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Abstract: Polymersomes (PL), vesicles formed by self-assembly of amphiphilic block copolymers,
have been described as promising nanosystems for drug delivery, especially of biomolecules. The film
hydration method (FH) is widely used for PL preparation, however, it often requires long hydration
times and commonly results in broad size distribution. In this work, we describe the challenges
of the self-assembly of poly (ethylene glycol)-poly(lactic acid) (PEG-PLA) into PL by FH exploring
different hydrophilic volume fraction (f ) values of this copolymer, stirring times, temperatures and
post-FH steps in an attempt to reduce broad size distribution of the nanostructures. We demonstrate
that, alongside f value, the methods employed for hydration and post-film steps influence the
PEG-PLA self-assembly into PL. With initial FH, we found high PDI values (>0.4). However,
post-hydration centrifugation significantly reduced PDI to 0.280. Moreover, extrusion at higher
concentrations resulted in further improvement of the monodispersity of the samples and narrow size
distribution. For PL prepared at concentration of 0.1% (m/v), extrusion resulted in the narrower size
distributions corresponding to PDI values of 0.345, 0.144 and 0.081 for PEG45-PLA69, PEG114-PLA153

and PEG114-PLA180, respectively. Additionally, we demonstrated that copolymers with smaller f
resulted in larger PL and, therefore, higher encapsulation efficiency (EE%) for proteins, since larger
vesicles enclose larger aqueous volumes.

Keywords: amphiphilic block copolymers; polymeric vesicles; self-aggregated nanostructures;
post-film hydration steps

1. Introduction

In the last few years, polymersomes (PL), vesicles composed of amphiphilic-block copolymers,
have attracted attention in the pharmaceutical field as versatile nanostructures with colloidal stability,
tunable membrane properties and ability to encapsulate a broad range of hydrophilic and hydrophobic
drugs including biomacromolecules with therapeutic potential, such as proteins [1]. The use of
nanotechnology to deliver biological drugs such as monoclonal antibodies, antibody fragments,
peptides, replacement factors, enzymes and vaccines is increasing exponentially. Encapsulation of
these active compounds into PL may provide superior benefits in terms of decreasing immunogenicity,
increasing biomolecule’s half-life and stabilizing these mostly protein-based drugs against denaturation
and enzymatic degradation [2]. The spontaneous and reversible organization of amphiphilic molecules
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of block copolymers into supramolecular structures such as PL is known as self-assembly and it is
certainly one of the most promising technologies in pharmaceutical nanoscience, yet it still requires
in-depth studies in order to be fully understood and employed in therapeutics strategies [3].

In principle, PL formation could be achieved through simple contact of amphiphilic copolymers
with water due to the hydrophobic effect [4]. Nevertheless, despite the spontaneity of self-assembly,
reports have shown that a variety of energy-intensive protocols, such as stirring, sonication and
extrusion, are necessary to obtain uniform PL samples [5,6]. Furthermore, the reversible organization
is counteracted by the nature of block copolymers with the critical aggregation concentration (CAC.)
near to zero, and negligible exchange of material within PL or with the surrounding solution [7].

The copolymer nature dictates different properties of PL systems suggesting that methods for
self-assembly of copolymers into PL could be a challenging process that entails different platforms
depending on the copolymer used. The main theory for self-assembly of copolymers into PL reported
by the pioneer researches in the field is based on the value of hydrophilic volume fraction (f ) that
predicts if an amphiphilic molecule aggregates into lamellae, micelles or vesicles in aqueous solutions at
equilibrium concentration [8]. However, this parameter does not assure the copolymers self-assembly
into PL; the preparation conditions are also a key factor [9]. One of the most employed methods
to prepare self-aggregated nanostructures is the film hydration (FH). However, FH may lead to
broad and multimodal PL size distributions [10] and usually complimentary steps are required to
obtain vesicles with narrow size distribution. Among these complimentary steps, one can employ
the extrusion of the dispersion through a polycarbonate membrane with a certain pore size or size
exclusion chromatography (SEC.) [11].

In this work, we investigated the challenges of poly (ethylene glycol)–poly (lactic acid) (PEG-PLA)
self-assembly into PL. All f values of copolymers were in the theoretical range reported to obtain
vesicles (25–40%), but we used PEG-PLA with low and high molecular weight (MW) and different
f values to see the influence of this parameter on vesicle formation and protein encapsulation
capacity: PEG45-PLA69 PEG114-PLA153 and PEG114-PLA180. The method employed, film hydration,
is a bottom-up approach and different stirring times, temperatures and copolymer concentrations were
studied. Finally, we also employed different post-hydration steps in an attempt to reduce PL broad
size distributions.

2. Materials and Methods

The poly (ethylene glycol)–poly(lactic acid) (PEG-PLA) amphiphilic block copolymers were
obtained from Polymer Source® (Montreal, QC, Canada). Phosphotungstic acid, bovine serum albumin
(BSA) and the bicinchoninic acid (BCA) were purchased from Sigma Aldrich (Sigma Aldrich Co., Saint
Louis, MO, USA). L-asparaginase (225 U/mg) was acquired from ProSpec Tany® (Ness-Ziona, Israel).
All other reagents were of analytical grade and purchased from Synth® (São Paulo, São Paulo, Brazil)
and water ultra-purified in a Milli-Q system (Merck Millipore, Billerica, MA, USA) was used in
all experiments.

