter treatment times. The larger
structures were associated with a much higher temperature achieved during millisecond laser
processing, eventually occurring in the liquid state of silicon and resulting in an order of magnitude
higher diffusion constant. Perfect crystallinity resulted from the higher density of crystalline silicon,
since the volume of the expanding silicon phase was restricted during solidification by the silica matrix.
The vast extension of the obtained Si crystal grains resulted from crystallization along the liquid-solid
interface during a process similar to explosive crystallization. In-plane tensile and out-of-plane
compressive strain were explained by different thermal contractions, during cooling in the solid, of
the fused silica substrate and the Si-phase inside the Si:SiO2 layer. The growth of interface layers was
favored by the lower surface energy of the planar surface silica and fused silica substrate compared to
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the nanostructures of SiO2. The oxygen depletion and therefore silicon enrichment of the SiO0.6 layer
in the vicinity of these silica interfaces led to the formation of the Si interlayer for laser-treated films.

The study demonstrates the high potential of diode line-laser scanning to form percolated Si:SiO2

nanocomposites. By using a line-focused diode laser beam, homogeneous and fast treatment of full
samples is shown, to produce Si:SiO2 nanostructures with superior crystallinity. This proves the
usability of this technology for general surface treatment and Si:SiO2 nanostructure formation.

On the other hand, different thermal treatments are required to cover the whole structure size
scale of nano-silicon. The structure sizes achieved are not yet suitable for devices utilizing quantum
confinement, e.g., solar cell absorbers with an increased energy gap. However, by knowing the different
structure-forming regimes and relevant processes, this should be aimed at in future work. Despite this,
the materials, as they are presented, could be candidates for utilization in supporting layers of solar
cells or as electrical energy storage anodes.
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