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Abstract: Molecular dynamic simulations were adopted to study the wetting properties of nanoscale
droplets on rough silicon solid substrate subject to perpendicular electric fields. The effect
of roughness factor and electric field strength on the static and dynamic wetting behaviors of
a nano-droplet on a solid surface was investigated at the molecular level. Results show that the static
contact angle tends to decrease slightly and show small difference with the increase of roughness
factor, while it shows an obvious increase for the ramp-shaped surface because the appearing bottom
space reduces the wettability of solid surface. Additionally, under the electric field, a nano-droplet
was elongated in the field direction and the equilibrium contact angle increases with the increase
of electric field strength. The nano-droplet was completely stretched to be column-shaped at
a threshold value of the field. Besides, accompanied by the shape variation of water droplets,
the molecular dipole orientations of water molecules experience a remarkable change from a random
disordered distribution to an ordered profile because of the realignment of water molecules induced
by electric fields.
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1. Introduction

The wetting of a water droplet on a solid surface plays a critical role in describing the
characteristics of solid surfaces in a broad range of technological applications. According to their
requirements, some refer to rapid wetting [1–3], whereas the others require poor wetting [4–6].
Wettability of liquid on a solid surface is determined by numerous factors, such as chemical
composition, material properties (e.g., surface energy) and roughness or heterogeneities of the solid
substrate, impurities in liquid, and applied external forces (e.g., electric field force) [7]. Generally,
the real surface is not perfectly smooth; it is rough either obviously or molecularly. The presence of
micro-textured topology and molecular roughness of solid surface is one of the important factors that
directly affects the interaction between liquid and substrate. Thus, it is essential to comprehensively
explore the microscope mechanism of liquid wetting on rough solid substrate. Recently, both engineers
and scientists have paid substantial attention to conducted simulation or experimental studies on the
wetting phenomena of a liquid on a rough solid surface [8–11].

On the micro/nanoscale, molecular dynamic simulation has been proved a very useful tool to
study the mechanism of wetting at a molecular level [12–15]. There are numerous simulation reports
for wetting properties of a droplet on geometrically patterned substrates or on molecularly rough
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surfaces. Chen et al. [16] studied the wettability behaviors of a water droplet on organic-polluted
surface pillar structures and found a Wenzel-Cassie transition of critical line when pillar HI ratio is
around 1.6. Svoboda et al. [17] found that the roughness on a strongly hydrophilic surface either
increases or hardly affects the contact angle, depending on the number of molecules stacking into the
nano-grooves, while adding roughness to a weakly wettable surface would transform the surface from
hydrophilic to hydrophobic because nano-grooves weaken the solid-liquid interactions. Niu et al. [18]
investigated the static properties of a water droplet on a solid surface and the results showed that
a water droplet on a pillared silicon surface could transform from the Wenzel state to the Cassie state
following vibration of the rough surface. Wang et al. [19] found the Wenzel-Cassie transition was
affected by the droplet size and hollow size. It occurred easily with a big droplet and a narrow hollow,
while it suffered a lesser effect from the pillar height. Broadly, substrate patterned topology could
convert the wettability of the surface according to its practical applications.

Applying an electric field is an effective method for manipulating the wettability of a nano-droplet
on a solid surface. Some researchers have conducted simulations and experimental studies
on the effect of an electric field on the spreading of droplets on solid substrate and found
novel micro phenomena, such as contact angle saturation [20], asymmetrical spreading and
asymmetry-to-symmetry transition [21–23]. Meanwhile, when the roughness and heterogeneities of
the solid surface appear, the electro-wetting process induced by external electric field could be more
complicated. The droplet on a rough surface might be in a Cassie state under a weaker applied electric
field and it undergoes a Cassie-to-Wenzel wetting transition on the micro-textured (pillar-arrayed)
surface after the applied electric field exceeds a critical value [24,25]. However, the statics and dynamics
of electro-wetting on molecularly rough surfaces are still far from well understood, especially at the
nanoscale. Thus, it is necessary to further investigate the electro-wetting phenomenon on a molecularly
rough surface to satisfy the requirements of practical applications. In this paper, the molecular dynamic
simulation method is carried out to explore the static and dynamic wetting behaviors of a nano-droplet
on a rough silicon solid surface subjected to perpendicular electric fields. Six types of shape are
constructed to represent the different roughnesses of the solid surface. Contact angles and some
interfacial properties are taken to describe the effect of electric field strength and roughness factors on
the complicated electro-wetting.