2.1. Selection of Amphiphilic Copolymer

The selection of the copolymers was based on the differences between the hydrophilic (PEG) and
hydrophobic (PLA) molecular masses; copolymers with hydrophilic fraction (f ) between 0.20 and 0.42
and of different total molecular weight were used. Table 1 shows the molecular characteristics of the
three PEG-PLA copolymers chosen.
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Table 1. Molecular characteristics of the copolymers poly(ethylene glycol)–poly(lactic acid) (PEG-PLA).

Copolymer PEG-PLA Mn a Glass Transition Temperature
of Hydrophobic Block b fPEG PDI c

PEG45PLA69 PEG 2000: PLA 5000 23 ◦C 0.28 1.20
PEG114PLA153 PEG 5000: PLA 11,000 39 ◦C 0.30 1.15
PEG114PLA180 PEG 5000: PLA 13,000 40 ◦C 0.27 1.16

Manufacture’s data: a From 1H-NMR spectroscopy by comparing the peak area of the methoxyl protons of poly
(ethylene oxide) at about a 3.6 ppm with the polylactide protons at about 5.1 and 1.55 ppm. b Determined by
differential scanning calorimeter (DSC).c Obtained from size exclusion chromatography (SEC).

2.2. Film Hydration

The polymeric film obtained was hydrated with PBS 1X pH 7.4 resulting in a system with
PEG-PLA at 0.03 % (m/v). For film hydration, we employed orbital agitation in a rotary-evaporator
Büchi® R-210 (Flawil, Switzerland) at 150 RPM by 2 h or overnight, or magnetic stirring in a Corning
PC-420D® agitator (Chelmsford, UK) at 400 RPM by 12, 24, 48 and 72 h, at room temperature or 40 ◦C.
In an attempt to narrow size distribution, sonication was performed in a Qsonica® ultrasound bath
(Columbiana, OH, USA) at 50W (by 20 or 50 min).

2.3. Centrifugation and Extrusion

Systems obtained after film hydration were centrifuged at 2000× g for 5 min in an Eppendorf 5810
R® centrifuge (Eppendorf, Hamburg, Germany). The supernatant was considered as purified sample.
Extrusion was performed passing the systems 31 times through a 400 nm pore radii polycarbonate
membrane in an Avanti Polar Lipids® extruder (Avanti Polar Lipids, Inc., Alabaster, AL, USA), at 40 ◦C.

2.4. Dynamic Light Scattering (DLS)

DLS analysis was performed in a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK)
with a 633 nm HeNe laser at 90◦. The samples were analyzed as obtained (without filtration) to ensure
that large populations were not rejected and, therefore, the challenges of hydration film method in each
condition tested could be observed. Polydispersity indices (PDI) were obtained from the correlation
function by cumulant analysis using the Malvern software (producer, city, state, country), which was
then analyzed by non-negative least squares to obtain the intensity-weighted distribution of diffusion
coefficients (Df). The autocorrelation functions in DLS is calculated by data fitting and then the Df
is calculated using Equation (1). The hydrodynamic radius (Rh) of solid spherical particles can be
derived as shown in Equation (1) (Stokes-Einstein equation).

D f =
kB T

6πηRh
(1)

in which: kB = Boltzmann constant (1.38064852 × 10−23 J/K), T = temperature, η = absolute viscosity
and Rh = hydrodynamic radius.

The average Rh of the polymersomes (and consequently the hydrodynamic diameter, Dh) was
determined from intensity weighted and number-weighted distributions, assuming non-interacting
particles modeled as homogeneous hard spheres. Each solution was analyzed at least 3 times
depending on the observed correlogram. Whereas this assumption might be suitable for spherical
vesicles, it is not very precise for mixed systems with tubular vesicles or aggregates with varied shapes.
Nonetheless it might give good indications and facilitate comparison of the different samples.

2.5. Nanoparticle Tracking Analysis (NTA)

NTA was performed with a Nanosight® LM14 instrument (Malvern Instruments, Worcestershire,
UK). In this technique, samples are illuminated by a focused (80 µm) beam of a single mode laser
diode (405 nm) and the light scattered by the particles in then tracked.
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2.6. Transmission Electron Microscopy

The morphology of aggregates was observed by transmission electron microscopy (TEM) in
a Tecnai G20 microscope (FEI Company, Hillsboro, OR, USA), with accelerating voltage of 80 kV.
For the analysis, 5µL of each system was placed on a copper grid and coated with a thin carbon film;
phosphotungstic acid (1.0 %) was used as negative staining.

2.7. Encapsulation of Model Globular Protein BSA and Therapeutic Protein L-Asparaginase

To further prove that vesicles were formed and to check their capacity for protein encapsulation,
bovine serum albumin (BSA, 66 KDa) and the anti-leukemic enzyme L-asparaginase (ASNase, 142 kDa)
were encapsulated in the polymersomes. For this purpose, we employed the best conditions for
polymersomes preparation (film hydration at room temperature, with magnetic stirring at 400 RPM
by 24 h and extrusion by 400 nm pore membranes at 40 ◦C) replacing the PBS for a 1 mg/mL
BSA or ASNase solution for film hydration. The encapsulation efficiency (EE%) was determined by
indirect method (Equation (2)) after centrifugation at 10,000 × g for 30 min. The concentration of
unencapsulated protein on the supernatant was determined by the bicinchoninic acid (BCA) method
following the manufacture’s protocol (Sigma Aldrich, St Louis, MO, USA).

