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Abstract: In the last decade, carbon dots (C-dots, CDs) or carbon quantum dots (CQDs) have attracted
a considerable amount of attention from the scientific community as a low cost and biocompatible
alternative to semiconductor quantum dots. In particular, doped C-dots have excellent fluorescent
properties that have been successfully utilized for numerous applications. In this minireview, we
overview the recent advances on the synthesis of doped C-dots derived from carbon-rich sources and
their potential applications for biomedical and sensing applications. In addition, we will also discuss
some challenges and outline some future perspectives of this exciting material.
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1. Introduction

Carbon dots were first discovered in 2004 during single-walled carbon nanotubes purification [1].
These C-dots can be described as quasi-spherical particles with sizes below 10 nm. Figure 1
shows that the number of scientific publications related to C-dots rapidly raised starting from 2005.
The increased interest in these materials is related to several advantages of C-dots, such as carbon
source abundance, simple and low-cost synthesis process, biocompatibility, and excellent fluorescent
properties. In addition, C-dots are chemically stable, inert, form a stable colloidal solution, and are
highly resistant to photobleaching compared to traditional fluorescent organic dyes and semiconductor
quantum dots. Therefore, the fluorescent properties of C-dots are widely utilized for sensing [2–4],
biomedical imaging [5–7], catalysis [8,9], energy research [10,11], etc. A number of review articles
related to the synthesis and various applications of C-dots were published recently [1,4,11]. On the
other hand, a focused overview of doped C-dots for potential biomedical and sensing applications
is still not available in the literature. Therefore, in this minireview, we briefly discuss the synthesis
and fluorescent properties of doped C-dots obtained from carbon-rich sources. Next, we review recent
representative works related to the sensing and biomedical applications of doped C-dots. Finally,
we will provide some future perspectives and highlight the importance of doping strategy for the
development of advanced multifunctional nanoprobes.

2. Synthesis and Optical Properties of Doped C-Dots

Various synthetic methods such as chemical etching [12], electrochemical carbonization [13], laser
ablation [14], microwave irradiation [15], and hydrothermal/solvothermal [16,17] methods have been
widely employed for the preparation of fluorescent C-dots. Considering the enormous potential of
C-dots for numerous applications, it is extremely necessary to develop their large-scale synthesis.
From this point of view, the hydrothermal synthesis has become the most popular method due
to its simplicity, low-cost, and high efficiency. In this method, one should simply heat the water
and carbon-rich compounds (sugars, organic molecules) in a tightly closed vessel to initiate the
carbonization process.
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The size of C-dots is usually controlled by the concentration of reactants, temperature of 
reaction, time, surfactants, additives, etc. For example, the hydrothermal method was used to prepare 
highly fluorescent C-dots from orange juice [18], glucose [19], banana juice [20], citric acid [21], etc. 
To date, the majority of the works report the fabrication of blue emitting C-dots with excitation-
dependent emission spectra. However, the emission spectra of C-dots can be tuned by doping with 
some elements such as nitrogen (N), sulfur (S), phosphorus (P), boron (B), or their combinations [22–
26]. It has been shown that doping of C-dots leads to the fluorescence enhancement and shift of 
emission spectra. For example, fluorescent C-dots with green emission spectra (Figure 2) were 
reported and employed for sensing and cell imaging [15,27]. 

 
Figure 2. UV–vis absorption (UV), PL excitation (PLE), and PL emission (PL) spectra of doped C-dots. 
Reprinted with permission from reference [15]. 

C-dots typically show high absorption in the UV range (~287 nm) which can be attributed to n-
π* transition of the C=O and π-π* of the C=C bond. The origin of fluorescence in C-dots was not fully 
clarified yet, thus, various interpretations can be found in the literature. For example, the origin of 
fluorescence was attributed to the electron-hole pairs recombination in small sp2 carbon clusters that 
are localized within a sp3 matrix [28], various surface states and defects [29], surface groups [30], 
quantum effects (size dependent) and surface passivation [31]. Recently, Wang and coworkers used 
ultrafast spectroscopy to investigate the origin of green fluorescence in C-dots and graphene 
quantum dots [32]. According to their results, the green fluorescence originated from several carbon 

Figure 1. Number of published works according to the Scopus search (keyword “carbon dots”).

