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Abstract: Fluorescent carbon quantum dots (CQDs) have held great promise in analytical
and environmental fields thanks to their congenitally fascinating virtues. However, low
quantum yield (QY) and modest fluorescent stability still restrict their practical applications. In
this investigation, a green hydrothermal strategy has been devised to produce water-soluble
nitrogen/phosphorus (N/P) co-doped CQDs from edible Eleocharis dulcis with multi-heteroatoms.
Without any additives and further surface modifications, the resultant CQDs exhibited tunable
photoluminescence just by changing hydrothermal temperatures. Appealingly, they showed
remarkable excitation-dependent emission, high QY, superior fluorescence stability, and long lifetime.
By extending the CQDs solutions as a “fluorescent ink”, we found their potential application in
the anti-counterfeit field. When further evaluated as a fluorescence sensor, the N/P co-doped
CQDs demonstrated a wide-range determination capability in inorganic cations, and especially the
remarkable sensitivity and selectivity for elemental Fe3+. More significantly, the green methodology
we developed here can be readily generalized for scalable production of high-quality CQDs with
tunable emission for versatile applications.

Keywords: carbon quantum dots; N/P co-doped; tunable photoluminescence; fluorescent ink;
fluorescence sensor

1. Introduction

Recently, carbon quantum dots (CQDs) with the size of 2–10 nm have emerged as the promising
photoluminescent (PL) material due to their high stability, low toxicity, excellent biocompatibility,
versatile surface chemistry, and cost-efficient nature along with easy availability [1,2]. Compared to
traditional PL materials (such as organic dyes and semiconductor quantum dots), these attractive features
of CQDs inherently make them as the most promising alternatives in a wide range of applications
including bioimaging, light emitting diodes (LEDs), sensors, energy-saving display, optoelectronic
devices, and so on [1–6]. As a result, considerable attentions have been paid to exploring a variety
of approaches for fine synthesis of CQDs, such as vigorous chemical oxidation of carbon sources [7], laser
ablation [8], microwave-assisted method [9,10], ultrasonic synthesis [11], pyrolysis [12], electrochemical
etching [13], and hydrothermal methods [14,15]. Among these synthetic strategies above, the hydrothermal
method possesses several distinct superiorities benefiting from its simple, green, low power-consumption,
and scalable feature [15]. Additionally, a series of carbon sources, including coal [16], graphite oxide [17],
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formaldehyde [18], carbon nanotubes [19], carbon soot from natural gas [20], fruit juices [21], peels [22],
grass [23], plant leaves [24], and so on, have been widely investigated. In general, a Teflon-lined autoclave
over hydrothermal treatment can provide a specific temperature and pressure for the dehydration of the
carbon precursors [14,15,18]. With the proceeding of dehydration reaction, CQDs with a tunable degree
of carbonization occurs, and these CQDs usually consist of carbon, hydrogen, oxygen, and even other
heteroatoms decorated with numerous functional groups on their surface [18,23]. Thus, the mechanism
proposed is inclined to be a dehydration process, rendering the formation of CQDs [18]. Additionally,
some CQDs with tunable PL and high quantum yield (QY) or emitting at long wavelength have been
reported so far [25–27]. Impressively, Li and his co-workers prepared the blue-emitting CQDs with a QY
as high as 94.5% via a one-step hydrothermal method [27]. In spite of these successful contributions made
for controllable fabrication of CQDs, the low-cost and massive production of high-quality CQDs are still
highly desirable.