EE% =

(
Ptotal − Psup

Ptotal

)
× 100 (2)

in which: Ptotal is the total protein mass added into the system, Psup is is the protein mass in the
supernatant after centrifugation.

2.8. Statistical Analysis

Data was treated in the Origin Pro 8® software (Originlab Corporation, Wellesley, MA, USA).
Student's t-test or one-way analysis of variance (ANOVA) and Tukey post hoc were used to evaluate
the PDI values found for the systems obtained from different copolymers under different conditions.

3. Results and Discussion

3.1. Self-Assembly by Film Hydration under Orbital Agitation Versus Magnetic Stirring

First assays were performed with PEG45PLA69 (2000:5000 KDa) before testing other copolymers.
The results indicated that film hydration by agitation in a rotary-evaporator resulted in the presence
of large polymeric bulk material (Figure S1A) and bimodal distribution with high polydispersity
index (PDI) values (Table 2) even after sonication. The orbital process does not exert a direct shear
force on the hydration liquid and, therefore, leads to detachment of large slices of the film from
the surface of the glass flask. This bulky polymer film may remain in the solution and coexist with
vesicles and/or micelles, resulting in large polydispersity and/or bimodal size distribution [11,12].
Although literature reports that bulk polymeric film may coexist with PL and other aggregates [13],
these bulk polymeric films sediment out of the solution in dilute conditions in which intermolecular
interactions between the vesicles have no significant role in maintaining the bulk film dispersed in
solution. Those systems may be interesting only for individual assembly characterization and are
not adequate for drug encapsulation due to heterogeneity and potential loss of the material upon
sedimentation [14].
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Table 2. Nanostructures formed by poly (ethylene glycol)-poly(lactic acid) (PEG45-PLA69, 2000:5000 MW)
through film hydration under orbital agitation at 150 RPM.

Systems Hydrodynamic diameter by intensity (nm) PDI

P1 2.0 836.7 (65.1%) and 213.5 (34.9%) 0.962
P1 2.20 300 (71.9%) and 1878 (28.1%) 1
P1 2.50 467.6 (94.8%) and 66.28 (5.2%) 1

P1 ON.0 217 (61%) and 664 (39%) 0.749
P1 ON.20 378.7 (69.7%) and 173.6 (30.3%) 0.673
P1 ON.50 443.9 (80.3%) and 146.6 (19.7%) 0.807

2: stirring for 2 h ON- overnight stirring and 20: stirring for 20 min, 50 stirring for 50 min. PDI-Polydispersity index.

To avoid the presence of bulky polymer after film hydration, magnetic stirring overnight was
employed. The macroscopic difference in the system was remarkable and sedimentation was not
observed (Figure S1B). Magnetic stirring improved the copolymers self-assembly since the shear
force leads to detachment of the unillamelar polymeric film from the flask surface and favors film
breaking into smaller vesicular structures [15]. Diffusion of the aqueous phase occurs on a larger
surface area, which in turn favors the hydrophobic effect and polymeric vesicle formation. In contrast,
orbital agitation with lower shear forces allowed only larger bulk polymeric film pieces to detach,
which leads to limited aqueous phase penetration into the film. TEM was not performed for these
systems since broad size distributions were observed. Nonetheless, either PL or other complex
self-assembled nanostructures were formed.

Following, we investigated the influence of polymer MW and hydrophilic fraction (f ) on PL
polydispersity. Table S1 shows the results for size distribution by intensity and number based
on dynamic light scattering (DLS) measurements after overnight hydration by magnetic stirring.
As already mentioned, wide size distributions are inherent to the self-assembly since this technique is
not precise in producing nanostructures with a good control of size [8]. One of the reasons for this is
that the energetic penalty involved in amphiphiles self-assembly into vesicles from a membrane with
zero natural net curvature results from the sum of the mean and Gaussian curvature and not from the
radius [5].

Even with lower visual polymeric bulk film sedimentation, the DLS indicated a broad distribution
of size with high PDI values. Cumulants fit were not used to analyze the z-average hydrodynamic
radius, instead the scattering profile by number distribution was presented in Table S1 in order to
avoid over representation of large objects that we believe are part of smaller populations of remaining
non-spherical and irregular aggregates (Figure 1). The presence of these large structures even in lesser
proportions causes significant light scattering and occupy a larger volume in the sample as compared
to the smaller structures that might constitute the major population by number distribution in the
heterogenous system.
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Figure 1. Transmission electronic microscopy of polymeric non-spherical aggregates formed from poly
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According to the ANOVA, the PDI values for the three copolymers are statistically different
(p > 0.05) and Tukey test confirmed that PDI for PEG45PLA69 is different from the other two copolymers.
The correlation function (Figure 2A) confirmed this result, showing difference in the decay times: nearly
180 µs for PEG45-PLA69 and 100 µs for PEG114-PLA153 and PEG114-PLA180. The correlation function
was widely discussed by Bhattacharjee (2016) [16] and is a factor that indicates clear differences among
samples. The autocorrelation decays more slowly for bigger particles due to slower relaxation of the
particle dynamics.

