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Abstract: Random lasers have attracted great interests and extensively investigation owing to
their promising applications. Here, we explored unambiguously the multi-band up-converted
random lasing from NaYF4:Yb,Er nanocrystals (NCs). NaYF4:Yb,Er NCs exhibit high effective
up-conversion luminescence when they are excited by continuous wave 980 nm laser. We investigated
a planar microcavities approach wherein the NaYF4:Yb,Er NCs showed up-converted lasing behavior.
The optical pumping of NaYF4:Yb,Er NCs by 980 nm pulsed laser excitation exhibited multi-band
lasing. The NaYF4:Yb,Er NCs showed multi-band lasing emission with a line width of 0.2 nm at
540 nm and 0.4 nm at 660 nm. This research promotes potential application in bioimaging and
biomedical fields.
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1. Introduction

Up-conversion luminescence of rare-earth ions doped fluoride based nanocrystals (NCs) has
garnered significant interest recently due to their multiple potential applications including laser source,
color display, biomedical imaging, three-dimensional display, drug-carrier systems, optical devices,
and solar cells [1–10]. Up-conversion luminescence is the process that luminescent NCs convert
near-infrared (NIR) light to visible light by emitting high-frequency photons after absorbing
low-frequency photons [11]. The absorption and scattering of NIR radiation is quite low in biological
tissues, concomitantly with low levels of background autofluorescence, as optical transparency in NIR
region of biological tissues can be large, which is within the “optical transparency window” of tissue.
Therefore, it possesses high light penetration depth in tissues, high sensitivity, less photo bleaching,
weak autofluorescence, and no photo damage to biological specimens, which are useful for bioimaging
applications [11]. Besides, the up-conversion luminescence which absorbs two or more photons is a
nonlinear optical process, and so it is easy to be quantum-coherently controlled [2,12,13]. High light
intensity is preferred in bio-applications to monitor the cellular entry pattern of a drug and destroy
certain viruses or cancer cells in vivo [14–16]. Therefore, up-converted lasing is one of the most feasible
ways to enhance luminescence intensity and simultaneously maintain low levels of background.
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Among all kinds of up-conversion nanomaterials, hexagonal-phase NaYF4:Yb,Er NCs have been
demonstrated to be one of the most efficient NIR-to-visible up-converting materials, which have a
lower photon energy (≈350 cm−1) and a higher refractive index [16–18]. Furthermore, the investigation
of NaYF4 can be quite economical due to their facile synthesis methods and accessible raw materials.
The up-conversion mechanism of NaYF4:Yb,Er NCs is depicted in Figure 1. The up-conversion
hosts can yield emissions in green (520 and 540 nm) and red (650 nm) colors by a continuous wave
(CW) 980 nm diode laser pumping, corresponding to transitions from energy levels 2H11/2, 4S3/2,
and 4F9/2 to the ground state 4I15/2 of Er3+ ions, respectively. The up-conversion luminescence
included in multi-step energy transfer (ET) of excited state Er3+ ions, excited state absorption (ESA),
and the continuous energy-transfer up-conversion between Er3+ ions and Yb3+ ions. Furthermore,
the luminescence integrated intensity ratio of the red to green regions strongly depends on the presence
of Yb3+ ions because the energy-transfer up-conversion (ETU) process is dominant in the samples.
The presence of Yb3+ ions on NCs leads to more efficient absorption of exciting light at 980 nm and
increases the efficiency of energy transfer. At first step of the excitation, the excitation at 980 nm of
the Yb3+ sensitizer provokes a pump photon from the 2F7/2 ground state to the 2F5/2 excited state.
Then the excited Yb3+ ion transfers its energy to a neighbor Er3+ ion and depopulates the ground state,
simultaneously. The transferred energy promotes Er3+ ion transition from the 4I15/2 ground state to the
4I11/2 excited state. Moreover, the Er3+: 4I11/2 level can receive another laser photon, and then transits
to the higher energy level 4F7/2, or non-radiatively relaxes to the 4I13/2 level of Er3+ ions. According to
a Boltzmann distribution, the photons at the 4F7/2 level relax directly to the 2H11/2 and 4S3/2 levels and
then transfer back to the ground state of 4I15/2, hence bringing about 522 nm and 542 nm emissions.
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Figure 1. Schematic diagram of energy levels and transitions of Yb3+ and Er3+ ions by 980 nm pumping.

Recently, random lasers have attracted great interests for researchers because they can be amplified
by multiple scatterings in a disorder system [19]. Random lasing is desired in nanostructures through
surface nanoparticle amplification. The random laser is a microcavity whose feedback came from
confusion-induced scattering. When gain exceeds loss, along with population inversion and simulated
emission, random lasing can be obtained. Random laser has some excellent feasible applications,
such as biological probe, display, and speckle-free images, due to its advantages including simple
design, easy fabrication, compactness, low threshold, angle-free emission, and low cost, compared to
complicated structure such as photonic band gap microcavities [20–23]. Therefore, we designed the
planar microcavity to demonstrate the random laser action. Integrated device and simple technology
is useful for further applications.