As is known to all, heteroatoms doped carbon nanomaterials always can improve their intrinsic
properties and greatly expand their applications in electrochemical, photocatalytic, bioimaging,
and sensing applications [28–31]. As expected, enormous efforts have been extensively devoted to
prepare diverse types of heteroatom-doped CQDs with good PL properties [17,21,32–35]. For example,
Lin et al. synthesized N-doped fluorescent CQDs by using a popular antibiotic-aminosalicylic acid as
a precursor [35]. Lee and his co-workers reported the facile fabrication of nitrogen-doped CQDs from
the C3N4 towards a fluorescence-based in vitro and in vivo thermometer [36]. Up until now, the doped
atoms in fluorescent carbon have been mainly focused on the nitrogen species. Appealingly, other
heteroatoms (i.e., S, P) have recently been gradually introduced into CQDs [31,33]. However, the CQDs
jointly containing multiple heteroatoms are still actively pursued, as they generally demonstrate much
stronger and/or more adjustable PL properties in contrast to simple CQDs [32]. In common, to obtain
heteroatom-doped carbon materials, some heteroatom-containing reagents should be additionally
introduced into the synthetic procedures for CQDs, which undoubtedly suffers from some apparent
drawbacks, including expensive or poisonous precursors, time-consuming procedures and harsh
post-treatment conditions [33–38]. Therefore, it still remains a challenge to develop an efficient
and green strategy for facile fabrication of multi-heteroatoms co-doped CQDs with excellent fluorescent
properties on a large scale.

Up to now, metal ion pollution has gradually become a worldwide issue owing to their serious
damage to the environment and human health [15,21]. Various CQDs have been exploited as
fluorescent nanosensors for the determination of metal ions based on the fluorescence change in
aqueous solutions [21,24]. One should note that Fe3+ is an indispensable element for living organisms.
Nevertheless, the deficiency and overload of Fe3+ ion in the human body can induce an acknowledged
risk of diseases, including liver injury, heart disorder, cancer, and so on [39–41]. Thus, it is of vital
importance to sensitively, yet selectively, detect Fe3+ ions in biological, medical, and environmental
samples. So far a variety of optical sensors, such as functionalized metal-organic frameworks [39],
noble metal quantum clusters [40], and dye-based sensors [41], have been applied to detect the Fe3+.
Unfortunately, these optical probes often suffer from time-consuming synthesis routes, and/or involve
toxic or expensive reagents.

Herein, we present a simple, low-cost and green synthetic strategy towards the water-soluble
multi-colored nitrogen/phosphorus (N/P) co-doped CQDs via one-step hydrothermal treatment
of the Eleocharis dulcis juice without any more additive. With fine adjustment in hydrothermal
temperatures from 90 ◦C to 150 ◦C, the Eleocharis dulcis-derived CQDs exhibited tunable fluorescent
colors including navy blue, blue, and cyan. Moreover, the as-synthesized N/P co-doped CQDs showed
strong fluorescence, which is highly stable not only under a high ionic strength environment, but also
under UV light irradiation, treatment with constant temperatures, and various acidic/neutral/alkaline
conditions. Owing to their fluorescent nature, the potential use as an invisible fluorescent ink was
assessed. When further utilized as a promising nanosensor for ion detection, the resulting N/P
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co-doped CQDs appealingly exhibited striking ion-determination capability with the highest sensitivity
and selectivity for the Fe3+ thanks to the smart introduction of N/P heteroatoms.

2. Experimental

2.1. Chemicals

All the aqueous solutions were prepared with Milli-Q water from a Milli-Q Plus system (Millipore,
MA, USA). ZnCl2, NiCl2, NaCl, MnCl2, MgCl2, LiCl, KCl, FeCl3, CuCl2, CrCl3, CoCl2, CaCl2, BaCl2,
and AlCl3 were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). These
chemicals were all of analytical grade, and directly used without any further purification.

2.2. Synthesis of N/P Co-Doped CQDs

N/P co-doped CQDs were synthesized by using Eleocharis dulcis as a carbon source through the
hydrothermal method at various temperatures, as illustrated in Scheme 1. Fresh Eleocharis dulcis was
purchased from local supermarket, and washed several times with water. After peeling, the white
sarcocarp was chopped, and then squeezed into a juice. After filtration, 40 mL of the obtained clear
juice was transferred into a Teflon-lined autoclave (50 mL). After being maintained at 120 ◦C for 5 h,
the autoclave was naturally cooled down to room temperature (RT), yielding a dark brown solution.
The solution was then centrifuged at 12,000 rpm for 10 min. Afterwards, the supernatant solution
was collected, filtered with a microporous membrane (0.22 µm), and finally subjected to dialysis
(1000 MWCO) to eliminate the overreacted residues. The obtained sample hereafter was denoted as
the CQDs-120 for convenience. For comparison, a similar synthetic procedure was undertaken to
prepare other CQDs just by changing temperature as 90 ◦C and 150 ◦C, which were, thus, designed as
the CQDs-90 and CQDs-150, respectively.
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Scheme 1. Schematic illustration for facile synthesis of N/P co-doped CQDs from Eleocharis dulcis.

