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Abstract: Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is
capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic
nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array
formation, the control of spacing in the array is beneficial in that it should be the experimental
basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the
material parameters and bias conditions to modulate the nanowire spacing in the ordered array,
where the nanowire array formation is readily attained due to the electrostatic nanowire interaction.
A theoretical model for the force calculation and the simulation of the induced charge in the assembled
nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a
larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with
the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract
more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced.
Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force,
to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire
array offers a way to fabricate the high-density nanodevice array without nanowire registration.
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1. Introduction

Nanowires made of a diverse range of chemical compositions, homogeneous or axially and
radially heterogeneous, have been demonstrated through various synthetic means [1–8]. Development
of novel approaches for producing the parallel array of these nanowires on a substrate or
in technological platforms makes it possible to investigate their fundamental properties in an
array manner and even to extend its viability to the commercial applications in nanoelectronics,
nanophotonics, and nano-biotechnology. To realize this, simple yet sophisticated control of nanowires
is required to integrate them on the well-defined region over a large area reliably and reproducibly.
Ease of the post-assembly process for the metal contact formation also needs to be considered to
assess the potential of assembly scheme [9]. A variety of technological attempts have been made to
tackle this fundamental issue of controllable integration of nanowires [10–17]. Despite the successful
demonstration of device fabrication in some level, they inherently lack the ultimate control of the
final configuration of nanowires, such as the single nanowire deposition, high degree of attraction
and orientation of nanowires, excellent end-to-end nanowire registration, and control of nanowire
spacing. In order to go beyond the limited success and to meet these controllabilities, we utilized and
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further refined the dielectrophoresis of nanowires [18–21]. It was demonstrated elsewhere [9] that
the dielectrophoresis of nanowires on the electrode gap of dielectrics-covered interdigitated electrode
array is advantageous since (i) single nanowire assembly can be readily attained over large areas due
to strong electrostatic repulsion between the nanowires, (ii) >99% nanowire attraction and orientation
can be easily achieved by the strong electric field from the electrode gap, (iii) high degree of end-to-end
nanowire registration at the predefined position can be achieved by the same length scale of nanowires
used, and (iv) the uniformly-spaced nanowire array can be assembled at the electrode gap owing to
the repulsive electrostatic interaction between them. Herein, we investigate this assembly scheme
in order to fully understand the underlying physics of uniformly-spaced nanowire array formation
and vary the spacing of nanowire within the array in a controlled manner, potentially envisioning the
registration-free nanodevice array fabrication.

2. Experiment Details

For the investigation of nanowire spacing on a substrate, the parallel electrode structure was
patterned by a thin metal (Ti/Au = 20 nm/50 nm) following the liftoff process in an acetone dipping.
A dielectric layer of polymethylglutarimide (PMGI) with a thickness of 300 nm is covered over the
entire substrate so that it prevents the assembly of metallic nanowires from shorting out the biased
electrodes. The fluidic cell was used to pull the nanowires in the solution down in the vicinity of the
electrically active region. Rhodium (Rh) nanowires were used in this study due to their high elastic
modulus, high mechanical strength, and the ease of batch-synthesis via electrodeposition.

After the nanowire suspension is injected into the fluidic cell by using a micropipette, a sinusoidal
bias with different voltages and frequencies being applied between the electrodes was applied to
investigate the effects of bias conditions on the nanowire attraction to the electrode gap and the
nanowire spacing in the array. COMSOL Multiphysics was employed to simulate the electric field
distribution and its relevant dielectrophoretic force.

3. Results and Discussion

Figure 1a illustrates the cross-section of nanowires alignment structure and induced charge
distribution by the capacitive-coupling between the biased electrodes and the assembled metallic
nanowires. Biasing to the electrodes enables the induced charge formation in the dielectric layer
(PMGI, in this study) as well as in the halves of assembled nanowires with the opposite polarity. These
induced charges of nanowires give rise to Coulombic attraction to the substrate during the assembly.
Figure 1b describes the dielectrophoretic nanowire attraction and electrostatic repulsion between the
assembled nanowires, leading to the uniformly-spaced nanowire formation. The electrostatic repulsive
interaction between the assembled nanowires plays a pivotal role in keeping them a few micrometers
separated from each other and determining their spacing in the array, while the dielectrophoretic force
transports the nanowires toward the electrode gap. Since the assembled metal nanowire locally screens
the electric field from the underlying electrode and it has the repulsive force, the additional nanowires
are more likely to be assembled in between the existing ones.