A tail was identified in the correlation function for all copolymers emphasizing that all systems
contained large particles that contributed to high PDI. Usually high PDI values in PL systems might be
attributed to the presence of micelles, as reported by Bartenstein [11], but in our study we attributed
these to larger structures as no sign of micelles was observed. In addition, although ANOVA indicated
statically different PDI values, these values were higher than ~0.4 for the three copolymers indicating
that all the samples still have a very broad size distribution (a monodisperse system would have a
PDI < 0.3 [11].

These results indicated that, from the microscopic point of view, film hydration conditions were
still unsatisfactory and even though higher shear of stirring improved the PDI values, other efforts
would be necessary to achieve more homogenous PL preparations.

3.2. Self-Assembly by Film Hydration under Magnetic Stirring and Sonication

In order to control size distribution, sonication was considered as a next step and the DLS results
are presented in Table S2. Literature shows that sonication reduces aggregates size due to cavitation,
which consists in the oscillation of small gas bubbles by expansion and contraction in a liquid exposed
to acoustic pressure waves. The gas bubbles eventually collapse resulting in high pressures and this
stress breaks up large vesicle aggregates into small vesicles [17].

The correlation coefficient (Figure 2B–D), however, was slightly different after sonication, with
smoother curve fits for all sonicated preparations, except PEG114-PLA180. This could correspond to the
narrower size distribution for the smoother curves. Decaying time remained approximately 180 µs
for PEG45PLA69 and 100 µs for PEG114-PLA153 and PEG114-PLA180 after sonication steps, as well as
tails in the correlograms. The difference in the intercepts was not considered in this study since the
concentration of the samples submitted to DLS was not controlled.
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Figure 2. Correlation coefficients: (A) Decaying time for nanostructures formed from the copolymers
poly (ethylene-block-lactic acid) under overnight magnetic stirring featuring the tails attributed to large
particles; (B) Sonication effect for poly ethylene-block-lactic acid) PEG45PLA69 of MW 2000:5000 Da;
(C) Sonication effect for poly (ethylene-block-lactic acid) of PEG114-PLA153 MW 5000:11,000 Da;
(D) Sonication effect for poly (ethylene-block-lactic acid) of PEG114-PLA180 MW 5000:13,000 Da.

For PEG-PLA PL, no significant differences in PDI values were observed after sonication (Figure 3)
neither between the different times of sonication (20 min and 50 min).
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The TEM images of the systems obtained under overnight magnetic stirring and sonication by
50 min are shown in Figure 4. Typical morphology of vesicular structures was confirmed and the
measurements done with the Image J® program indicated mean diameters about 226 nm, 94 nm and
133 nm with membranes thickness (t) of 8, 10.5 and 14 nm for PEG45-PLA69, PEG114-PLA153 and
PEG114-PLA180, respectively.
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Figure 4. Transmission electron microscopy (TEM) images of polymersomes of poly (ethylene-block-
lactic acid): PEG45-PLA69, PEG114-PLA153 and PEG114-PLA180 under overnight magnetic stirring and
sonication for 50 min. The schematic representation highlights the hydrophobic membrane (t) and the
hydrophilic corona of PEG (d).
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Polymersomes were found to be smaller from TEM analysis as compared to DLS, which is
expected since DLS estimates hydrodynamic diameter and, consequently, the hydrophilic corona of
hydrated PEG or brush thickness (d) is taken into account which leads to overestimation of the size
(there are on average three water molecules per ethylene oxide unit) [18].

The TEM imaging allowed visualizing the core of the vesicles and its membrane (Figure 4, (t)
-Bottom right). The preparation of TEM grids with phosphotungstic acid stain leads to negative
contrast images, however the darker color of the PL membrane can be explained by the fact that
phosphotungstic acid could react more strongly with the ester groups of PLA, which in this case creates
positive contrast-like images for the hydrophilic corona of the PL [18].

To overcome broad distribution (high PDI values), different times of magnetic stirring at 400 rpm
were investigated, namely 24, 48 and 72 h of magnetic stirring (400 rpm) at room temperature or
at 40 ◦C. Results are presented in Figure 5 and show that stirring for 24 h results in PDI values
smaller than overnight (15 h) agitation. For PEG45-PLA69 and PEG114-PLA153, a decrease in PDI was
observed altogether with a visual enhance in homogeneity. Although the broad size distributions
and the presence of more than one size peak (Table S3–S5) was still the case, the longer stirring time
facilitated hydration of the copolymer initially broken from the network of bulk film into smaller,
more uniform structures. The hydrophobic block of PEG114-PLA180 has the highest molecular weight
and glass-transition temperature among the three copolymers, consequently hydration of this glassy
copolymer in aqueous solution even at longer times might result in the dispersion of bulk polymer
film rather than in the formation of defined spherical unilamellar PL.
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Figure 5. Polydispersity index for three copolymers of poly (ethylene-block-lactic acid)-PEG-PLA
under magnetic stirring at different times and under heating at 40 ◦C (n = 3).