The size of C-dots is usually controlled by the concentration of reactants, temperature of reaction,
time, surfactants, additives, etc. For example, the hydrothermal method was used to prepare highly
fluorescent C-dots from orange juice [18], glucose [19], banana juice [20], citric acid [21], etc. To date,
the majority of the works report the fabrication of blue emitting C-dots with excitation-dependent
emission spectra. However, the emission spectra of C-dots can be tuned by doping with some elements
such as nitrogen (N), sulfur (S), phosphorus (P), boron (B), or their combinations [22–26]. It has been
shown that doping of C-dots leads to the fluorescence enhancement and shift of emission spectra.
For example, fluorescent C-dots with green emission spectra (Figure 2) were reported and employed
for sensing and cell imaging [15,27].
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C-dots typically show high absorption in the UV range (~287 nm) which can be attributed to
n-π* transition of the C=O and π-π* of the C=C bond. The origin of fluorescence in C-dots was not
fully clarified yet, thus, various interpretations can be found in the literature. For example, the origin
of fluorescence was attributed to the electron-hole pairs recombination in small sp2 carbon clusters
that are localized within a sp3 matrix [28], various surface states and defects [29], surface groups [30],
quantum effects (size dependent) and surface passivation [31]. Recently, Wang and coworkers used
ultrafast spectroscopy to investigate the origin of green fluorescence in C-dots and graphene quantum
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dots [32]. According to their results, the green fluorescence originated from several carbon atoms
located on the edge of carbon backbone and some functional groups (carbonyl, carboxyl). Different
emission centers and traps can be created with the introduction of dopant atoms into C-dots. As a
result, the emission spectra can be tuned to green and even red spectra [33]. However, in some cases
dopant elements are located on the surface of C-dots only [34]. Thus, the competition between the
optical centers, surface states, and traps is mainly responsible for the emission spectra of doped C-dots.
The exact mechanism of fluorescence shifting in doped C-dots still under investigation, thus, further
discoveries are expected in near future. Nevertheless, the fluorescent properties of doped C-dots were
already utilized for numerous technological applications [2,10,35]. Therefore, the practical usage of
doped C-dots for biomedical and sensing applications will be discussed in the following sections.

3. Doped C-Dots for Sensing Applications

Analysis of the fluorescent properties of doped C-dots were widely employed for the detection
of metal ions, molecules, temperature, pH range, etc. In particular, several research groups utilized
doped C-dots for the quantitative detection of the Fe(III) ions [26,36,37]. The fluorescence intensity
of doped C-dots decreased monotonically (Figure 3a) as the Fe(III) concentration increased. It was
suggested that fluorescence quenching (Figure 3b) occurs due to strong coordination of Fe(III) to the
oxygen-rich or amine groups on the surface of doped C-dots.
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concentrations; (b) the fluorescence quenching (selectivity) of sulfur-doped C-dots in the presence of
different metal ions. Reprinted with permission from reference [26].

It is well-known that the environmental pollution with mercury (Hg2+) and lead (Pb2+) can
raise serious health issues. Recently, doped C-dots were also used as sensors to detect these ions in
water. For example, Liu and coworkers reported the preparation of ultrasensitive C-dots for selective
detection of Hg2+ [38]. Prepared C-dots have been applied for Hg2+ detection in tap, lake, and river
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water with an excellent detection limit of 1 fM. In another study, authors prepared sensitive Hg2+

nanosensor based on nitrogen-doped fluorescent C-dots with a detection limit of 0.23 µM [39]. Pb2+