The theoretical model accounting for nanowires’ repulsive behavior between two identically
polarized nanowires appears in Figure 1c, where the induced charges in the nanowires are labeled “+”
for the positive and “−” for the negative charges. The Coulombic interaction between the assembled
nanowires involves the repulsion and attraction between them, depending on the polarities of the
induced charges within the assembled nanowire. Based on the configuration of two identical nanowires
in Figure 1c, the expression for the Coulombic force of the incremental part (dx’) in the nanowire by
the electric field from dx is:

F =
dq·dq′

4πε1r
(1)

where dq and dq′ are the charges in the nanowires; ε1 is the permittivity of the isopropyl alcohol;
and, r is the distance between dx and dx′. Thus, the total Coulombic force, exerted on the assembled
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nanowire, by the neighboring one can be expressed using double integration of Equation (1) over dx
and dx′ from −1/2` to 1/2`

Fy =
1

4πε1

∫ 1
2 `

− 1
2 `

∫ 1
2 `

− 1
2 `

λ(x)·y(
(x− x′)2 + y2

) 3
2

dx

λ(x′)dx′ (2)

where ε1 is the permittivity of the isopropyl alcohol; ` is the total length of the nanowire; and, λ(x) is
the line charge density of nanowires. Here, the effect of the non-uniform charge distribution in the
y-direction on the nanowire and any non-uniform charge distribution on the underlying electrodes
are neglected. This simplifies the total Coulombic force calculation between the adjacent nanowires,
as discussed in the next paragraph.
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Figure 1. Uniformly-spaced nanowire array formation and its theoretical model. (a) A schematic
diagram illustrating the induced charges through nanowires due to the PMGI capacitive-coupling to
the underlying Au electrodes; (b) Schematic illustration of dielectrophoretic nanowire attraction and
electrostatic repulsion between the nanowires assembled on the dielectric layer-covered inter-digitated
electrode array. The crosses in red on the outer surface of the nanowires represent the induced
charges due to their capacitive-coupling to the underlying electrodes; (c) Schematic diagram for the
theoretical model for the electrostatic interaction between two adjacent nanowires. Double integration
of Coulombic force of the charges in the dx’ segment, experienced by the electric field from the charges
in dx segment, completes the total force calculation. Taking only the y-component of the total force
into account yields nanowires’ repulsive and attractive behavior while bound to the electrode gap;
(d) Simulation of the electric field at the z-x plane sliced through the nanowire body showing the
uniform capacitive-coupling where the nanowire and the biased electrode overlap. The inset exhibits
the y-component of the electric field from the polarized nanowires. This also suggests that the density
of charges is uniform along the length of the nanowire, except at the electrode gap and the nanowire’s
edges; (e) Schematic drawing of density of charges induced in the nanowires whose total length is `,
assuming that they span the electrode gap symmetrically. Solid and dashed lines refer to the simplified
and actual model for the charge distribution, respectively; (f) Representative image of 13 µm long
rhodium nanowires array on the 3 µm electrode gap covered by PMGI layer, highlighting that they can
readily form the uniformly-spaced nanowire array at the electrode gap.
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Due to the charge neutrality, the same amount of positive and negative charges are separated
within a nanowire, and their capacitive-coupling to the biased electrodes centers the nanowires at the
electrode gap, as illustrated in Figure 1c. The charge distribution on a nanowire also depends on its
capacitive-coupling to the underlying electrode. Figure 1d shows the electric field at a cross-section
of the z-x plane, sliced through the assembled nanowires where the strong electrostatic interaction
arises between the nanowires and the biased electrodes. Because the induced charge relates to this
electrostatic interaction, its density along the nanowire length can be depicted as the dashed line in
Figure 1e.