2.3. QY Measurement

The QYs of the as-prepared CQDs were calculated by a relative method with quinine sulfate
dissolved in 0.1 M H2SO4 (QY = 0.546) as the reference [6]. The absorbance below 0.1 was adjusted for
the concentration of the samples to minimize the inner filter effect. The QY of CQDs was determined
according to the following equation:

QY = QYr ·
F
Fr
· Ar

A
· ( n

nr
)2

where F, A and n separately present the integrated area of emission, the absorbance at the excited
wavelength, and the refractive index for the obtained sample. And the QYr, Fr, Ar, and nr are the
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fluorescence QY, integrated area of emission, the absorbance at the excited wavelength, and the
refractive index for the reference, respectively.

2.4. Fluorescence Ink Evaluation

By separately loading the solutions of CQD-90, CQD-120, and CQD-150 into three fountain pens,
we wrote the letters of “AHU” on filter paper, and took photos under daylight and UV light (365
nm), respectively.

2.5. Metal Ion Detection

The N/P co-doped CQDs-120 solution (0.01 mg/mL) was used as a model to detect various metal
ions (ion concentration: 10−3 M) including Zn2+, Ni2+, Na+, Mn2+, Mg2+, Li+, K+, Fe3+, Cu2+, Cr3+,
Co2+, Ca2+, Ba2+, and Al3+. The PL spectra were all recorded after reaction for 5 min at RT. The excited
wavelength was set at 380 nm.

2.6. Materials Characterizations

The crystallographic phase was examined by powder X-ray diffraction (XRD) (Ultima IV, Rigaku,
Japan) using a Cu Ka source (λ = 0.154056 nm) at a scanning speed of 3◦ min−1 over a 2θ range of
10◦–60◦. The morphologies of the CQDs were determined by high-resolution transmission electron
microscope (HRTEM) (JEOL JEM 2100 system operating at 200 kV, Akishima-shi, Tokyo, Japan). Fourier
transform infrared (FT-IR) spectra were recorded on a 360 Nicolet AVATAR FTIR spectrophotometer
(Madison, Wisconsin, USA). X-ray photoelectron spectra (XPS) measurement was conducted on a
VGESCALAB MKII X-ray photoelectron spectrometer (Cambridge, Cambridgeshire, England) with
Mg ka excitation source (1253.6 eV). Raman spectra were recorded on a DXR Raman microscope (New
York, State of New York, USA). Ultraviolet-visible (UV–VIS) absorption spectra were performed on a
Shimadzu UV-3600 UV–VIS spectrometer (Kyoto, Kyoto-fu, Japan). PL spectra and fluorescence decay
spectra were obtained by using an Edinburgh FLS980 instrument (Edinburgh, Scotland, England).

3. Results and Discussion

In this contribution, low-cost Eleocharis dulcis, as a popular edible food, was first used as the sole
precursor for the simple fabrication of the N/P co-doped CQDs. As we all know, Eleocharis dulcis
connately contains carbohydrates, proteins, vitamins (vitamin A, B1, B2, B3, C, E), minerals (Ca, P
and Fe) as well as an assortment of phytochemicals (carotenoids), which endows it with abundance in
the elemental C, N, O, and P. These unique compositions mean that Eleocharis dulcis may be an ideal
precursor for fabricating N/P co-doped CQDs.

