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Abstract: Porous CoFe2O4 was prepared via a simple and controllable method to develop a low-cost,
high-efficiency, and good-stability nanozyme. The morphology and microstructure of the obtained
CoFe2O4 was investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS),
transmission electron microscopy (TEM), high-resolution TEM (HRTEM), specific surface area
and pore analysis, and Raman spectroscopy. The results show that the annealing temperature
has an important effect on the crystallinity, grain size, and specific surface area of CoFe2O4.
CoFe2O4 obtained at 300 ◦C (CF300) exhibits the largest surface area (up to 204.1 m2 g−1) and
the smallest grain size. The peroxidase-like activity of CoFe2O4 was further verified based on the
oxidation of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2.
The best peroxidase-like activity for CF300 should be ascribed to its largest surface area and smallest
grain size. On this basis, an effective method of colorimetric detection H2O2 was established.
In addition, the porous CoFe2O4 was also used for the catalytic oxidation of methylene blue (MB),
indicating potential applications in pollutant removal and water treatment.
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1. Introduction

Peroxidases are a kind of efficient redox enzymes that can catalyze the oxidation of enzyme
substrate in the presence of H2O2. Owing to strong selectivity and high catalytic efficiency,
they have been widely applied to various fields, such as biotechnology, chemical industry, biosensors,
and immunoassays [1–3]. Unfortunately, there still exist some intrinsic drawbacks, such as being
easy to denature in extreme environmental conditions, and the high cost of preparation and
purification [4]. Therefore, the construction of novel and efficient artificial enzymes is very essential
and has become an increasingly important focus. Over the past few decades, a vast variety of
artificial enzymes have been explored to mimic the functions of natural enzyme, such as cyclodextrins,
nanomaterials, DNA complexes, and Schiff base complex [5–8]. Among them, nanomaterials have
attracted intensive attention because of their ease of preparation, low price, and good stability [9–13].
Additionally, the large specific surface and more activation centers of nanomaterials also greatly extend
their application range [14].
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To date, a large number of nanomaterials have been found to possess unexpected peroxidase-like
activity (mimicking the functions of peroxidase), including Pt nanoclusters [15], AgVO3 nanobelts [16],
MnO2 nanoparticles (NPs) [17–19], WOx quantum dots [20], Ag NPs [21], V2O5 nanowires [22],
and Fe3O4 magnetic nanoparticles (MNPs) [23–25]. Additionally, a series of hybrid complexes
based on metal nanomaterials have been investigated as peroxidase mimetics, such as GQDs/Ag
NPs [26], Au nanocomposites [27,28], and FeSe-Pt@SiO2 nanospheres [29]. Furthermore, carbon-based
nanomaterials, e.g., single-walled carbon nanotube [30], graphene oxide (GO) [6], C@Fe3O4 NPs [31],
GQDs/CuO nanocomposites [32] were also explored to mimic the functions of naturally-occurring
enzymes. In particular, magnetic nanomaterials have been widely applied in biology, medicine and
environmental fields because of their low cost, better stability, ease of separation, and recyclability.
For example, Wei and his co-workers reported that the Fe3O4 MNPs could be a highly-efficient
peroxidase-like catalyst towards H2O2 reduction for biosensing applications [23]. Chen’s group found
that magnetic carbon nitride nanocomposites possessed the superior peroxidase-like catalytic activity
toward H2O2 and glucose and can be used as an enzyme-free biosensor [33]. Feng et al., reported the
controllable synthesis of monodisperse CoFe2O4 nanoparticles by the phase transfer method and
applied them in the degradation of methylene blue (MB) with H2O2 [34].

As a kind of high stability ferromagnetism nanomaterials, CoFe2O4 have been widely applied
in lithium batteries, immunoassays, environmental science, and food chemistry [35–37]. Owing to
the magnetic property for easy recyclability and high catalytic performance, CoFe2O4 is expected
to be a good candidate for mimicking peroxidase [38,39]. In this study, we established a simple
method to prepare porous CoFe2O4 with the controllable size of nanoparticles and specific surface area.
The porous CoFe2O4 exhibited the excellent peroxidase-like catalytic activity and could be used to
detect H2O2 and degrade MB. Benefiting from simple operation and high efficiency, CoFe2O4 materials
have great potential applications in environmental protection and biotechnology.