Theoretically, it can be suggested from Figure 1c that the charges uniformly distribute on the
nanowire where the nanowire and the biased electrode overlap, except at the edges and the central
region of a nanowire because of electric field condensation and charge transition, respectively. The inset
in Figure 1d exhibits the y-component of the nanowires’ electric fields, which causes the assembled
nanowires repel each other. As a result, Figure 1f shows the dark-field optical microscope image of a
7 µm long Rh nanowire array with a uniform spacing being assembled at the electrode gap.

An approximation suggests that the induced charge density is uniform on either half of the
nanowire with an opposite sign of the charge density. This approximation, for the simple model,
as drawn as a solid line in Figure 1e, can be expressed:

λ(x) = +σ for− 1
2
` ≤ x ≤ 0, and (3)

λ(x) = −σ for 0 ≤ x ≤ +
1
2
`. (4)

Using this simple uniform charge density model, the total Coulombic interaction force, Fy,
between the assembled nanowires can be written:

Fy =
2σ2

4πε1

2


√

1 +
1
4
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y
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1 +
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4

(
`

y

)2
+ 1


 (5)

The first term in the equation refers to the repulsive force between two adjacent nanowires,
whereas the second term refers to the attractive force. Since the electrostatic interaction between the
nearest neighboring nanowires is dominant, this total force calculation can readily apply to all of the
nanowires assembled at the electrode gap. Equation (5) suggests that the total force is always positive
in any case and is inversely proportional to the distance between the adjacent nanowires when they
are close. This condition results in strong repulsive force at small distances.

Plotting Equation (5) provides more useful information to clarify the relationship between the
repulsive nanowire interaction and nanowires’ material parameters, such as the inter-nanowire distance
and the nanowire length, as shown in Figure 2a, displaying the total Coulombic interaction force,
Fy, (Equation (5)) as a function of the assembled nanowire distance (y) at various nanowires’ lengths
(`). This plot predicts that the repulsive force (FR) tends to become less strong as the inter-nanowires’
separation distances (D) increase. A further approximation from the previous model indicates that the
uniform charge density of half of the assembled nanowires can easily clarify this tendency. In other
words, the polarized nanowires can be a further approximation of dumbbell dipole structures having
the opposite charges, positive and negative, at the ends of the dumbbells, as shown in the inset of
Figure 2a. Simply, two forces exist: i.e., the repulsive force between the charges with the same polarities
and the attractive force with the different polarities. At very small distances (D) between the dumbbells,
the repulsive forces dominate over the attractive forces, since the distances between the same polarities
are much smaller than the different polarities. This strong repulsion keeps the assembled nanowires
a few micrometers apart, leading to a single nanowire assembly. If the inter-nanowire distance (D)
becomes much larger, compared to a nanowire’s length (`), the repulsive force tends to converge as
the attractive force while each force is still in effect. As a result, the overall electrostatic interaction
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between the assembled nanowires becomes nearly negligible, making them static between the biased
electrodes. Consistent with this intuitive explanation, Figure 2a shows that the force amplitude
indicates a positive value, namely repulsive force, while this force amplitude tends to converge at zero
at larger inter-nanowire spacing when compared to nanowire length.

Nanomaterials 2018, 8, x FOR PEER REVIEW  5 of 12 

 

repulsive force tends to converge as the attractive force while each force is still in effect. As a result, 

the overall electrostatic interaction between the assembled nanowires becomes nearly negligible, 

making them static between the biased electrodes. Consistent with this intuitive explanation,  

Figure 2a shows that the force amplitude indicates a positive value, namely repulsive force, while 

this force amplitude tends to converge at zero at larger inter-nanowire spacing when compared to 

nanowire length. 