Nanomaterials 2018, 8, 497 3 of 10

In this study, we synthesized uniform NaYF4:20%Yb,2%Er NCs via a solvothermal method [17,24]
and systematically investigated their up-conversion emission properties at room temperature.
Effective up-conversion luminescence of NaYF4:20%Yb,2%Er NCs excited by CW 980 nm laser was
obtained. Moreover, the NaYF4:20%Yb,2%Er NCs film was used as a laser gain medium to demonstrate
random laser by planar microcavities, which maintain stronger optical confinement of optical modes
with lower cavity losses [25]. The nanosecond pulsed laser with high peak intensity is used to achieve
high optical gain from the NaYF4:20%Yb,2%Er NCs. Enhancement and suppression of spontaneous
emission in micro cavities are demonstrated in variety of optical materials such as organic dye films
and solutions, semiconductors, and quantum dots [25–27]. Therefore, this work facilitates the use of
NaYF4:20%Yb,2%Er NCs in bio-imaging materials.

2. Materials and Methods

High-quality NaYF4:20%Yb,2%Er NCs were synthesized through a typical solvothermal
method [17]. All chemical reagents were analytical grade and used without further purification.
For a typical synthesis process: YCl3 (0.1523 g), YbCl3 (0.0558 g), and ErCl3 (0.0054 g) were mixed
with 3 mL oleic acid (OA) and 15 mL 1-octadecene (ODE) in a 100 mL flask and heated to 160 ◦C for
30 min to form a homogeneous solution, and then cooled down to 50 ◦C. After that, 10 mL methanol
solution containing NaOH (0.1 g) and NH4F (0.15 g) were added into the flask and stirred quickly for
30 min in 50 ◦C. Subsequently, the solution was heated to 120 ◦C for 30 min to completely evaporate
methanol, and then heated to 300 ◦C for 1 h protected by argon atmosphere. After the solution was
naturally cooled down to room temperature, nanocrystals were precipitated from the solution with
ethanol. Then, the precipitates were washed three times with ethanol and water (1:1 v/v) mixture.
Finally, the NCs were dispersed in cyclohexane for optical measurements.

The morphology of the NaYF4:Yb/Er NCs was characterized by a JEOL JEM-2100F high-resolution
transmission electron microscope (HR-TEM, Tokyo, Japan). X-Ray powder diffraction spectra of NCs
were measured by a Rigaku SmartLab Intelligent X-ray diffractometer (XRD, Austin, TX, USA ) with
filtered Cu Kα radiation (λ = 1.5406 Å, operating at 45 kV and 200 mA). Fluorescence spectra were
measured by a HORIBA iHR320 fluorescence spectrophotometer (Minami-ku, Kyoto, Japan) under
CW 980 nm laser pumping. Lasing characteristics of NCs were studied by third harmonic generation
from a neodymium-doped yttrium aluminum garnet (Nd:YAG) pulsed laser (355 nm wavelength,
6 ns pulse width, 10 Hz frequency, Continuum Surelite, San Jose, CA, USA) with an optical parameter
oscillator (Continuum Horizon, San Jose, CA, USA) to expand the Nd:YAG laser to the excitation
wavelengths at 980 nm. The lasing emission spectra are not modified by data processing software.
The laser beam was focused onto the sample by an optical lens with a focal length of 50 mm and laser
spot diameter was 800 µm. All of the measurements were conducted at room temperature.

3. Results

3.1. Morphology and Structural Characterization

The transmission electron microscopy (TEM) images and HR-TEM images of the NaYF4:Yb,Er
NCs are shown in Figure 2a. It is observed that the NaYF4:Yb,Er NCs are nearly spherical in shape
and uniformly distributed. From the HR-TEM image, we can clearly distinguish lattice fringes on
the individual crystals indicating that the NCs are highly crystalline. The lattice spacing of the
NCs was measured to be about 0.3 nm, which corresponds to a (110) lattice facet of the hexagonal
NaYF4 structure. This result is consistent with the results of the selected area electron diffraction
(SAED) pattern [28,29]. The SAED and size distribution of NCs are given in Figure 2b,c, respectively.
The SAED pattern of the NCs can be indexed to the (100), (110), (101), (200), (111), (201), (210), (002),
(300), (211), (112), (220), (202), (310), (311) and (320) planes of the standard hexagonal β-NaYF4 structure
(JCPDS: 28-1192) [30,31]. The NaYF4:Yb,Er NCs with size distribution between 16 and 26 nm and
average size about 22 nm without aggregation is observed and analyses from TEM images by Gatan
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DigitalMicrograph software (GMS 3, Pleasanton, CA, USA). In addition to morphology and grain size,
the crystalline phase of NaYF4:Yb,Er NCs is also a crucial issue. The XRD patterns of NaYF4:Yb,Er NCs
(black line patterns) are shown in Figure 2d, which evidently demonstrate that the sample was highly
crystalline in nature. The red line pattern is given according to the standard power diffraction file
(PDF) 28-1192, provided by the Joint Committee on Powder Diffraction Standards (JCPDS). The peak
positions and intensities of these sample pattern match well and closely correspond to the reported
and calculated patterns for hexagonal β-NaYF4 [30,32–34]. The corresponding (h k l) values are given
above. No cubic phase diffraction peaks or other impurities were observed. The observed broad
diffraction peaks are an indication of the small size of the NCs. According to the line broadening of
the diffraction peak of the NaYF4:Yb,Er NCs, an average crystallite size of 25 nm was calculated by
using the Debye–Scherrer formula, which closely matches to the particle size determined from the
TEM software analyses.
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3.2. Up-Conversion Luminescence Properties