2. Materials and Methods

2.1. Reagents

3,3′,5,5′-Tetramethylbenzidine (TMB) was purchased from Macklin (Shanghai, China).
CoCl2·6H2O, FeSO4·7H2O, oxalic acid, methylene blue (MB), ethanol, H2O2 (30 wt %), isopropanol
alcohol (IPA, a scavenger of hydroxyl radicals •OH) and other chemicals were all of analytical reagent
grade and were obtained from Guangzhou Chemical Reagent factory (Guangzhou, China). All aqueous
solutions were prepared with Milli-Q water (18.2 MΩ cm).

2.2. Preparation of CoFe2O4

CoFe2O4 samples were synthesized via a facile method. In a typical procedure, 2.5 g of
CoCl2·6H2O and 5.6 g of FeSO4·7H2O were dissolved in 80 mL of deionized water and then transferred
into oil bath heating at 80 ◦C, under vigorous stirring for 1 h. Subsequently, 30 mL 1 M oxalic acid
solution was heated to boiling with magnetic stirring, and then added into the above solution slowly
under constant stirring to form a final black precipitation, and then cooled by ice-water mixture.
The black precipitates were collected by centrifugation and washed several times with water and
ethanol, and further dried at 60 ◦C under vacuum for 12 h. Then, the precipitates were transferred to a
tube furnace, heated to 300 ◦C, and maintained for 1 h. The temperature was raised at a heating rate of
1 ◦C min−1 [40]. The final product was denoted as CF300. Similarly, other CoFe2O4 samples prepared
at 400 ◦C, 500 ◦C, 600 ◦C, and 700 ◦C were denoted as CF400, CF500, CF600, and CF700, respectively.

2.3. Characterization of CoFe2O4

The X-ray diffraction (XRD) patterns were collected on a Bruker D8 Advance X-ray diffractometer
(Bruker Inc., Karlsruhe, Germany) with Cu Kα radiation (λ = 0.154056 nm). Scanning electron
microscopy (SEM) images were observed by used a Hitachi S-4800N microscope (Hitachi Inc.,
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Tokyo, Japan). The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM)
images were taken on a JEOL JEM-2100 microscope instrument (JEOL Inc., Tokyo, Japan) at an
acceleration voltage of 200 kV. The chemical composition and elemental maps of the as-prepared
samples were analyzed by energy-dispersive X-ray (EDX) spectroscopy using an EDX attachment
to the SEM instrument. The X-ray photoelectron spectroscopy (XPS) data were acquired using
AXIS SUPRA (Shimadzu Inc., Kyoto, Japan). The UV-vis absorbance spectra were recorded using
a Lambda 750 s UV-vis-NIR absorption spectrophotometer (PerkinElmer Inc., Waltham, MA, USA).
The hysteresis loop of the samples was obtained using the vibrating sample magnetometer (VSM,
Lakeshore 7400, Westerville, OH, USA). The specific surface areas of the CoFe2O4 were recorded based
on Brunauer-Emmett-Teller (BET) equation by an automatic nitrogen adsorption pore size distribution
and specific surface analyzer (ASAP 2460, Atlanta, GA, USA). Raman spectroscopy was performed on
a Renishaw inVia Reflex Raman microscope (Renishaw Inc., Gloucestershire, UK) using 532 nm green
laser excitation.

2.4. Peroxidase-Like Activity Assay

To investigate the peroxidase-like activity of the prepared CoFe2O4 materials, a typical catalytic
oxidation experiment was performed at room temperature with 100 µg/mL CF400 in 3 mL of
phosphate-buffered saline (PBS, 20.0 mM, pH 3.5), using 0.8 mM TMB, and 4.0 mM H2O2 as the
substrate. All the reactions were monitored in time scan mode at 652 nm, right after all of the
reagents were added and mixed. Control groups included CF400 (100 µg/mL) with TMB (0.8 mM),
CF400 (100 µg/mL) with H2O2 (4.0 mM), and TMB (0.8 mM) with H2O2 (4.0 mM) in 20.0 mM PBS
(pH 3.0), respectively.

2.5. Optimal Conditions for H2O2 Detection

The effect of substrate H2O2 concentration (0–0.1 M), CF300 concentration (0–200 µg/mL),
temperature (20–40 ◦C), and pH (2–8) on the peroxidase-like activity of CF300 were also investigated
to ascertain the optimal conditions.