 

Figure 2. Inter-nanowire interaction force as a function of nanowire distance and length. (a) Plot for 

the relation between the force, Fy, and the nanowire spacing, y, while varying the nanowire length, ℓ, 

from 3 μm to 30 μm. The positive value in the plot refers to the repulsive force between the nanowires, 

indicating that they tend to be spaced at all different lengths of nanowires. The vertical dashed lines 

are drawn to compare the forces at the constant distances. The inset illustrates dumbbell dipole 

structure for electrostatic nanowire interaction; (b) Plot of the normalized force as a function of a 

nanowire’s length, ℓ, at fixed nanowire distance, y = 1, 5, and 10 μm, marked by the dashed lines in 

(a). The inset illustrates a nanowire’s repulsion, FR, at the electrode gap. 

The uniformly-spaced nanowire array begins to form as the nanowire spacing comes close to a 

certain value for efficient electrostatic interaction. According to the plot in Figure 2a, this tendency 

becomes more significant in the longer nanowires, hinting that the nanowires can easily form a 

uniformly-spaced nanowire array. It is also easily recognized from the plot that the longer nanowires 

experience a higher degree of repulsion between them at the same inter-nanowire distance. This 

relation is intuitively sensible because longer nanowires have more overlapping by the underlying 

biased electrode, leading to higher repulsion between the assembled nanowires, which is primarily 

due to more charges within them. Additionally, the repulsive forces are normalized by the maximum 

values of different nanowire lengths, whose functions are plotted in Figure 2b to investigate their 

relationships at the fixed nanowire spacing. This plot reveals that the repulsive force develops into 

an approximately linear relationship with the lengths of nanowires (ℓ), particularly at small nanowire 

spacing (D). This force relates to the average spacing within the nanowire array. 

Nanowire assembly, accomplished with the same interdigitated electrode structure varied 

nanowire length (7, 13, and 24 μm long rhodium nanowires). For consistency of the nanowire 

assembly, the concentration of the nanowire suspensions remained as low as ~1 × 104 nanowires/μL 

by adding isopropyl alcohol. Special attention maintained injection of 10 μL of nanowire suspension 

for all of the length scales until the excessive nanowire-nanowire chain configuration began to form. 

Figure 3a shows dark-field optical microscope images of 7, 13, and 24 μm long rhodium nanowires 

in 3 μm spaced electrode gaps. Note that non-uniformity of nanomembranes used for the 

electrodeposition of rhodium nanowires yielded distribution of nanowire diameter and shape. 

Consistent with the theoretical expectation in Equation (5), serial images indicate that the longer 

nanowires seem to have larger spacing between them, while they sustain the integrity of an ordered 

nanowire array. Furthermore, nanowire spacing at different nanowire lengths form the plot in  

Figure 3b where the average inter-nanowire spacing increases almost linearly as the nanowire length 

Figure 2. Inter-nanowire interaction force as a function of nanowire distance and length. (a) Plot for
the relation between the force, Fy, and the nanowire spacing, y, while varying the nanowire length, `,
from 3 µm to 30 µm. The positive value in the plot refers to the repulsive force between the nanowires,
indicating that they tend to be spaced at all different lengths of nanowires. The vertical dashed lines are
drawn to compare the forces at the constant distances. The inset illustrates dumbbell dipole structure
for electrostatic nanowire interaction; (b) Plot of the normalized force as a function of a nanowire’s
length, `, at fixed nanowire distance, y = 1, 5, and 10 µm, marked by the dashed lines in (a). The inset
illustrates a nanowire’s repulsion, FR, at the electrode gap.

The uniformly-spaced nanowire array begins to form as the nanowire spacing comes close to a
certain value for efficient electrostatic interaction. According to the plot in Figure 2a, this tendency
becomes more significant in the longer nanowires, hinting that the nanowires can easily form a
uniformly-spaced nanowire array. It is also easily recognized from the plot that the longer nanowires
experience a higher degree of repulsion between them at the same inter-nanowire distance. This
relation is intuitively sensible because longer nanowires have more overlapping by the underlying
biased electrode, leading to higher repulsion between the assembled nanowires, which is primarily
due to more charges within them. Additionally, the repulsive forces are normalized by the maximum
values of different nanowire lengths, whose functions are plotted in Figure 2b to investigate their
relationships at the fixed nanowire spacing. This plot reveals that the repulsive force develops into an
approximately linear relationship with the lengths of nanowires (`), particularly at small nanowire
spacing (D). This force relates to the average spacing within the nanowire array.