XPS characterizations were commonly conducted to verify the surface composition. In this
connection, the surface composition and element analysis of the as-prepared CQDs were developed
via XPS characterizations by using CQDs-120 as a model. Typical XPS data are collectively shown in
Figure 1a–e. The overview spectrum (Figure 1a) shows four distinct peaks at ~133.4, ~284.6, ~399.8,
and ~532.6 eV, corresponding to P 2p, C 1s, N 1s, and O 1s peaks for the CQDs-120, respectively.
The elemental analysis (Table S1, ESI) reveals that the resultant CQDs are composed of elemental
C (~72.5 at%), O (~23.6 at%), N (~3.6 at%) and P (~0.3 at%), indicating the successful synthesis of
the N/P co-doped CQDs. The C 1s spectrum (Figure 1b) shows four fitted peaks at ~284.3, ~284.9
and ~286.1 eV, which are attributed to sp2 C=C, C-C/C-P and C-N/C-O, respectively [42–44]. The O 1s
spectrum (Figure 1c) is deconvoluted into two peaks at ~531.9 and ~532.9 eV, which can be separately
ascribed to C=O and C-OH/C-O-C/P-O functional groups in the CQDs [42,44]. The N 1s spectrum
(Figure 1d) demonstrates three N-doping forms including the pyridinic (~399.5 eV), pyrrollic (~399.9
eV) and quandary (~400.4 eV) N atoms. The binding energy peaks for the P 2p (Figure 1e) at ~133.0
and ~133.7 eV confirm the presence of P–C and P–O bonds, respectively. Chemical and structural
information about the CQDs-120 was further identified via FT-IR measurement. Figure 1f shows
the FT-IR spectrum of the CQDs-120. The peak at around 1057 cm−1 is assigned to the vibrations of
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C-O/C-N bands. And peaks at ~1412 and ~1647 cm−1 are ascribed to the COO− group, which should
be responsible well for the excellent solubility of CQDs in water. The peak at ~2934 cm−1 corresponds
to C–H bond, and the broad band at ~3295–~3587 cm−1 appears owing to the O–H and N–H bonds.
Obviously, these results mean that the Eleocharis dulcis-derived products are N/P co-doped carbon
materials with high oxygen content, whose surface is decorated hydroxyl, carbonyl/carboxylate
groups, ensuring their excellent solubility in water and high stability. The ζ-potential of the CQDs-120 is
measured to be−12.5 mV, which can be ascribed to the presence of hydroxyl and carbonyl/carboxylate
groups on the CQDs surface.
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Figure 1. (a–e) XPS spectra and corresponding fitting profiles (a) survey spectrum; (b) C 1s; (c) O 1s;
(d) N 1s; (e) P 2p; and (f) FT-IR spectrum for the CQDs-120.