2.6. Analysis of Active Species

The active species generated in the reaction were detected by adding scavengers (IPA) into the
reaction solutions [16]. The specific procedure was the same as the CF300 peroxidase-like activity
assay experiments.

2.7. Steady-State Kinetic Study

A steady-state kinetic experiment was performed in a 3.0 mL reaction solution (20.0 mM PBS,
pH = 3.0, 25 ◦C) with 20 µg/mL CF300. TMB and H2O2 were involved in the reaction as substrates.
The steady-state kinetic data were collected by varying the concentration of one substrate while
keeping the other substrate concentration constant, and the kinetic value was measured in time course
mode at 652 nm [32,41]. The Michaelis-Menten constant was calculated by using the Lineweaver-Burk
double reciprocal according to the equation: 1/v = (Km/Vmax) (1/[S]) + 1/Vmax [42,43], where v is the
initial velocity, Km is the Michaelis constant, Vmax is the maximal reaction velocity, and [S] represents
the concentration of the substrate.

2.8. Methylene Blue Degradation

The catalytic activity of CoFe2O4 samples was demonstrated by degrading MB in aqueous solution.
In a typical reaction, 0.015 mg of CF300 was added to 50 mL MB aqueous solution (10 mg/L), then 10 mL
of aqueous H2O2 (30 wt %) was added in the reaction mixture. At various time intervals, a small
quantity of the mixture solution was separated quickly by centrifugation. Finally, the supernatants
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were pipetted into a quartz cell and analyzed with UV-vis spectrophotometer to evaluate the catalytic
degradation MB [41,44].

3. Results

3.1. Characterization of the CoFe2O4

The crystal structure and purity of the products were measured by XRD. Figure 1A displays
XRD patterns of CoFe2O4 prepared at different temperatures. All characteristic peaks of samples
match very well with the inverse spinel structure with the lattice parameters of a = 8.377 Å and
c = 8.377 Å, which is consistent with the reported data (JCPDS file no. 03-0864). The synthesized
temperature has a significant effect on the crystallinity of CoFe2O4. With the increase of the prepared
temperature, the crystallization of samples increases obviously. Moreover, no other characteristic
peaks of impurities are detected, indicating a pure phase of CoFe2O4 can be obtained using the present
method. Figure 1B shows the Raman spectra of the as-synthesized samples. The low-frequency
vibrations (below 600 cm−1) are belonged to the motion of oxygen around the octahedral lattice site
whereas the higher frequencies can be attributed to oxygen around tetrahedral sites [45,46]. In this
work, the mode at 682 cm−1 is a characteristic of the tetrahedral site. The bands at 470 cm−1 and
300 cm−1 correspond to Co2+ at octahedral sites [47].
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Figure 1. (A) XRD patterns and (B) Raman spectra of CoFe2O4 prepared at different temperatures.