2. Molecular Simulation Model

The initial structure of the nano-droplet and substrate with molecularly rough surface in the
simulation system is shown in Figure 1. The Si atoms of rough solid substrate arrange in a diamond
cubic lattice, with a lattice constant of 0.543 nm. The size of the substrate is 12 × 1.5 × 12 nm3.
The atoms of silicon substrate were kept frozen during the molecular dynamic MD simulations to speed
up the simulation, as used in the literature [21,23,26]. 2000 water molecules were randomly distributed
into a spherical nano-droplet with a radius of 2.5 nm. In fact, droplet size effect on contact angle has
been systematically discussed in previous studies [27,28] and we picked this size because it has been
found sufficient for studying the wetting phenomenon [21–23,29]. The initial distance between the
center of the spherical nano-droplet and the substrate surface is 3 nm. A simple point charge/extension
(SPC/E) model is chosen for water molecules, which has already been applied successfully to study
the wetting phenomena of droplets on solid substrates [21–23,26–30]. The intermolecular interactions
are calculated as follows. The repulsion and dispersion forces is modeled using the Lennard-Jones
(L-J) potential, while the electrostatic interaction using Coulomb’s law,
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where the first L-J potential term is only calculated oxygen-oxygen interactions because the hydrogen
atom is too light and the interaction could be omitted. The second term calculates the coulomb force
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among the charged atoms, where qi is the charge of atom i, rij is the distance between atoms i and
j, and ε0 is the vacuum dielectric constant. Hydrogen bonding in the SPC/E potential is a balance
between the L-J oxygen-oxygen forces and the electrostatic hydrogen-oxygen interaction [31].Nanomaterials 2018, 8, x FOR PEER REVIEW  3 of 12 

 

 
Figure 1. The initial structure of water droplet and substrate with molecularly rough surface. 

The intermolecular interactions between water molecules and silicon atoms are calculated by 
the modified L-J potential function, 

])()[(4)( 612

ij

ls

ij

ls
lsijls rr

r 
 

 
(2) 

where σls and εls can be calculated according to the Lorentz-Berthelot mixing rule [32], 

 s , / 2.0ls l ls l s          (3) 

All the potential parameters and the charges for each type of atoms are given in Table 1. 

Table 1. Parameter of atoms for potential function. 

Atom σ (nm) ε (kJ/mole) q (e) 
O 0.316 0.6502 −0.8476 
H 0 0 0.4238 
Si 0.3615 1.26 0.0 

A smooth cutoff with a cutoff radius of 1.5 nm is used for the short-range L-J pair potential and 
the Particle-Particle Particle-Mesh (PPPM) method is used to solve the long-range electrostatic 
interaction. All the MD simulations are carried out using the LAMMPS software package in the NVT 
ensemble [33]. The initial velocities of atoms were assigned randomly according to the temperature 
of the simulation system. The Velocity-Verlet algorithm is adopted to solve the Newtonian motion 
equations for each atom with a time step of 2 fs. The Nosé-Hoover thermostat [34] was applied at 
each time step to keep the system at a desired temperature 300 K. When an electric field E is applied 
to the system, an additional term representing electric force fie = E·qi is applied to each atom 
according to its charge qi. Firstly, the droplet wetting the silicon solid substrate was equilibrated in 
the absence of electric field with the simulation runs of 1.2 ns. Then perpendicular electric field Ey 
with the strength of 0.1, 0.2, 0.5, 0.75, 0.8, 0.9 and 1.0 V/nm is applied to the system to investigate the 
deformation and wetting behaviors of nanoscale droplet on rough solid surface. After the system 
reaches a new equilibrium state at 1.2 ns, wetting properties are analyzed to describe the complex 
wetting behaviors. 

3. Results and Discussion 

3.1. Effect of Roughness on Static Contact Angles 

Six types of rough surface are constructed to investigate the wetting behaviors of a droplet on a 
rough solid substrate under an electric field. The front views of roughness are shown in Figure 1 
(flat, staircase, fence, jagged, ramp and sine-shaped roughness). In order to describe the degree of 
roughness, a dimensionless roughness factor (denoted as r) is defined as the ratio of the true surface 

Figure 1. The initial structure of water droplet and substrate with molecularly rough surface.

The intermolecular interactions between water molecules and silicon atoms are calculated by the
modified L-J potential function,
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where σls and εls can be calculated according to the Lorentz-Berthelot mixing rule [32],
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All the potential parameters and the charges for each type of atoms are given in Table 1.

Table 1. Parameter of atoms for potential function.