According to our results, stirring times higher than 24 h, did not further improve the broad
size distributions and the presence of more than one size population for these systems remained.
The ANOVA pointed no statistically significant difference for PDI values of PEG45-PLA69 and
PEG114-PLA153 for the stirring times of 24, 48 and 72 h. For the PEG114-PLA180, a significantly
lower PDI value (p < 0.05) was observed after 24h of stirring at 40

◦
C, perhaps because of higher

copolymer glass transition temperature. Figure 6 shows the correlation coefficients and one can see
slight differences of decay time as well as improved curve smoothness for PEG114-PLA180 indicating
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more homogenous samples. Tables S3, S4 and S5 show the presence of peaks corresponding to
higher sizes.

We further considered the effect of temperature on self-assembly by comparing RT (20 ◦C)
and 40 ◦C. Our results show that increasing the temperature did not significantly influence the
vesicles self-assembly, since similar PDI values were obtained (Figure 5). We did not investigate
temperatures higher than 40 ◦C since this might lead to protein denaturation. Moreover, PEG interacts
with water by hydrogen bond and the interactions are weaker at higher temperatures due to the
increased kinetic energy of water molecules. As a result, PEG moieties are dehydrated by temperature
increase, favoring van der Waals interactions among PEG chains with the copolymer precipitation
(hydrophobic effect).

Nanomaterials 2018, 8, x FOR PEER REVIEW  10 of 16 

 

(p < 0.05) was observed after 24h of stirring at 40 °C, perhaps because of higher copolymer glass 
transition temperature. Figure 6 shows the correlation coefficients and one can see slight differences 
of decay time as well as improved curve smoothness for PEG114-PLA180 indicating more homogenous 
samples. Tables S3, S4 and S5 show the presence of peaks corresponding to higher sizes.  

We further considered the effect of temperature on self-assembly by comparing RT (20 °C) and 
40 °C. Our results show that increasing the temperature did not significantly influence the vesicles 
self-assembly, since similar PDI values were obtained (Figure 5). We did not investigate temperatures 
higher than 40 °C since this might lead to protein denaturation. Moreover, PEG interacts with water 
by hydrogen bond and the interactions are weaker at higher temperatures due to the increased kinetic 
energy of water molecules. As a result, PEG moieties are dehydrated by temperature increase, 
favoring van der Waals interactions among PEG chains with the copolymer precipitation 
(hydrophobic effect). 

 

 
Figure 6. Correlation coefficients for nanostructures formed from the three copolymers of poly 
(ethylene-block-lactic acid): PEG45-PLA69, PEG114-PLA153 and PEG114-PLA180 under stirring at 24, 48 and 
72 h with or without heating. 

Figure 6. Correlation coefficients for nanostructures formed from the three copolymers of poly
(ethylene-block-lactic acid): PEG45-PLA69, PEG114-PLA153 and PEG114-PLA180 under stirring at 24,
48 and 72 h with or without heating.



Nanomaterials 2018, 8, 373 11 of 16

Challenges for self-assembly of copolymers into PL by film hydration method can be understood
through the studies of Battaglia and Ryan (2006) [19,20] regarding polymeric vesicle formation.
Accordingly, hydration condition may lead to slow self-assembly by triggering incomplete formation
of vesicles with initial finger instabilities (myelin) that are formed after water addition and copolymer
swelling. These finger instabilities can grow and form vesicles owing to the copolymer diffusion in
water and the water diffusion in the copolymer [19].

3.3. Effect of Centrifugation and Extrusion Post-Film Hydration

Based on the results above, 24 h stirring time at room temperature was chose as the preferred
condition for the following experiments. Further efforts to reduce PDI and, consequently, obtain
a narrower size distribution focused on fractionation of the populations of nanostructures by
centrifugation. This technique can separate PLs and bulk polymer film structures. Figure 7 shows
that centrifugation resulted in PDI values of 0.363 and 0.280 for PEG114-PLA153 and PEG114-PLA180,
respectively and decay times around 48 µs. Centrifugation was fast, simple and resulted in successful
separation of the polydisperse aggregates/material. Unfortunately, DLS analysis could not be
performed for PEG45-PLA69 because centrifugation resulted in very diluted samples due to the loss of
significant material in the bulk polymeric film fraction.
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lactic acid) PEG114-PLA153 and PEG114-PLA180 after centrifugation.

Similarly, extrusion as a post-hydration method resulted in the loss of material and dilution of
PL samples, confirmed by TEM images (Figure S2). To evaluate the extrusion effect, we increased the
initial PEG-PLA concentration to 0.1%. Moreover, we used nanoparticle tracking analysis (NTA) to
complement DLS studies (Figure S3). For PEG114-PLA153, the mean diameter values based on NTA are
in agreement with the values obtained by DLS. However, significant populations of different sizes are
observed by NTA for the other two copolymers. One should keep in mind that DLS is more adequate
than NTA for the determination of nanostructures hydrodynamic diameter. Nonetheless, NTA allows
an estimation of the concentration of PL [21] and our results clearly show that the PEG45-PLA69 system
after the extrusion resulted in more diluted systems in terms of number of polymersomes due to the
initial loss of polymeric material in the bulk fraction after the film hydration, what was already visually
observed. The PLs prepared with higher concentration of copolymer (0.1% (m/v)) (Figure 8) resulted
in narrower size distribution and PDI values of 0.345, 0.144 and 0.081 for PEG45-PLA69, PEG114-PLA153

and PEG114-PLA180, respectively. However, for PEG45-PLA69, a tail in the distribution profile and
correlogram was still observed and attributed to dust traces, which could be removed by filtration
before the measurement. Here we decide not to filter the samples since it usually dilutes PL systems
and may affect the vesicle shape, size or concentration (Figure S4).
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Figure 8. Nanoparticle Tracking Analysis, transmission electronic microscopy and dynamic light
scattering by intensity of polymersomes formed from the copolymers poly (ethylene-block-lactic acid)
by film hydration under magnetic stirring for 24 h at room. Samples were extruded for 31 times through
400 nm pore radii polycarbonate membrane.