The morphology of as-prepared CoFe2O4 is presented by SEM image. As shown in Figure 2A,
CF300 show the rhombus-like polyhedron morphology with some fragments and cracks. They are
several micrometers in size. Other CoFe2O4 samples obtained at different temperature also exhibit
similar structure and morphology in Figure S1 (Supplementary Materials). The EDX elemental
mappings (Figure 2B) and EDX spectrum (Figure S2) reveal the existence Co, O, and Fe elements.
All three elements can maintain a uniform rhombus-like morphology, further demonstrating that Co,
O, and Fe are homogeneously distributed in the sample.
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The microstructure and morphology of the synthesized samples at different reaction temperature
were further investigated by TEM. As observed from the TEM images in Figure 3A–E, all the samples
exhibit a homogeneous mesoporous structure. When the synthesized temperature is increased from
300 ◦C to 700 ◦C, the pore size gradually enlarged and the pore density also decreased owing to
the further crystallization and crystal growth of CoFe2O4 particles. In this work, the pores are
located among the particles and mainly derived from a large amount of gases slowly release from
oxalate particles during thermal decompositions [48]. Figure 3F displays the HRTEM image of CF300.
The image highlights the crystalline lattice fringes with a distance of about 0.296 nm, which can be
ascribed to the (220) plane of CoFe2O4. The inset in Figure 3F is the corresponding selected area electron
diffraction (SAED) pattern, confirming that the sample has a monocrystalline structure. The diffraction
spots can be indexed as inverse spinel-structured CoFe2O4, which is in accordance with the XRD result.
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The chemical composition and surface electronic state of the as-prepared CoFe2O4 samples were
further studied by XPS. It can be seen in the XPS survey spectrum (Figure 4A) that the sample mainly
contains three elements: Co, Fe, and O. The C 1s peak at around 284.8 eV could correspond to the
signal from carbon contained in the instrument as calibration. In the Co 2p spectrum (Figure 4B),
the peak located at about 780.58 eV corresponds to Co 2p3/2 with a satellite peak at 786.58 eV and
the peak at 795.78 eV is ascribed to the Co 2p1/2. Figure 4C presents the Fe 2p orbital displaying the
splitting peaks at binding energies of around 724.58 eV and 711.28 eV, which can be assigned to the
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Fe 2p1/2 orbital and Fe 2p3/2 orbital, respectively. These results are well in agreement with many other
reports [49,50]. Figure 4D shows the high-resolution XPS spectra of the O 1s. Based on the previous
reports, the signal peak located at 530.94 eV could be assigned to typical lattice oxygen in CoFe2O4.
The peak located at 531.4 eV is assigned to C–O bonds. The XPS spectrum is in good agreement with
the literature [51].Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 15 
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Figure 4. XPS spectra of CF300: (A) survey spectrum, high resolution XPS spectra of (B) Co 2p, (C)
Fe 2p, and (D) O 1s.

N2 adsorption/desorption isotherms of the samples are depicted in Figure 5A. Typical type IV
adsorption isotherms with an H3-type hysteresis loop are observed for all samples except CF700,
indicating the mesoporous feature of the CoFe2O4 nanostructures. Figure 5B shows the relevant
Barrett-Joyner-Halenda (BJH) pore size distribution of the porous CoFe2O4, in which there exists
a sharp maximum at 3.5–20.6 nm, further indicating the material has a mesoporous structure.
The porous trait will greatly enhance the surface area and active sites, and thus improve the catalytic
performance [52]. The specific surface, pore diameter, and pore volume of these samples are shown in
Table 1. We can see that, as the preparing temperature increases, the obvious decrease is found for the
pore volume (0.228 to 0.019 cm3/g) and specific surface (204 to 18 m2/g). The magnetism of CF300
sample was determined by the hysteresis loop on VSM. It can be seen in Figure S3 that CF300 displays
typical ferromagnetism at room temperature. The coercivity (Hc), saturation magnetization (Ms) and
residual magnetization (Mr) are about 12 Oe, 8.372 emu/g and 0.064 emu/g respectively.

Table 1. Specific surface, pore diameter, and pore volume of synthesized CoFe2O4 samples.

Sample Specific Surface (m2/g) Pore Diameter (nm) Pore Volume (cm3/g)

CF300 204.10 4.47 0.228
CF400 112.17 8.84 0.248
CF500 58.44 14.29 0.209
CF600 21.78 5.56 0.030
CF700 18.25 4.18 0.019
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3.2. Peroxidase-Like Activity of CoFe2O4

To examine the peroxidase-like activity of the synthesized CoFe2O4, the catalytic oxidation of
the typical peroxidase substrate TMB in the presence or absence of H2O2 was carried out (Figure 6A).
Color changes of different systems can be observed from Figure 6B. The H2O2 + CF400 system and the
H2O2 + TMB system show no absorption, while the TMB + H2O2 + CF400 system shows an obvious
absorption peak at 652 nm, which indicates CF400 could act as a peroxidase to oxidize TMB to produce
a blue color in the presence of H2O2. Interesting, the TMB + CF400 system shows a weak absorption,
indicating that CF400 could catalyze the oxidation of TMB in the absence of H2O2 to produce a blue
dye. The oxidase-like activity for TMB oxidation may originate from their catalytic ability to reduce
dissolved oxygen [4]. Additionally, the peroxidase mimetic catalytic activities of CoFe2O4 at the
different synthesized temperatures were tested and compared through the catalytic oxidation of TMB
in the presence of H2O2. It can be seen from Figure 6C that CF300 exhibits the best peroxidase mimetic
catalytic activity among the synthesized CoFe2O4 samples. The color changes of TMB with different
CoFe2O4 samples are shown in Figure 6D. It can be found that all the CoFe2O4 samples prepared under
different temperature possesses distinct peroxidase mimetic catalytic activities. CF300 system shows
the most obvious blue color in comparison with that of CF400, CF500, CF600, and CF700. The most
superior peroxidase mimetic activity of CF300 could be mainly owing to the rich catalytic activity
sites provided by the largest specific surface area. As shown in Scheme 1, H2O2 reduction first takes
place in the presence of chromogenic electron donor TMB, and then accelerates by partial electron
transferring to the surface of CF300. Subsequently, the TMB is oxidized through one electron transfer
and the color of the solution changes to blue.
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3.3. Optimal Condition for H2O2 Detection