ions were also fluorescently detected by C-dots. For example, C-dots prepared from chocolate have
a detection limit of 12.7 nM [40]. Jiang et al. used a microwave method to prepare nitrogen-doped
C-dots with a similar detection limit of 15 nM [41]. It was suggested that the quenching mechanism
may occur due to the nonradiative electron transfer from the excited states to the electronic orbitals
of Hg2+ and Pb2+. On the other hand, chelation between Pb2+ and hydroxyl groups on the surface
of C-dots can be another reason for fluorescence quenching [40]. In addition, fluorescent properties
of C-dots were also utilized for detection of other metal ions such as Ag+ [42], Cu2+ [43], Zn2+ [44],
and Cr6+ [45]. Thus, the selectivity of C-dots to some toxic metal ions can be compromised by the
presence of other metal ions. To resolve this issue, one can perform the surface modification of C-dots
with some receptors for selective detection of metal ions.

The fluorescent properties of C-dots were also widely utilized for the detection of various
molecules. For example, fluorescence quenching of C-dots dispersed in dimethyl sulfoxide (DMSO)
was reported with acetone addition with detection limit up to 1:10–7 M ratio (DMSO:acetone) [46].
Shan and coworkers showed that boron-doped C-dots demonstrated an excellent ability to detect the
hydrogen peroxide H2O2 and glucose molecules [47]. In this work, the charge transfer between boron
and H2O2 trigger the fluorescence quenching of C-dots, which allow the quantitative detection of
hydrogen peroxide in the range of 0.1 to 1.0 mM (Figure 4). In another study, cyclic voltammetry was
employed for sensitive detection of glucose with the help of nitrogen-doped C-dots with a detection
range of 1–12 mM [48]. Furthermore, nitrogen-doped C-dots were commonly utilized for fluorescent
detection of pyridine [49], dopamine [50], amoxicillin [51], microRNA [52], catechol [53], pH and
temperature [54], etc. Taking into account such a diverse range of doped C-dots applications, future
studies should concentrate on the following open issues: (a) the origin of fluorescence shifting in doped
C-dots; (b) the precise localization of doped elements in C-dots; and (c) the role of doped elements in
fluorescence sensing.
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4. Doped C-Dots for Biomedical Applications

Compared to conventional organic dyes, C-dots are not suffering from photobleaching and
photodegradation. Therefore, C-dots demonstrated a great potential for cell imaging and labeling as a
biocompatible fluorescent nanomaterial. For example, numerous studies reported the cell imaging
potentials of doped C-dots [55–57]. Due to excitation-dependent fluorescence emission, C-dots can be
used as a multicolor nanoprobe that can be excited with different excitation wavelengths. Zhai and
coworkers showed that C-dots incubated with L929 cells (Figure 5) could emit blue, green, and red
fluorescence upon 405, 488, and 543 nm excitation, respectively [58].



Nanomaterials 2018, 8, 342 5 of 10

As it was demonstrated by several studies, the fluorescent properties of C-dots can be also
efficiently applied for in vivo imaging [59,60]. Excitation-dependent C-dots were injected into a mouse
and fluorescent images were collected at different excitation wavelengths (Figure 6). It was found that
longer wavelengths (595 nm and beyond) demonstrated better signal-to-background contrast.Nanomaterials 2018, 8, x FOR PEER REVIEW  5 of 9 
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Recently, enormous attention has been paid to multifunctional nanoprobes that combine several
imaging modalities. In this regard, one can create thin carbon layer coating on the surface of
paramagnetic nanoparticles such as Gd2O3 [61]. Obtained core-shell nanostructure has a longitudinal
relaxivity of r1 = 4.23 ± 0.13 mM–1 s–1 which is suitable for T1-weighted MRI. At the same, C@Gd2O3

core–shell nanostructure was also useful for optical imaging of L929 cells thanks to the fluorescent
properties of the thin carbon layer. In addition, carbon thin coating can be useful as a protective layer
to prevent the leaching of Gd ions into a surrounding environment. On the other hand, paramagnetic
metals can be also directly doped into C-dots during the synthesis process. Paramagnetic gadolinium
(Gd)-based complexes are widely used as ‘positive’ T1-weighted contrast agents in radiology [62,63].
Therefore, Gd-doped C-dots were studied extensively for both magnetic resonance imaging (MRI) and
cellular imaging.