Nanowire assembly, accomplished with the same interdigitated electrode structure varied
nanowire length (7, 13, and 24 µm long rhodium nanowires). For consistency of the nanowire assembly,
the concentration of the nanowire suspensions remained as low as ~1 × 104 nanowires/µL by adding
isopropyl alcohol. Special attention maintained injection of 10 µL of nanowire suspension for all of
the length scales until the excessive nanowire-nanowire chain configuration began to form. Figure 3a
shows dark-field optical microscope images of 7, 13, and 24 µm long rhodium nanowires in 3 µm
spaced electrode gaps. Note that non-uniformity of nanomembranes used for the electrodeposition
of rhodium nanowires yielded distribution of nanowire diameter and shape. Consistent with the
theoretical expectation in Equation (5), serial images indicate that the longer nanowires seem to
have larger spacing between them, while they sustain the integrity of an ordered nanowire array.
Furthermore, nanowire spacing at different nanowire lengths form the plot in Figure 3b where the
average inter-nanowire spacing increases almost linearly as the nanowire length increases. This linear
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relationship between the nanowire spacing and length seems to coincide with the plot for the force
calculation of the nanowires with different lengths, as indicated in Figure 2b.
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Figure 3. Inter-nanowire spacing as a function of the nanowire length and electrode gap width.
(a) Representative dark-field optical microscope images of an array with different nanowire lengths
(` = 7, 13, and 24 µm), also indicating the different inter-nanowire spacing, proportional to their lengths.
(b) Plot for the inter-nanowire distance with different nanowire lengths (` = 7, 13, and 24 µm) where
different widths of electrode gaps, 3 µm (black square) and 6 µm (red circle), are employed. This
plot shows that the nanowires tend to be less spaced with wider electrode gaps, while forming the
ordered array. The inset exhibits a 7 µm long rhodium nanowire array with 3 µm (left) and 6 µm (right)
electrode gaps. The simulation of a y-component electric field, Ey, on the nanowires assembled with (c)
3 µm and (d) 6 µm wide electrode gaps. Schematic drawing of the charge density along a nanowire’s
length, highlighting the effect of (e) 3 µm and (f) 6 µm wide electrode gaps. Noticeably, the central part
of nanowires’ overlapping the electrode gap will induce a lower charge density (λ) and the electric
field (Ey) of the nanowires, eventually affecting the nanowires’ spacing.

Figure 3b also shows the nanowires’ assembly results with a 6 µm-spaced electrode gap with
the effect of different electrode gaps’ widths on the nanowire spacing. The insets show the image of
a 7 µm-long nanowire assembly with 3 µm (left) and 6 µm (right) electrode gaps. Obvious from the
comparison between 3 µm and 6 µm electrode gaps in the plot of Figure 3b is that the same lengths of
nanowires with the wider electrode gap become slightly less spaced. Recalling the uniform charge
distribution model for the assembled nanowires earlier explains the influence of electrode gap width
on nanowire spacing.
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In principle, the charge density begins to drop as it passes the edge of an underlying electrode
and it falls to zero at the exact middle of nanowires, symmetrically assembled at the electrode gap.
The charge density remains constant at locations that are away from the mid and the edge areas.
The simulated Ey distribution for 3 µm and 6 µm wide electrode gaps in Figure 3c,d, respectively,
shows that Ey becomes less strong beyond the edge of a biased electrode, particularly in a narrow

electrode gap. According to Gauss’s law (
∮ →

E ·d
→
A = Q/ε0), distribution emerging from the nanowire

allows for an indirect estimate of the charge distribution of the assembled nanowires.
As a result, the charge density can be drawn in a way that the nanowire assembled on a wide

electrode gap has fewer charges when compared to the narrow one, as described in Figure 3e,f. ∆Q1

and ∆Q2 in Figure 3e,f, respectively, refer to the differences of the charges of the simple model with a
step function-like uniform charge density. Thus, the Coulombic force between the nanowires becomes
larger for the narrow electrode gap, leading to slightly larger nanowire spacing, as shown in Figure 3b.