Figure 2a shows typical TEM image of the CQDs-120. Apparently, the well-dispersed CQDs are
typically spherical, and their diameters are mainly located in the range of 2–4 nm. The HRTEM image
(the inset in Figure 2a) clearly exhibits the parallel lattice fringe with a spacing of ~0.34 nm, which is in
good agreement with the (002) lattice plane of graphitic carbon. The X-ray diffraction is commonly
applied to figure out the crystallinity of CQDs. As demonstrated in Figure 2b, a broad diffraction
peak centered at ~25◦ is observed for the CQDs-120, probably due to highly disordered carbon
with heteratom doping [45], corresponding to an interlayer spacing of 0.34 nm, which is consistent
with the HRTEM analysis above. Additionally, two peaks located at ~1356.5 and ~1594.5 cm−1 are
clearly observed in the Raman spectrum (Figure S1, ESI) of the CQDs-120, typically corresponding to
disordered D-band and crystalline G-band, respectively. Additionally, the relative intensity of D-band
and G-band is calculated to be around 1.03.
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To examine the optical properties of the N/P co-doped CQDs, the original ivory juice squeezing
from Eleocharis dulcis undergoes firstly UV light irradiation, and it is found that the precursor
solution is non-emissive at all upon UV light irradiation. Afterwards, the UV–VIS absorption,
optical excitation, and emission spectra of the resultant CQDs solutions are investigated detailedly at
RT. Figure 3a shows the UV–VIS absorption spectrum of the CQDs-90. The UV–VIS absorption
spectrum exhibits two characteristic absorption peaks at 260 and 327 nm, which are rationally
ascribed to the π→π* transition of aromatic C=C domains, and the n→π* transition of conjugated
C=O in the CQDs-90 [41,46–48]. With increasing hydrothermal temperatures from 90 ◦C to 150 ◦C,
the latter absorption peak gradually disappears and the whole absorption band is progressively
broadened, accompanying with a prominent red-shift from 260 to 285 nm, as illustrated in Figure 3a,c,e,
respectively. This typical feature evidently indicates that the absorption properties of the as-prepared
N/P co-doped CQDs are affected to some extent by hydrothermal temperatures and the higher
temperature always results in the absorption band of CQDs at longer wavelength, which is consistent
with the previous report [49]. Likewise, the influences of the hydrothermal temperature upon the PL
excitation and emission spectra of CQDs were also studied. As exhibited in Figure 3b, the CQDs-90
presents the optimal excitation and emission wavelengths at 364 and 450 nm, respectively. When
the reaction temperature is further enhanced, the homologous red shifts of excitation and emission
wavelengths are observed as their absorption spectra. Specifically, the maximum excitation/emission
peaks separately centered at 380/458 nm for the CQDs-120 (Figure 3d) and 406/493 nm for the
CQDs-150 (Figure 3f). Thus, the fluorescent measurements of CQDs-90, CQDs-120 and CQDs-150 are
conducted under the maximum excitation wavelengths of 364, 380, and 406 nm, respectively. The insets
show corresponding digital photographs of these CQDs solution under the irradiation of daylight
(left) and UV light (right). Obviously, all these CQD solutions are light yellow, transparent, and clear
under daylight irradiation. The good dispersion of these as-obtained CQDs in water can be reasonably
attributed to their small particle diameter and abundant surface organic groups (carbonyl, carboxylic,
and hydroxy) derived from the carbonization of Eleocharis dulcis [50]. As a sharp contrast, when excited
under UV light (365 nm), they all exhibit strong PL properties, and the emission colors change from
navy blue, blue, to cyan with the reaction temperature varying from 90 ◦C, 120 ◦C, to 150 ◦C, which
visibly confirms the fluorescence-tunable characteristics of the as-prepared CQDs. Meanwhile, the QY
of CQDs is also determined by using quinine sulfate as a reference [6,51,52], and corresponding QY
results are comparatively presented (Table S2, ESI). Clearly, the CQDs-120 possesses the highest QY of
~11.2%, which is higher than the reported values for CQDs without element dopant [53–55]. Owing to
the strong electron-withdrawing abilities of their abundant atoms with N, O, and P, the active sites
of the CQDs surface can be effectively passivated. These N/O/P hetero-elements are conducive to
the stabilization of excitons, and further alter the whole electronic structures of the CQDs, which is of
great benefit to their high recombination yield [56–58].
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Figure 3. (a,c,e) UV–VIS absorption spectra and (b,d,f) optical excitation and emission spectra of
(a,b) CQDs-90, (c,d) CQDs-120 and (e,f) CQDs-150. (g,h). Digital photographs of the handwritten
letters of “AHU” on the filter paper radiated under daylight and UV light (365 nm), respectively. The
insets in panels (b,d,f) for the corresponding photographs taken under daylight (left) and 365 nm UV
light (right).

To further investigate optical properties of all these CQDs, PL emission spectra were recorded from
their strongest excitation wavelengths to the longer wavelengths with 10 nm increments. As displayed
in Figure 4a–c, all the CQDs demonstrate similar excitation-dependent PL behaviors, similar to other
fluorescent carbon materials reported previously [7,8]. The position of the strongest PL emission
peak shifts to longer wavelengths, and PL intensity gradually decreases with the increased excitation
wavelength [59–62]. Such excitation-dependent PL behaviors should be rationally related to the optical
selection of differently-sized nanoparticles or distinct surface emission traps in these CQDs or another
mechanism altogether [63,64].
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To search thoroughly for the fluorescent mechanism of CQDs, a universal technique of
time-correlated single-photon counting (TCSPC) are applied to measure the fluorescent lifetime of
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CQDs, and the corresponding result for CQD-120 is illustrated in Figure 5. Evidently, the fluorescence
decay curves of the CQDs-120 can be fitted well by the following bi-exponential formula [65]:

Y(x) = A1 exp(−x/t1) + A2 exp(−x/t2)

where A1 and A2 are the fractional contributions of time-resolved decay lifetime of t1 and t2.
The fluorescent progress involves the lifetimes t1 (2.98 ns) and t2 (7.80 ns). Specifically, the short
lifetime (2.98 ns, ~80.7%) can be related to the intrinsic state of CQDs, and the long lifetime (7.80 ns,
~19.3%) should correspond to the surface state of CQDs [66]. The average lifetime can be calculated as
~3.9 ns, and the short lifetime may basically result from the electron transfer between energy levels
of CQDs, which have close relations with the intrinsic state of CQDs. The result implies that the
fluorescence in our case is mainly associated with the intrinsic state of CQDs. The fluorescence decay
fit well with the best bi-exponential function, suggesting that more than one lifetime may be either
ascribed to complex energy level, or complex mechanism of fluorescence carbon-based materials [49,67].
Obviously, an ultrafast electron transfer process can be acquired in nanoseconds, which makes the
as-prepared CQDs as appropriate candidates for potential applications, such as bioimaging, sensors,
and optoelectronic devices.
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The stability of CQDs is a vital factor affecting their performance and even practical applications.
Accordingly, the PL properties of the CQDs solution under various conditions are investigated in
detail by using CQDs-120 sample as a model, as shown in Figure 6. The PL intensity of the CQDs-120
is almost unchanged under continuous irradiation for 60 min (Figure 6a), and even with the NaCl
concentration up to a high concentration of 2.0 M (Figure 6b). More strikingly, when the temperature is
increased from 25 ◦C to 55 ◦C, as plotted in Figure 6c, the PL intensity retention of ~96.5% can still be
observed for the CQDs-120. The PL signals of the CQDs-120 at different pH values are also recorded,
and typical results are profiled in Figure 6d. Interestingly, the PL intensity shows gradual enhancement
with the pH value up to 7, and the maximal response is obtained at pH = 7 accordingly. However,
the irregular independence on pH values can be seen when the pH values vary from 7 to 13, which is
similar to that reported in the literature [33]. Even so, the PL intensity just changes from 243,239 to
289,836 within the pH range from 1 to 13, which suggests the acceptable stability of the CQDs-120 in
acid, neutral, and alkaline solutions to some extent. The comparative discussions above undisputedly
confirm the remarkable stability of the CQDs-120, which is of significant importance to its applications.
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with the center wavelength at 365 nm, (b) NaCl concentration, (c) temperatures, and (d) pH values
(λex = 380 nm).

Owing to the unique luminescence of CQDs, we tentatively apply them as invisible fluorescent
ink. By separately loading the solutions of CQD-90, CQD-120, and CQD-150 into three fountain pens,
the letters of A, H, and U are handwritten on filter paper. Figure 3g,h present the digital photographs
for the handwritten letters of “AHU” radiated under the daylight and UV light (365 nm), respectively.
Visually, no luminescence is visible to the naked eye under daylight. Nevertheless, three intense
fluorescent colors appear clearly in the writing marks under UV light irradiation. The three-color
emitting nature of CQD solutions implies their potential application in anticounterfeit fields, multicolor
imaging, and opoelectronic devices.

To further expand the application scope of CQDs, we explore the feasibility of the as-prepared
CQDs as one fluorescent sensor. In general, the detection and separation of heavy metal ions in water
is necessary in business application and/or our daily life, and the fluorescence quenching effect of
CQDs has drawn much attention due to its attractive role in ion detection [68–71]. However, the
sensing accuracy [68] and selectivity [69], as well as the range of detection concentrations [70,71] are
still needed to be improved. To this end, we examine the PL intensity changes of the CQDs-120 in the
presence of representative metal ions (1 mM) under the same condition, such as Zn2+, Ni2+, Na+, Mn2+,
Mg2+, Li+, K+, Fe3+, Cu2+, Cr3+, Co2+, Ca2+, Ba2+ and Al3+, as observed in Figure 7a,b. Clearly, no
tremendous effect is observed on PL intensity of CQDs-120 upon addition of Na+, Mg2+, Li+, or K+ ions.
In contrast, the fluorescence quenching effects are obtained in the presence of representative metal ions,
such as Ni2+, Mn2+, Fe3+, Cu2+, Cr3+, and Co2+. Particularly, Fe3+ shows the most obvious quenching
effect on the PL intensity. The high selectivity of the CQDs-120 for the Fe3+ is probably ascribed to the
Fe3+ with much higher thermodynamic affinity and even faster chelating process toward “N” and “O”
of CQDs-120 than other transition-metal ions. Owing to the N/P doping, the formation of coordination
bonds between Fe3+ and the functional groups on the surface of CQDs become much easier, which is
consistent with reported results [72–74]. Thus, the radiation transition is disrupted, and the electrons
in the excited state of CQDs will transfer to the half-filled 3d orbits of Fe3+, inducing nonradiative
electron/hole recombination and annihilation, which leads to the fluorescence quenching [74].