Atom σ (nm) ε (kJ/mole) q (e)

O 0.316 0.6502 −0.8476
H 0 0 0.4238
Si 0.3615 1.26 0.0

A smooth cutoff with a cutoff radius of 1.5 nm is used for the short-range L-J pair potential and the
Particle-Particle Particle-Mesh (PPPM) method is used to solve the long-range electrostatic interaction.
All the MD simulations are carried out using the LAMMPS software package in the NVT ensemble [33].
The initial velocities of atoms were assigned randomly according to the temperature of the simulation
system. The Velocity-Verlet algorithm is adopted to solve the Newtonian motion equations for each
atom with a time step of 2 fs. The Nosé-Hoover thermostat [34] was applied at each time step to
keep the system at a desired temperature 300 K. When an electric field E is applied to the system, an
additional term representing electric force fie = E·qi is applied to each atom according to its charge qi.
Firstly, the droplet wetting the silicon solid substrate was equilibrated in the absence of electric field
with the simulation runs of 1.2 ns. Then perpendicular electric field Ey with the strength of 0.1, 0.2,
0.5, 0.75, 0.8, 0.9 and 1.0 V/nm is applied to the system to investigate the deformation and wetting
behaviors of nanoscale droplet on rough solid surface. After the system reaches a new equilibrium
state at 1.2 ns, wetting properties are analyzed to describe the complex wetting behaviors.
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3. Results and Discussion

3.1. Effect of Roughness on Static Contact Angles

Six types of rough surface are constructed to investigate the wetting behaviors of a droplet on
a rough solid substrate under an electric field. The front views of roughness are shown in Figure 1
(flat, staircase, fence, jagged, ramp and sine-shaped roughness). In order to describe the degree of roughness,
a dimensionless roughness factor (denoted as r) is defined as the ratio of the true surface area to the apparent
surface area. Obviously, r is a number always greater than or equal to 1.0. The exact values of roughness
factor and the number of silicon atoms for each type of rough solid substrate are given in Table 2.

Table 2. Roughness Factors and Numbers of silicon atoms in solid substrates.

Rough Shape Flat Staircase Fence Jagged Ramp Sine

Roughness factor (r) 1.00 1.40 1.60 1.17 2.11 1.13
Number of atoms 13,206 12,030 12,030 11,993 9531 11,442

Firstly, to check the simulation model, the static contact angle of water nano-droplet on flat silicon
surface (r = 1.00) in the absence of electric field is calculated. The result shows that it is 72 ± 0.5 degree
and consistent with the experimental data from literature [35,36]. The snapshots in equilibrium state and
time-averaged density profiles of water nano-droplet on rough solid surface (E = 0.0 V/nm) are shown
in Figure 2. It can be seen that water molecules accumulate at the depressions and bulges of the rough
surface due to the strong attraction from silicon atoms on the rough area and result in the density near
the rough area on the surface being slightly higher than that in the inner droplet. Figure 3 depicts the
distribution of the contour line of the water droplet on different rough substrates and the corresponding
static contact angles with the increase in roughness factor. The static contact angle is obtained by fitting
the droplet contour using the elliptical equation. Clearly, the droplet is in the Wenzel state, except for
the case of wetting on the ramp-shaped surface. The static contact angle decreases slightly and shows
a small difference with the increase in roughness factor due to the different shape of the roughness.
When the nano-droplet wets the ramp-shaped surface (r = 2.11), the droplet is in the Cassie-Baxter state
and the corresponding contact angle tends to increase. The microscopic mechanism of the wetting of
the nano-droplet on the rough surface is the molecular interaction between water molecules and silicon
atoms. When the roughness factor increases, the real contact area between droplet and solid becomes
bigger leading to a stronger attraction from the solid substrate and thus the contact angle tends to
decrease. Meanwhile, when the solid surface is constructed in a ramp shape, molecules accumulate on
the depression area before overcoming the rough barrier, accompanied by a small interspace appearing at
the bottom. So, the real contact area is smaller than the true surface area and then the surface wettability
is reduced with a slight increase of contact angle in this case.
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Figure 3. Distribution of the static contact angle of nano-droplet on rough substrate.

3.2. Static Wetting under Electric Field

Figure 4 shows the snapshots and time-averaged density distributions of water nano-droplet in the
equilibrium state on a rough silicon substrate with different roughnesses subjected to a perpendicular
electric field of Ey = 0.9 V/nm. As a classical polar molecule, water dipole rotates under the electric
field with the hydrogen atom pointing in the electric field direction and oxygen atom the opposite
way. The whole electric field force on the droplet tends to elongate the droplet from both sides along
the field direction, while the solid substrate restricts the downward deformation. The greater the
surface energy, the stronger the restriction from the surface, and the droplet shows a smaller change
induced by electric field. As seen in Figure 4f, the droplet on the ramp-shaped surface is elongated to
be a columnar structure because of its small surface energy.