Again, the approach that uses the dielectrophoretic nanowire attraction and electrostatic nanowire
interaction yields an ordered nanowire alignment at the electrode gap with a uniform spacing. Other
methods have demonstrated an ability to define the average spacing between the assembled nanowires,
using a lithographically patterned surface [12], a surface functionalization of the substrate [11],
a concentration of nanowires in the suspension [16], and a compression process [22]. The nanowire
array with average nanowire spacing provides an opportunity to pursue registration-free, single
nanowire device fabrication on an array platform [22,23], where success relies on the precise control of
nanowire spacing with small fluctuations in local scale.

According to Equation (5), the electrostatic repulsive force can be determined by the value of the
charge density (σ) on the assembled nanowires. Approximation of the nanowire-electrode system
to the parallel capacitor leads to modulation of the induced charges in the polarized nanowires as
a function of bias conditions and the materials’ parameters in the alignment structure, all of which
eventually affect nanowire spacing. The charge (Q) of the nanowire using a simple capacitor model
and the capacitance (C) of the nanowire on the biased electrode approximation has the expression [24].

Q = C · V =
πε`

cosh−1(2H/d)
V (6)

where ε is the permittivity of dielectric layer; H is the distance between the biased electrode and
the center of nanowire; d is the diameter of nanowire; and, V is the potential between the nanowire
and the electrode. When fixing the nanowire length and diameter at a constant value through batch
fabrication, the amount of charges in the nanowires depends on the amplitude of applied bias and the
thickness of the dielectric layer.

The frequency of the applied bias could influence nanowire alignment on a biased electrode.
In other words, the frequency response of dipole moment in the polarized nanowires determines
the dielectrophoretic nanowire attraction by the real part of the Clausius-Mossotti factor [Re(K)].
The frequency of applied bias also affects the induced charges in the assembled nanowires, resulting
in the frequency-dependent electrostatic force between them. In contrast to the dipole formation in
semiconducting nanowires, the metal is of a very high permittivity material due to free electrons in
it. Ideally, an infinite value makes Re(K) almost constant over a wide range of frequencies. Without
doubt, the frequency response of free electrons in the metal is instant. Thus, the induced charges
in the assembled nanowires as well as the dielectrophoretic attraction of them can be considered as
frequency-independent factors for determining the nanowires’ spacing in the array. The average
spacing of 7 µm-long rhodium nanowires, assembled at the electrode gap with a 3 µm width,
is estimated to be about 5 µm in the range of 10 kHz to 10 MHz. As discussed, no significant
change in the nanowire spacing was observed at relatively low frequency ranges, as compared to the
relaxation time of free electrons in the metal.

Figure 4a shows the plot for nanowires’ spacing (D) as a function of the peak-to-peak voltage of
applied bias (Vpp). It was observed that the 7 µm-long rhodium nanowires form uniformly-spaced
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arrays on the electrode gap for all of the voltage ranges. In contrast to the theoretical expectation that
is described in Equations (5) and (6), the plot (Figure 4a) demonstrates that the nanowire spacing
tends to increases gradually as the bias voltage ramps up. This discrepancy might appear intuitively
inapprehensible until the effect of voltage for trapping the nanowires from the suspension is taken
into account.
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Figure 4. Inter-nanowire spacing as a function of the applied bias. (a) Plot of average nanowire spacing
as a function of the voltage of applied bias, Vpp. Apparently, the inter-nanowire spacing increases
gradually as the voltage of applied bias ramps up from 5 V to 35 V. Dark field optical microscope images
of the nanowire array are obtained from Vpp = 5, 15, and 35 V. Scale bar = 5 µm. (b) Normalized electric
field simulation at different voltages of applied bias (Vpp = 5, 10, and 20 V) exhibiting the electric
field’s spread toward the liquid medium. The nanowires will be polarized and dielectrophoretically
attracted toward the electrode gap if they are within the decay length of the critical electric field.
(c) Plot of the electrostatic repulsive Ey·Vpp and dielectrophoretic∇E2 forces as functions of the applied
bias strength. The inset emphasizes that ratios of the electrostatic to dielectrophoretic forces increase
relatively gradually as the applied bias increases.

