Electronic Supplementary Material

Capacitively Coupled Plasma Discharge of Ionic Liquid Solutions to Synthesize Carbon Dots as Fluorescent Sensors

Table S-1

The UV-Vis and fluorescence spectra of the products obtained by CCP treatments (O₂: 10 sccm, RF: 90 W, 30 min) of mixtures of different aliphatic acids (100 mg) and high b.p. solvents (500 μ L). After CCP treatment, 1.0 mL of H₂O was used to dissolve the treated products. If not, there is a note in the first column. Different aliquots (μ L) of the product solutions were diluted to 3.0 mL by H₂O and are specified in the rows below the UV-Vis spectra. The diluted products were measured by UV-Vis and fluorescence spectroscopy, and their maximum fluorescent intensities (I_{max} (a.u.)) at excitation ($\lambda_{ex,max}$ (nm)) and emission ($\lambda_{em,max}$ (nm)) wavelengths are recorded on the same rows. Different colored lines shown in the fluorescence spectra represent the excitation at different wavelengths. $\Delta \lambda$ (nm) denotes the emission redshift wavelength, which was the difference in the emission wavelength between the excitations at the longest and shortest wavelengths in the fluorescence spectra.

	Citric acid	Succinic acid	Adipic acid	Malic acid
	но ОН ОН	но — ОН НО — ОН	но с он	НО ОН О ОН
Glycerol	X	X	X	X
ОН НООН				
	20 μL	20 µL	20 µL	20 µL

Fig. S-1 TEM images of the as-prepared C-dots. (a) the original image input into the ImageJ software, (b) setting an appropriate threshold parameter in ImageJ to define the particle position, (c) circling the area of each particle using ImageJ, (d) histogram of the particle size distribution, (e) lattice fringe.

Fig. S-2 The deconvolution of the C 1s, N 1s, and O 1s XPS peaks from the O₂/CCP of the mixture of CA and [EMIM]N(CN)₂.

Fig. S-3 Plot of the normalized PL intensity against the UV-Vis absorbance for the determination of the quantum yield.

According to the slope method [1], the quantum yield (QY, Φ) could be determined by the following equation.

$$\Phi_{\rm x} = \Phi_{\rm ref} \left(S_{\rm x} / S_{\rm ref} \right) \left(\eta_{\rm x}^2 / \eta_{\rm ref}^2 \right)$$

where x, ref, *S*, and η denote the sample solution, reference solution, slope of the plot of the measured integrated emission intensity against the optical density, and refractive index of the solvent, respectively. Quinine sulfate (QY = 54.6%) and 2-aminopyridine (QY = 60.0%) in 0.1 M H₂SO4 were chosen as the references for the $\lambda_{em,max} = 480$ nm ($\lambda_{ex,max} = 390$ nm) and $\lambda_{em,max} = 430$ nm ($\lambda_{ex,max} = 330$ nm) emissions, respectively, of the studied C-dots [2]. To minimize the reabsorption effects, the absorbencies were kept under 0.1 at the excitation wavelengths. Both the η_x and η_{ref} values were equal to $\eta_{water} = 1.33$. Reference:

[1] Zheng, H., Wang, Q., Long, Y., Zhang, H., Huang, X., Zhu, R., 2011. Chem. Commun. 47, 10650–10652.
[2] Eaton, D. F. 1988. Pure & Appl. Chem. 60, 1107–1114.

The fluorescence spectra of the C-dots collected after different dialysis times. I_{430} and I_{480} were the PL intensities at 430 nm and 480 nm with excitation at 330 nm and 390 nm, respectively.

Fig. S-5 TEM images of the C-dots dialyzed for two hours and their size distribution.

TEM images of the C-dots dialyzed for eight hours and their size distribution.

Particle size (nm)

Fig. S-6 Up-conversion emissions of the prepared C-dots under different wavelength excitations.