The up-conversion luminescence spectra of NaYF4:Yb,Er NCs with different pump power under
CW 980 nm excitation at room temperature is shown in Figure 3. According to the energy level
diagram in Figure 1, there were three distinct emission peaks centered at 522, 542, and 663 nm, which
correspond to the transitions between energy levels 2H11/2, 4S3/2, and 4F9/2 to 4I15/2 of Er3+ ions,
respectively. It is observed that the up-conversion emission intensity increases with the increase of the
excitation power at 980 nm. The up-conversion emission intensity (Iup) can generally be expressed
as [16,35,36]:

Iup∞PN
ex , (1)

where Iup is the up-conversion luminescence intensity, Pex is the excitation power, and N is the absorbed
photon numbers for producing one up-conversion emission photon. It can be obtained from the slope
of the fitted line of the plot of log(Iup) versus log(PN

ex) at low excitation density. It should be noted that
the “N” values can be affected by the competition process between the up-conversion rate and the
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decay rate at the intermediate states at high excitation density [37]. As shown in the inset of Figure 3,
the slopes of the linear fits, N values, are 2.16, 1.86, and 1.67 for the up-conversion emissions at 542, 522,
and 663 nm in the NaYF4:20%Yb,2%Er NCs, respectively. The green up-conversion emission is realized
through the excited first photon to the 4I11/2 of Er3+ ion via energy transfer from neighboring Yb3+

ion. Immediately following this process, the excited photon at 4I11/2 is further excited to 4F7/2 state
by another energy transfer from Yb3+ ion or excited state absorption by the second photon excitation.
According to the Miyakawa–Dexter theory, the probability of phonon-assisted energy transfer can be
expressed by [38]:

Wij = W(0)e−α∆E, (2)

where W(0) and α are constants determined by the host and ∆E is the energy gap between the
transitions involved in the phonon-assisted energy transfer. The energy gap between 2H11/2 and 4S3/2
is quite small, resulting in the nonradiative transition. Therefore, the slope of the fitted line at 542
nm is higher than the slope at 522 nm from the inset of Figure 3. These results indicate that the Er3+:
2H11/2→4I15/2 (522 nm), Er3+: 4S3/2→4I15/2 (542 nm), and Er3+: 4F9/2→4I15/2 (663 nm) up-conversion
emissions process are two-photon absorption processes on the NaYF4:20%Yb,2%Er NCs.
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excitation power for the NCs.