In order to investigate the dependence of the applied voltage for the nanowire assembly,
visualization of the spatial distribution of the electric field from the electrode gap can be beneficial.
Figure 4b displays the spatial electric field distributions of the z-x planes toward the nanowire solution
at Vpp = 5, 10, and 20 V. Comparison of the spatial electric field distributions as a function of amplitude
of applied bias clearly contrasts the critical nature of field strength spread in the suspension with
almost linearly proportionality of the applied voltage. For example, predictably from Figure 4b, the
minimum electric field that is required for nanowire attraction, namely about 106 V/m, at Vpp = 10 V,
extends toward the nanowire suspension two times further than at Vpp = 5 V in the nanowire assembly.
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This tendency suggests that more nanowires in the suspension are within an electric field of effective
nanowire polarization at higher voltages, resulting in a nanowire array formation with less spacing.

Comparison of the dielectrophoretic force (FDEP), which is responsible for the number of
nanowires to be assembled, and the electrostatic repulsion (FES) between the nanowires, responsible
for the inter-nanowire spacing, is a reasonable indication for determining the inter-nanowire spacing
for given conditions. The expression of the dielectrophoretic force is [25].

FDEP =
πd2`

24
ε1 Re (K) ∇E2 (7)

FES =

(
2πε

cosh−1(2H/d)

`

2
V

)
·Ey (8)

where ε1 is the permittivity of the liquid medium, E is the applied electric filed, and Re(K) is the real
part of the Clausius-Mossotti factor. Using the simulation, the ratio of the electrostatic repulsive (FES)
to the dielectrophoretic (FDEP) forces enables the estimation of the relative inter-nanowire spacing in
the array according to the chosen specific bias conditions and materials’ parameters. In other words,
their high ratios of electrostatic to dielectrophoretic forces at the given conditions of applied voltage
provide an indication of the relatively stronger electrostatic force between the assembled nanowires
compared to the dielectrophoretic force, leading to larger spacing between the nanowires.

Figure 4c shows the plot of the ratio of the electrostatic (FES) and dielectrophoretic (FDEP) forces in
which Ey for FES and ∇E2 for FDEP are extracted from the PMGI surface above the electrode edge and
the surface of the assembled nanowires in the simulations, respectively. The voltage varied from 1 Vpp

to 35 Vpp. As anticipated from the equations, notably, from Figure 4a, the electrostatic repulsive force
and the dielectrophoretic force increase as the voltage ramps up. As explained earlier in this paragraph,
comparison of the ratios is more important for clarifying the relationship between the inter-nanowire
spacing and the voltage. The inset in Figure 4c shows that the ratio of FES/FDEP increases by a small
increment as the voltage increases. This further suggests that the inter-nanowire spacing at varying
voltages has the same relationship. Apparently, this relationship is quite consistent with the plot of the
experimental results that are shown in Figure 4a.

The thickness of dielectric layer, i.e., PMGI in the experiment’s assembly setup, also affects the
electrostatic repulsion between the assembled nanowires, eventually establishing the average spacing
between them. Understandably, the amount of induced charge on the surface of the nanowires depends
on the thickness of the dielectric layer because of the capacitor-like structure of nanowire-PMGI-biased
electrodes [26]. Figure 5a exhibits the serial images of assembly results while varying the PMGI
thickness (t), explicitly displaying the average spacing in the nanowire array, which is virtually free
of the chain formation, and becoming larger as the dielectric layer increases. The plot in Figure 5b
illustrates that the inter-nanowire spacing is almost linearly proportional to the PMGI thickness. These
results indicate that the electrostatic interaction of nanowires still holds its effect for the uniform
spacing with an array in the case of a PMGI layer of about 4 µm. Figure 5c clearly shows that the
electric field in the suspension as well as in the vicinity of the electrode gap becomes weaker with a
thicker PMGI layer that is spun on it. Evident from Figure 5c is that the electric field at the electrode
gap decreases by nearly two orders of magnitude as the thickness of the PMGI layer decreases from
0.3 µm to 5.4 µm.