In order to investigate the intrinsic catalytic activities of CF300, further experiments were carried
out with various CF300 and H2O2 concentrations. Figure 7A shows that the peroxidase-like catalytic
reaction rate increases with the elevating concentrations of CF300. For the convenience of operation,
the concentration of CF300, 20 µg/mL, is used in the following experiments. Previous studies showed
that the catalytic activities of horseradish peroxidase (HRP) could be inhibited at excess concentrations
of H2O2 [53]. Figure 7B depicts the time course-dependent absorbance change at 652 nm for different
concentrations of H2O2. The catalytic reaction rates increase with the increase of H2O2 concentration,
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and no inhibition is found in the catalytic reaction at high H2O2 concentrations, which suggests a more
stable catalytic activity for CF300 than that of HRP at high H2O2 concentration. The 4.0 mM is chosen
as the optimal H2O2 concentration in the following experiments.

Similar to HRP and other mimetic enzymes, the catalytic relative activity of CF300 is dependent on
the pH and temperature. Hence, we investigated the peroxidase-like activity of CF300 through varying
the pH from 2 to 8 and the temperature from 20 ◦C to 40 ◦C. As shown in Figure 7C, the peroxidase-like
activity of CF300 is much higher in weakly acidic solutions than in alkaline and neutral solutions.
The maximum absorption for CF300 catalytic system appears at pH 3.0. In addition, the catalytic
activity of CF300 is significantly affected by the temperature (Figure 7D). The catalytic activity offers
an upgrade, firstly, with the increasing temperature. Subsequently, it starts to decline when the
temperature is higher than 25 ◦C. Thus, for the convenience of operation, the 25 ◦C is selected as the
experimental temperature.
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Figure 7. (A) Time-dependence absorbance at 652 nm of the 0.08 mM TMB reaction solution in the
absence or presence of different doses of CF300 in 20 mM PBS (pH = 3.0) with 0.8 mM H2O2 at room
temperature. (B) Time-dependence absorbance at 652 nm of the 0.4 mM TMB reaction solution in the
absence or presence of different concentrations of H2O2 in 20 mM PBS (pH = 3.0) with 20 µg/mL CF300
at room temperature. Dependence of peroxidase-like activity of CF300 on pH (C) and temperature (D).

3.4. Catalytic Mechanism Study

In the presence of H2O2, CF300 could catalyze H2O2 to form the oxidized intermediate •OH
radicals and subsequently oxidize TMB to produce blue dye. In order to confirm the catalytic
mechanism, the •OH radical scavenger IPA was used in the CF300-TMB-H2O2 system, where IPA
would easily react with •OH, leading to the decrease of the absorption at 652 nm and color fading of
the system [2]. The corresponding chemical equation was:

CH3CH(OH)CH3 + •OH→ CH3CH(O)CH3 + H2O
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Figure 8 shows an apparent color fading and absorption decrease at 652 nm for the system with
IPA, confirming that CF300 could catalytically activate H2O2 to generate •OH radicals, and then
oxidize TMB to produce a TMB oxide with blue color. Obviously, these results indicate that •OH
radicals play a key role in the catalytic reaction.
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Figure 8. Time-dependent absorbance at 652 nm of the 0.4 mM TMB reaction solutions in the absence
or presence of scavengers (IPA) in 20 mM PBS (pH = 3) with 20 µg/mL CF300 and 0.8 mM H2O2.