Both centrifugation and extrusion lowered the PDI values, however the mechanisms are
different. The first one is a purification step with the separation of fractions by size and density [22].
In extrusion, on the other hand, larger aggregates either deform or break up, and reassemble [10].
We demonstrate that, although centrifugation and extrusion were reported as steps that generally
reduce the polydispersity of PL systems, the presence of excess of bulky polymeric film leads to low
concentrations of vesicles and is a limiting factor for taking this method any further. It is important to
highlight that usually, for copolymers having a glassy amorphous component, extrusion should be
performed above the glass transition temperature, as it was done for PEG45-PLA69 (Tg = 23 ◦C) and
PEG114-PLA153 (Tg = 39 ◦C). Considering PL for protein-based drug delivery, preparation methods at
temperatures higher than 40 ◦C were considered unsuitable due to very likely denaturation effect on
the protein, therefore, extrusion was performed at 40 ◦C for PEG114PLA180 (Tg = 40 ◦C). Nonetheless
our DLS results confirmed that this temperature was sufficient to avoid PL deformation in the
extrusion procedure.

To sum up all the conditions investigated, Scheme 1 presents the main challenges for PLs
preparation from PEG-PLA copolymers self-aggregation.
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3.4. Protein Encapsulation into PEG-PLA Polymersomes

As a proof of concept for PL formation, we encapsulated BSA and ASNase in the PEG-PLA
PL (Figure 9). Our results confirm PL formation and the capacity to encapsulate globular proteins
within the enclosed water volume and the encapsulation Efficiency (EE%) values presented here are in
agreement with previously described in the literature for globular proteins [22]. Higher EE% values
were observed for PEG45-PLA69, which corresponds with the larger vesicle size and indicates that
size is directly related to the volume of the aqueous core. Additionally, one can notice that for all
the PEG-PLA copolymers similar EE% values were obtained for BSA and ASNase, reinforcing that
encapsulation depended mainly on the protein concentration in solution and, in this case, did not
relate to protein size and/or molecular weight. Therefore, to increase EE% in PEG-PLA PL one must
consider working with more concentrated protein solutions, which might present challenges due to
increasing likelihood of protein aggregation.
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4. Conclusions

In this work, we investigated the self-assembly of poly (ethylene glycol)–poly (lactic acid)
(PEG-PLA) copolymers into polymersomes. Our results show that to prepare polymersomes one
cannot base the preparation protocol only on the classical concepts of spontaneous self-aggregation
of amphiphiles in water. When compared to other amphiphiles, block copolymers present more
complex nature and other properties must be taken into account. This can include hydrophilic fraction,
molecular weight or glass transition temperature of the hydrophobic block. Moreover, our work shows
that the adjustment of post-preparation methods such as stirring (shear force), extrusion, sonication
and centrifugation all contribute to the final characteristics of the polymersomes as well as the final
yield. For instance, glass transition of the copolymer might change how difficult self-assembly is, and in
some cases might result in loss of material in the form of bulk polymer. Post-film hydration techniques,
such as extrusion and centrifugation, might remove bulk material and improve the homogeneity of
the final preparation, but might also result in the dilution of the final system obtained. Additionally,
one should consider that in spite of the self-assembly challenges, PEG-PLA copolymers of smaller
hydrophilic fraction (f ) result in higher encapsulation efficiency for hydrophilic molecules, such as
proteins, which is desired for the development of therapeutic strategies. All these issues should
be taken into account carefully when designing a polymersome-based system for pharmaceutical
technology development.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/6/373/s1,
Figure S1: Aspects of poly(ethylene glycol)–poly(lactic acid) (PEG-PLA): A) After orbital stirring at 150 RPM and
B) After magnetic stirring at 400 RMP, Table S1: Dynamic Light Scattering profile and respective polydispersity
index (PDI) of nanostructures formed by poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) by film hydration
under magnetic stirring at 400 RPM after overnight, Table S2: Dynamic Light Scattering profile and respective
polydispersity index (PDI) of nanostructures formed by poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) by film
hydration under magnetic stirring at 400 RPM and different times of sonication, Table S3: Dynamic Light Scattering
profile and respective polydispersity index (PDI) of nanostructures formed by PEG45-PLA69 (2000:5000 MW)
by film hydration under magnetic stirring at 400 RPM at different times and temperatures, Table S4: Dynamic
Light Scattering profile and respective polydispersity index (PDI) of nanostructures formed by PEG114-PLA153
(5000:11,000 MW) by film hydration under magnetic stirring at 400 RPM at different times and temperatures,
Table S5: Dynamic Light Scattering profile and respective polydispersity index (PDI) of nanostructures formed by
PEG114PLA153 (5000:11,000 MW) by film hydration under magnetic stirring at 400 RPM at different times and
temperatures.Figure S2: Polymersomes from poly (ethylene glycol)–poly (lactic acid) 5000:11,000 after extrusion
through 0.4 µm pores, Figure S3: Nanoparticle Tracking Analysis for particles after centrifugation: A) 0.1 %
(m/v) B) at 0.03 % (m/v), Figure S4: Correlation coefficients: Decaying time for nanostructures formed from three
copolymers poly (ethylene-block-lactic acid) 2000:5000 (black), 5000:11,000 (red) and 5000:13,000 (blue).