3.3. NaYF4:Yb,Er NCs Up-Converted Random Lasers

The synthesized NaYF4:20%Yb,2%Er NCs can be used as optical gain medium to realize
random lasers. The experimental setup of a random laser of NaYF4:20%Yb,2%Er NCs is shown
in Figure 4a. We designed planar microcavities which sandwich the NaYF4:Yb,Er NCs film between
two reflectors. The left inset of Figure 4b shows the schematic of the proposed NaYF4:Yb,Er NCs
lasers. The NaYF4:Yb,Er NCs is solidified to form a film of about 300 µm thickness and sandwiched
between a quartz plate and an Aluminum (Al) mirror (Al coated glass substrate). The mirrors are
used to improve the longitudinal confinement of light and achieve optical feedback along the laser
microcavity. The laser characteristics of the NaYF4:Yb,Er NCs film can be examined by using a 980 nm
nanosecond laser excitation. The laser beam is focused onto a spot of 800 µm in diameter on the NCs
film through the quartz mirror. The small beam size promotes the lateral confinement of the emission
light from the NCs film so that a planer microcavity can be formed [25]. Laser emission is detected
from the side of quartz mirror. A plot of emission spectra of NCs laser at room temperature versus
different excitation power is shown in the Figure 4b. The input–output curve and full width at half
maximum (FWHM) are shown in the right inset of Figure 4b. A broad spontaneous emission band
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centered at ≈540 nm is observed for the NCs film when the excitation power is below an excitation
threshold value of ≈125 kW/cm2, namely kink of the input–output curve. The excitation threshold
in our works is lower than those of random lasing without planar microcavity [39–41]. The FWHM
is acutely decreasing from 6 to 0.2 nm with increasing of pump power. In addition, more sharp
peaks further emerge from the emission spectra with increasing pump power. Due to the coherent
optical feedback provided by the NaYF4:Yb,Er NCs to form the closed light loop path, the sharp
peaks represent the realization of lasing. It also can be observed in Figure 4b that the lasing modes
are randomly distributed in the lasing spectra. This is because the NaYF4:Yb,Er NCs are aggregated
with each other in the gain film after solvent evaporation. The aggregation leads to light scattering
in the gain medium [42]. This phenomenon can also be verified by different lasing spectra obtained
from different detection angles because the NaYF4:Yb,Er NCs are distributed randomly inside the
film (Figure 4c). As shown in Figure 4c, the lasing spectra do not reveal the presence of Fabry–Perot
modes as the mode spacing is distributed non-uniformly over the emission spectrum. The left inset of
Figure 4c shows the optical microscope image of the NCs film. It is observed that there are plenty of
NaYF4:Yb,Er NCs, which can satisfy the sufficient scattering between NCs and NCs to realize random
lasing. Moreover, sharp peaks with FWHM less than 0.2 nm emerge from the emission spectrum
when the excitation power larger than that of the threshold value, as shown in right inset of Figure 4c.
The FWHM of lasing peak is less than that in other reports [43,44]. The Q factor of the NaYF4:Yb,Er
microcavity can be approximately defined as Q = λp/∆λ [45]. λp and ∆λ are sharp peak wavelength
and FWHM, respectively. The Q factor of NaYF4:Yb,Er microcavity is about 2700, which is comparable
with other random laser systems [43,46,47]. As a result, it is verified that NaYF4:Yb,Er NCs film
supports ultrahigh Q coherent random laser microcavity with low threshold.
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Figure 4. (a) Experimental setup of random laser system of NCs. (b) Emission spectra versus
different excitation power. The left inset is the schematic of the proposed NaYF4:Yb,Er NCs lasers.
The right insets are the corresponding input–output curve and FWHM. (c) Emission spectra of
NaYF4:20%Yb,2%Er NCs film at around 540 nm wavelength recorded under 980 nm nanosecond
laser excitation at different observation angles, θ. The left inset is the optical microscope image of the
NaYF4:20%Yb,2%Er NCs film. The right inset is the FWHM of the emission spectra of NCs laser.
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The plots of the lasing spectra versus different excitation power at around 660 nm of the planer
microcavity by using the 980 nm nanosecond laser pumped is shown in Figure 5a. The corresponding
input–output curve is shown in the inset of Figure 5a. The emission spectra versus observation angle,
θ, of the NaYF4:20%Yb,2%Er NCs film around 660 nm is shown in Figure 5b. As the pump power
exceeds an excitation threshold value of ≈254 kW/cm2, sharp peaks emerge from the emission spectra
with a line width of 0.4 nm, as shown in the inset of Figure 5b. The excitation threshold value at 660 nm
emission is larger than that of at 540 nm emission due to the lower fluorescence efficiency at 660 nm.
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Figure 5. (a) Emission spectra of NaYF4:20%Yb,2%Er NCs film at around 660 nm wavelength
versus different excitation power under 980 nm nanosecond laser excitation. The inset shows the
corresponding input–output curve. (b) Emission spectra versus observation angle, θ. The inset shows
the FWHM of the NaYF4:20%Yb,2%Er NCs laser.

4. Conclusions

We have demonstrated multi-band up-conversion random lasing from NaYF4:Yb,Er NCs. It is
noted that lasing emission with a peak wavelength of ≈540 nm and 660 nm under 980 nm nanosecond
excitation is obtained from the NaYF4:20%Yb,2%Er NCs film sandwiched between an Al mirror and a
quartz mirror. This is because longitudinal optical confinement is achieved via the optical feedback
between the two interface, and lateral optical confinement of high-Q random microcavities is achieved
through the non-uniform distribution of NCs. Hence, the formation of a low loss planar microcavity
can support the random lasing action at room temperature. Discrete sharp peaks, representing the
formation of a closed light loop path, with FWHM of 0.2 nm at 540 nm and 0.4 nm at 660 nm,
are achieved from the emission spectra. The variation of the emission spectra with different detection
angles verified the support of random lasing action. As a result, our proposed NaYF4:20%Yb,2%Er NCs,
which have been verified unambiguously the realization of up-conversion random lasing, are potential
optical gain mediums suitable for the optical and biological applications.
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