3.5. Steady-State Kinetic Assay

The catalytic steady-state kinetic of CF300 was evaluated by using TMB and H2O2 as substrates
(Figure 9). The kinetic experiments were performed by only varying the concentration of TMB
or H2O2 while keeping the other substrate concentration constant. As illustrated in Figure 9A,B,
the Michaelis–Menten curves were obtained for both TMB and H2O2 in a certain concentration range.
Accordingly, a series of initial reaction rates were obtained, and the double reciprocal plots (the
reciprocal initial velocity vs. the reciprocal substrate concentration) were drawn as demonstrated in
Figure 9C,D. The Michaelis–Menten constant (Km) and maximal reaction velocity (Vmax) for this system
were calculated using Lineweaver–Burk plots and the Michaelis-Menten equation. The Km (TMB) of
the CF300 is 0.387 mM, which is lower than the reported value of HRP (0.434 mM), suggesting that
CF300 has higher affinity for TMB than HRP (Table 2). On the other hand, the Km (H2O2) of the
CF300 is 8.89 mM, significantly higher than that of 3.7 mM for HRP [25], indicating that CF300
has lower affinity for H2O2. Additionally, the peroxidase-like catalytic reaction based on CF300
followed the typical Michaelis-Menten behavior [2,13] towards both substrates: TMB and H2O2.
Additionally, the double-reciprocal plots (Figure 9C,D) exhibited the characteristic parallel lines
of a ping-pong mechanism, indicating that CF300 bound and reacted with the first substrate and
then released the first product before reacting with the second substrate, which is similar to that of
HRP [2,25].

Table 2. Comparison of Km and Vmax between CF300 and HRP for H2O2 and TMB.

Catalysts Substances Km (mM) Vmax (M/s) References

CoFe2O4 H2O2 8.89 1.93 × 10−8 This work
CoFe2O4 TMB 0.387 2.90 × 10−8 This work

HRP H2O2 3.7 8.71 × 10−8 [10]
HRP TMB 0.434 10.00 × 10−8 [10]
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Figure 9. Steady-state kinetic assays of CF300, the reaction velocity (v) was measured using 20 µg/mL
of CF300 in 20 mM PBS (pH = 3) at room temperature. The TMB concentration was varied and the
concentration of H2O2 was 4 mM (A); the H2O2 concentration was varied and the concentration of
TMB was 0.4 mM (B); and the double-reciprocal plots of peroxidase-like activity of CF300 with a fixed
concentration of one substrate relative to varying concentration of the other substrate (C,D).

3.6. Detection of H2O2 and Oxidative Degradation of Methylene Blue

On the basis that peroxidase mimics the activity of the CoFe2O4 materials, we developed a
facile and label-free colorimetric approach to detect H2O2. As shown in Figure 10, a typical H2O2

concentration response curve under the optical conditions is measured. The detection range for H2O2

is from 0.02 to 6 mM. The linear regression equation is A652nm = 0.18388 + 0.0049C (mM), with a
correlation coefficient of 0.9945. The detection limit for H2O2 is 0.02 mM, suggesting that the optical
biosensing system built in this study can be applicable to the H2O2 determination.

Some studies confirmed that nanozymes could be used to remove pollutants from waste
water [54–57]. Based on the excellent catalytic activity of CF300, we further investigated its MB
degradation ability. Similar to other enzyme mimic reactions, the maximum UV-vis absorption (Amax)
of MB aqueous solution is located at 665 nm [44]. Figure 11A shows the UV-vis absorption spectra of
MB aqueous solution in the presence of CF300 and H2O2 at different reaction time. A sharp decrease
for the absorption intensity of MB is observed with the increasing reaction time, the band at 665 nm
become very weak and broad, and the removal rate of MB can reach 91.2% at 10 h (Figure 11B),
suggesting that the MB has nearly completed degradation.
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4. Conclusions

In summary, we developed a simple and controllable method for porous CoFe2O4 preparation.
The specific surface area of CoFe2O4 materials was dependent on the annealing temperature and
the CF300 exhibited a much higher specific surface area (204.1 m2 g−1) than other CoFe2O4 samples.
The large specific surface area of CF300 endowed them more actives which resulted in the enhanced
intrinsic peroxidase mimics activity. Additionally, based on the peculiarity, CF300 had excellent
catalytic activity for the degradation of MB. Owing to the facile preparation, low cost, large specific
surface area, and magnetic properties, the present CoFe2O4 showed great potential for applications in
environmental protection, biomedical analysis, and other related areas.
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