http://www.mdpi.com/2079-4991/8/6/373/s1


Nanomaterials 2018, 8, 373 15 of 16

Author Contributions: A.C.A. performed all the experiments and wrote the paper; M.S.M. analyzed some data
and revised the proof of whole manuscript. A.P.J. supervised some research steps and allowed the supply of
some the reagents and access to some of the facilities necessary to perform experiments. C.O.R.Y. supervised all
research steps, coordinated all methods employed and allowed the supply of all the reagents and access to the
facilities necessary to perform experiments.

Acknowledgments: We acknowledge support from the State of São Paulo Research Foundation (FAPESP-Brazil,
projects 2013/08617-7 (Thematic project) and 2014/10456-4 (Apolinário, A.C. PhD fellowship) and the National
Council for Scientific and Technological Development (CNPq- Brazil, project 303334/2014-2). We also
acknowledge Professor Giuseppe Battaglia for allowing an effective brainstorming with his team and Juliana
Pachioni-Vasconcelos for critical discussions at the experimental steps.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Messager, L.; Gaitzsch, J.; Chierico, L.; Battaglia, G. Novel aspects of encapsulation and delivery using
polymersomes. Curr. Opin. Pharmacol. 2014, 18, 104–111. [CrossRef] [PubMed]

2. Pachioni-Vasconcelos, J.D.A.; Lopes, A.M.; Apolinário, A.C.; Valenzuela-Oses, J.K.; Costa, J.S.R.;
Nascimento, L.D.O.; Pessoa, A.; Barbosa, L.R.S.; Rangel-Yagui, C.D.O. Nanostructures for protein drug
delivery. Biomater. Sci. 2016, 4, 205–218. [CrossRef] [PubMed]

3. Loos, K. Editorial: Self-assembly. Polymer 2016, 107, 341–342. [CrossRef]
4. Lopresti, C.; Massignani, M.; Fernyhough, C.; Blanazs, A.; Ryan, A.J.; Madsen, J.; Warren, N.J.; Armes, S.P.;

Lewis, A.L.; Chirasatitsin, S.; et al. Controlling polymersome surface topology at the nanoscale by membrane
confined polymer/polymer phase separation. ACS Nano 2011, 5, 1775–1784. [CrossRef] [PubMed]

5. Lipowsky, R. The conformation of membranes. Nature 1991, 349, 475–481. [CrossRef] [PubMed]
6. Howse, J.R.; Jones, R.A.L.; Battaglia, G.; Ducker, R.E.; Leggett, G.J.; Ryan, A.J. Templated formation of giant

polymer vesicles with controlled size distributions. Nat. Mater. 2009, 8, 507–511. [CrossRef] [PubMed]
7. Pegoraro, C.; Cecchin, D.; Madsen, J.; Warren, N.; Armes, S.P.; MacNeil, S.; Lewis, A.; Battaglia, G.

Translocation of flexible polymersomes across pores at the nanoscale. Biomater. Sci. 2014, 2, 680–692.
[CrossRef] [PubMed]

8. Discher, D.E.; Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 2006, 8, 323–341. [CrossRef] [PubMed]
9. Dionzou, M.; Morère, A.; Roux, C.; Lonetti, B.; Marty, J.-D.; Mingotaud, C.; Joseph, P.; Goudounèche, D.;

Payré, B.; Léonetti, M.; et al. Comparison of methods for the fabrication and the characterization of polymer
self-assemblies: What are the important parameters? Soft Matter 2016, 12, 2166–2176. [CrossRef] [PubMed]

10. Fetsch, C.; Gaitzsch, J.; Messager, L.; Battaglia, G.; Luxenhofer, R. Self-Assembly of Amphiphilic Block
Copolypeptoids—Micelles, Worms and Polymersomes. Sci. Rep. 2016, 6, 33491. [CrossRef] [PubMed]

11. Bartenstein, J.E.; Robertson, J.; Battaglia, G.; Briscoe, W.H. Stability of polymersomes prepared by size exclusion
chromatography and extrusion. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 739–746. [CrossRef]

12. Bleul, R.; Thiermann, R.; Maskos, M. Techniques to Control Polymersome Size. Macromolecules 2015, 48,
7396–7409. [CrossRef]

13. Arifin, D.R.; Palmer, A.F. Polymersome encapsulated hemoglobin: A novel type of oxygen carrier.
Biomacromolecules 2005, 6, 2172–2181. [CrossRef] [PubMed]

14. Winzen, S.; Bernhardt, M.; Schaeffel, D.; Koch, A.; Kappl, M.; Koynov, K.; Landfester, K.; Kroeger, A.
Submicron hybrid vesicles consisting of polymer–lipid and polymer–cholesterol blends. Soft Matter 2013, 9,
5883–5890. [CrossRef]