Chen and coworkers prepared Gd-doped C-dots by the direct calcination of gadopentetic acid
(Gd-DTPA) in the air [64]. It was found that prepared Gd-doped C-dots exhibited excellent fluorescence
quantum yield ~19.7%. Furthermore, these Gd-doped C-dots have high longitudinal relaxivity
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r1 = 5.88 mM–1 s–1 at 7 T, much higher than commercially available Gd-DTPA (r1 = 3.10 mM–1s–1)
under the same conditions. Xu and coworkers used a facile hydrothermal method to prepare Gd-doped
C-dots with longitudinal relaxivity r1 = 7.36 mM–1 s–1 at 1.2 T [65]. The imaging site becomes brighter
with increasing of Gd concentration (Figure 7), and it obviously highlights that Gd-doped C-dots can
be utilized as ‘positive’ MRI contrast agents. Wang and coworkers used paramagnetic manganese Mn
ions as a cheaper and less toxic alternative to Gd(III) [66]. According to results, Mn-doped C-dots have
the longitudinal relaxivity of r1 = 7.28 mM–1 s–1 at 1.2 T, which is comparable to Gd-doped C-dots.Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 9 
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5. Summary and Future Outlook 

Doped C-dots can be a versatile material for future biomedical and sensing applications thanks 
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fabrication procedure of doped C-dots is quite simple and low-cost due to the wide selection of cheap 
carbon-rich sources. Furthermore, some fabrication procedures allow the preparation of doped C-
dots at relatively large amounts, typically at gram-scale. On the other hand, some issues such as the 
exact origin of fluorescence, the role of dopant ions, and their location in C-dots were not resolved 
yet. Thus, these issues should be addressed for fundamental understanding and control of the 
fluorescence in doped C-dots. One can consider the surface-functionalization of doped C-dots for 
specificity and selectivity for sensing and biomedical research. For example, C-dots conjugated with 
folic acid (FA) were able to distinguish the cancer cells from normal cells in a model mixture of cells 
thanks to a specific interaction between the FA and folate receptor molecule [67]. In a similar manner, 
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5. Summary and Future Outlook

Doped C-dots can be a versatile material for future biomedical and sensing applications thanks to
the unique fluorescent properties, excellent biocompatibility, and high aqueous stability. The fabrication
procedure of doped C-dots is quite simple and low-cost due to the wide selection of cheap carbon-rich
sources. Furthermore, some fabrication procedures allow the preparation of doped C-dots at relatively
large amounts, typically at gram-scale. On the other hand, some issues such as the exact origin
of fluorescence, the role of dopant ions, and their location in C-dots were not resolved yet. Thus,
these issues should be addressed for fundamental understanding and control of the fluorescence in
doped C-dots. One can consider the surface-functionalization of doped C-dots for specificity and
selectivity for sensing and biomedical research. For example, C-dots conjugated with folic acid (FA)
were able to distinguish the cancer cells from normal cells in a model mixture of cells thanks to a
specific interaction between the FA and folate receptor molecule [67]. In a similar manner, doped
C-dots can be surface-functionalized for selective recognition of specific ions, molecules, or even cells.
The formation of mesoporous surface-functionalized C-dots that can be potentially used in controlled
drug delivery can be also another breakthrough in this research area. The existence of limited studies
on the development of doped C-dots for T2-weighted MRI (‘negative’ contrast agents) can be also
considered as another unresolved problem. In particular, Dy and Ho ions with high magnetic moments
can be introduced into C-dots to prepare ‘negative’ contrast agents for MRI and optical imaging [68,69].
As one can see, doped C-dots can be a cheap and promising material for various applications such as
optics, sensors, biomedicine, energy, etc. Therefore, we strongly believe that the number of studies on
doped C-dots will continue to grow in future.
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