In order to interpret this inter-nanowire spacing dependence on the thickness of PMGI, performing
a simulation to compare the ratio of the electrostatic (FES) and dielectrophoretic (FDEP) forces is
necessary. Similarly, a plot of Ey/cosh−1(2H/D) for the inter-nanowire repulsion force and ∇E2 for
the dielectrophoretic force as functions of PMGI thickness from 0.3 µm to 7.2 µm appears in Figure 5d.
This plot describes that both forces at the surface of the PMGI layer diminish as PMGI thickness
increases. This relationship is compatible with the theoretical expectation from Equations (7) and (8).
The inset of Figure 5d, however, shows that their ratios of FES to FDEP increase nearly linearly as PMGI
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thickness increases, suggesting that the electrostatic force between the assembled nanowires becomes
relatively stronger when compared to the dielectrophoretic nanowire attraction. Thus, the ratios
of Ey/cosh−1(2H/D) to ∇E2 seem to provide an adequate account for the relationship between the
electrostatic and dielectrophoretic forces, namely sensitive inter-nanowire spacing change according
to differing PMGI thicknesses. Worthy of note is that strong capacitive-coupling of thin PMGI layers
might encounter relatively strong friction, when compared to thick PMGI layers that resist electrostatic
repulsion motion. This friction also can contribute to larger spacing between the assembled nanowires
on thick PMGI layers.
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Figure 5. Inter-nanowire spacing as a function of the dielectric layer thickness. (a) Series of dark-field
optical microscopic images for the different thicknesses of PMGI layers (tPMGI = 0.3, 0.6, 0.9, 2.1, 2.7, and
4.2 µm), and (b) its plot for the relationship between the inter-nanowire spacing and PMGI thicknesses.
(c) Spatial electric field distribution at different thicknesses of PMGI layers (tPMGI = 0.3, 0.9, 2.7, and
5.4 µm) exhibiting the electric field’s spread toward the liquid medium. Smaller number of nanowires
in the suspension will be polarized, dielectrophoretically attracted, and redistributed on thicker
PMGI layers, leading to smaller inter-nanowire spacing. This is due to the electric field’s decaying
relatively quickly on thick PMGI layers. (d) Plot of the electrostatic repulsive (Ey/cosh−1(2H/D))
and dielectrophoretic (∇E2) forces as functions of PMGI thickness. The inset shows that ratios of
electrostatic to dielectrophoretic forces increase nearly linearly as the PMGI thickness increases.
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4. Conclusions

This study of control of the inter-nanowire spacing in the array demonstrated that the electrostatic
repulsion between the nanowires plays a key role in determining the average distance between them,
while the dielectrophoretic force also contributes to it by controlling the number of nanowires to be
assembled. This electrostatic repulsion as well as the dielectrophoretic force is not only limited to the
metallic entities and is also applicable to other semiconducting nanowires. Significance of this study
lies on the fact that the average spacing between the nanowires can be readily controlled either by
the bias conditions or by the materials parameters. In addition to the unique feature of our nanowire
assembly, such as a high degree of alignment and orientation at well-defined locations and excellent
end-to-end registration, this control of nanowires spacing offers a promising method without the need
for the registration of nanowires to fabricate the individual devices by the metal deposition following
the lithographical patterning. For instance, setting the width of narrow metal interconnects to the
average distance of the nanowires produces a large number of single functional nanowire devices in
a scalable and parallel fashion where the nanowire registration relative to the metal electrode is not
required. Its versatility could be extended to the novel applications, such as the plasmonics of metallic
nanopattern and nanoresonator devices, chemical and biological sensors, and flexible light-emitting
diode, where the multiple nanowires with a tight control of its number are preferred for the uniform
transistors array requiring high transconductance.
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