15. Robertson, J.D.; Yealland, G.; Avila-Olias, M.; Chierico, L.; Bandmann, O.; Renshaw, S.A.; Battaglia, G.
pH-sensitive tubular polymersomes: Formation and applications in cellular delivery. ACS Nano 2014, 8,
4650–4661. [CrossRef] [PubMed]

16. Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235,
337–351. [CrossRef] [PubMed]

17. Maulucci, G.; De Spirito, M.; Arcovito, G.; Boffi, F.; Castellano, A.C.; Briganti, G. Particle size distribution
in DMPC vesicles solutions undergoing different sonication times. Biophys. J. 2005, 88, 3545–3550.
[CrossRef] [PubMed]

18. Smart, T.P.; Fernyhough, C.; Ryan, A.J.; Battaglia, G. Controlling Fusion and Aggregation in Polymersome
Dispersions. Macromol. Rapid Commun. 2008, 29, 1855–1860. [CrossRef]

http://dx.doi.org/10.1016/j.coph.2014.09.017
http://www.ncbi.nlm.nih.gov/pubmed/25306248
http://dx.doi.org/10.1039/C5BM00360A
http://www.ncbi.nlm.nih.gov/pubmed/26580477
http://dx.doi.org/10.1016/j.polymer.2016.09.090
http://dx.doi.org/10.1021/nn102455z
http://www.ncbi.nlm.nih.gov/pubmed/21344879
http://dx.doi.org/10.1038/349475a0
http://www.ncbi.nlm.nih.gov/pubmed/1992351
http://dx.doi.org/10.1038/nmat2446
http://www.ncbi.nlm.nih.gov/pubmed/19448615
http://dx.doi.org/10.1039/C3BM60294J
http://www.ncbi.nlm.nih.gov/pubmed/26828800
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095838
http://www.ncbi.nlm.nih.gov/pubmed/16834559
http://dx.doi.org/10.1039/C5SM01863C
http://www.ncbi.nlm.nih.gov/pubmed/26754164
http://dx.doi.org/10.1038/srep33491
http://www.ncbi.nlm.nih.gov/pubmed/27666081
http://dx.doi.org/10.1016/j.colsurfa.2016.07.032
http://dx.doi.org/10.1021/acs.macromol.5b01500
http://dx.doi.org/10.1021/bm0501454
http://www.ncbi.nlm.nih.gov/pubmed/16004460
http://dx.doi.org/10.1039/c3sm50733e
http://dx.doi.org/10.1021/nn5004088
http://www.ncbi.nlm.nih.gov/pubmed/24724711
http://dx.doi.org/10.1016/j.jconrel.2016.06.017
http://www.ncbi.nlm.nih.gov/pubmed/27297779
http://dx.doi.org/10.1529/biophysj.104.048876
http://www.ncbi.nlm.nih.gov/pubmed/15695632
http://dx.doi.org/10.1002/marc.200800475


Nanomaterials 2018, 8, 373 16 of 16

19. Battaglia, G.; Ryan, A.J. Pathways of polymeric vesicle formation. J. Phys. Chem. B 2006, 110, 10272–10279.
[CrossRef] [PubMed]

20. Battaglia, G.; Ryan, A.J. The evolution of vesicles from bulk lamellar gels. Nat. Mater. 2005, 4, 869–876.
[CrossRef] [PubMed]

21. Scarpa, E.; Bailey, J.L.; Janeczek, A.A.; Stumpf, P.S.; Johnston, A.H.; Oreffo, R.O.C.; Woo, Y.L.; Cheong, Y.C.;
Evans, N.D.; Newman, T.A. Quantification of intracellular payload release from polymersome nanoparticles.
Sci. Rep. 2016, 6, 29460. [CrossRef] [PubMed]

22. Wang, L.; Chierico, L.; Little, D.; Patikarnmonthon, N.; Yang, Z.; Azzouz, M.; Madsen, J.; Armes, S.P.;
Battaglia, G. Encapsulation of biomacromolecules within polymersomes by electroporation. Angew. Chem.
Int. Ed. 2012, 51, 11122–11125. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/jp060728n
http://www.ncbi.nlm.nih.gov/pubmed/16722729
http://dx.doi.org/10.1038/nmat1501
http://www.ncbi.nlm.nih.gov/pubmed/16379080
http://dx.doi.org/10.1038/srep29460
http://www.ncbi.nlm.nih.gov/pubmed/27404770
http://dx.doi.org/10.1002/anie.201204169
http://www.ncbi.nlm.nih.gov/pubmed/23023772
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Selection of Amphiphilic Copolymer 
	Film Hydration 
	Centrifugation and Extrusion 
	Dynamic Light Scattering (DLS) 
	Nanoparticle Tracking Analysis (NTA) 
	Transmission Electron Microscopy 
	Encapsulation of Model Globular Protein BSA and Therapeutic Protein l-Asparaginase 
	Statistical Analysis 

	Results and Discussion 
	Self-Assembly by Film Hydration under Orbital Agitation Versus Magnetic Stirring 
	Self-Assembly by Film Hydration under Magnetic Stirring and Sonication 
	Effect of Centrifugation and Extrusion Post-Film Hydration 
	Protein Encapsulation into PEG-PLA Polymersomes 

	Conclusions 
	References