Conversely, Zn2+ leads to the increasing of PL intensity of CQDs, as shown In Figure 7a.
The discernable difference can be associated with the different coordination effect between these
metal ions and the oxygen-containing functional groups (e.g., –OH and –COOH) on the surface of the
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CQDs-120 [47–49,75]. Convincingly, the results show greater potential application to detect the Fe3+

than other metal ions.
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and (b) corresponding F/F0 with the different metal ions as indicated. F0 and F are the fluorescence
intensity before and after addition of the Fe3+ ion.

In spite of elemental iron is an indispensable element in life, the high concentration of the Fe3+ is
toxic to living organisms, causing various diseases. Therefore, the limit of detection (LOD) of the Fe3+

ion is also of vital importance. As a consequence, we examine the PL properties of the CQDs-120 with
the addition of different Fe3+ concentrations ranging from 0 to 400 µM. As expected, the PL intensity
gradually decreases along with the increase in the Fe3+ concentration (Figure 8a). In addition to this,
the change of the fluorescence intensity ((F0 − F)/F0) exhibits good linearity with Fe3+ concentration
in the range of around 50 to 350 µM with a linear equation (R2 = 0.99033):

F0 − F
F0

= −0.00603 + 0.00206c

where F0 and F indicate the fluorescence intensity at 458 nm in the absence and presence of Fe3+

ion, respectively (Figure 8b). The LOD of the CQDs-120 is estimated to be 0.56 µM, which is
calculated based on a signal-to-noise of S/N = 3 [76]. The obtained LOD value here is even lower
than the limit of standard Fe3+ concentration (5.357 µM) for drinking water [74]. It gratifyingly
verifies that the CQDs-120 can meet the practical requirement in efficiently sensing the Fe3+ ion.
Meanwhile, the obtained heteroatoms-enriched CQDs possess both higher QY and better sensitivity
towards Fe3+ quenching in comparison with the reported CQDs without the element doping [58,59].
The heteroatom-doping effect may contribute to the modulation of the chemical and electronic structure,
probably endow them with stronger chelating ability toward Fe3+. Moreover, the CQDs presented here
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demonstrate considerable advantages, of note, which are comparable, and/or even better than, other
doped CQDs (Table S3, ESI). The high sensitivity, wide linear range, and excellent selectivity of the
as-prepared CQDs-120 for the Fe3+ make them an ideal fluorescent probe for real-time tracking of the
Fe3+ ion.
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4. Conclusions

In summary, we presented a simple, yet scalable, synthetic strategy for large-scale production
of water-soluble N/P co-doped CQDs from a cheap, green, and readily available natural Eleocharis
dulcis without other chemical additives, which ensures the non-toxicity of the final products. Typically,
the Eleocharis dulcis-derived CQDs exhibited the tunable photoluminescence along with hydrothermal
temperatures varying from 90 ◦C to 150 ◦C. More impressively, the resultant CQDs demonstrated
remarkable excitation-dependent emission, high QY, high fluorescence stability, and long lifetime.
The CQDs were utilized as fluorescent ink and sensitive photoluminesence detection for elemental Fe3+.
The low-cost CQDs displayed their promising application in multi-color imaging and anticounterfeiting
fields. Additionally, they also exhibited outstanding selectivity, fast response, and a broad linear
detection range from 50 nM to 350 mM. Our investigations here highlight the great potential of the N/P
co-doped CQDs in the development of various CQD-based functional materials, anticounterfeiting,
and sensing devices.
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