Nanomaterials 2018, 8, x FOR PEER REVIEW  5 of 12 

 

 
Figure 3. Distribution of the static contact angle of nano-droplet on rough substrate. 

3.2. Static Wetting under Electric Field 

Figure 4 shows the snapshots and time-averaged density distributions of water nano-droplet in 
the equilibrium state on a rough silicon substrate with different roughnesses subjected to a 
perpendicular electric field of Ey = 0.9 V/nm. As a classical polar molecule, water dipole rotates 
under the electric field with the hydrogen atom pointing in the electric field direction and oxygen 
atom the opposite way. The whole electric field force on the droplet tends to elongate the droplet 
from both sides along the field direction, while the solid substrate restricts the downward 
deformation. The greater the surface energy, the stronger the restriction from the surface, and the 
droplet shows a smaller change induced by electric field. As seen in Figure 4f, the droplet on the 
ramp-shaped surface is elongated to be a columnar structure because of its small surface energy. 

 
Figure 4. Snapshots and time-averaged density distributions of water nano-droplet in equilibrium 
state on silicon substrate with (a) flat-shaped, (b) staircase-shaped, (c) fence-shaped, (d) 
jagged-shaped, (e) sine-shaped and (f) ramp-shaped rough surface (Ey = 0.9 V/nm) 

The effect of electric field strength on the static wetting of the nano-droplet on the 
ramp-shaped surface is also explored. Figure 5 shows the equilibrium snapshots of a water droplet 
on a ramp-shaped substrate subjected to a perpendicular electric field with strengths of Ey = 0.1, 0.2, 
0.5, 0.75, 0.8, 0.9 V/nm. In order to show the wetting behaviors clearly, the corresponding contact 
angles and the height of droplet in the y direction are given in Figure 6. After the electric field is 
applied to the system, water molecular dipoles rotate to a new equilibrium state with more 
hydrogen atoms pointing to in the electric field direction. In particular, molecules in the liquid 
vapor interface of the spherical droplet tend to move upward, and the top liquid-vapor interface of 
the droplet becomes pointier due to competing effect between surface tension and electric field 

Figure 4. Snapshots and time-averaged density distributions of water nano-droplet in equilibrium
state on silicon substrate with (a) flat-shaped, (b) staircase-shaped, (c) fence-shaped, (d) jagged-shaped,
(e) sine-shaped and (f) ramp-shaped rough surface (Ey = 0.9 V/nm)

The effect of electric field strength on the static wetting of the nano-droplet on the ramp-shaped
surface is also explored. Figure 5 shows the equilibrium snapshots of a water droplet on a ramp-shaped
substrate subjected to a perpendicular electric field with strengths of Ey = 0.1, 0.2, 0.5, 0.75, 0.8, 0.9 V/nm.
In order to show the wetting behaviors clearly, the corresponding contact angles and the height of droplet
in the y direction are given in Figure 6. After the electric field is applied to the system, water molecular
dipoles rotate to a new equilibrium state with more hydrogen atoms pointing to in the electric field
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direction. In particular, molecules in the liquid vapor interface of the spherical droplet tend to move
upward, and the top liquid-vapor interface of the droplet becomes pointier due to competing effect
between surface tension and electric field force. With the increase of electric field strength, the droplet
becomes elongated with the height increasing slightly in electric field direction. This indicates that
intermolecular forces among water molecules are more dominant than external electric field forces when
electric field E ≤ 0.8 V/nm. This also could be confirmed in the dipole distribution of water molecules in
Section 3.4. Electric field force starts to dominate the movement of polar water molecules with the further
increase of electric field and the droplet was elongated to eventually become a column in the case of the
ramp shape surface, as shown in Figure 5f. For comparison, more figures for the wetting of nano-droplet
on the jagged surface are given in the electronic Supplementary Materials Figure S1.
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3.3. Dynamic Wetting Process under Electric Field

To further understand the electro-wetting phenomenon of the droplet on the rough solid substrate,
the dynamic spreading of a water nano-droplet on a solid substrate with fence-shaped and sine-shaped
surfaces are investigated under electric field Ey = 0.9 V/nm and Ey = 1.0 V/nm, respectively. For the
fence-shaped substrate, the dynamic wetting, as depicted by several snapshots at different instants of
time, is shown in Figure 7 (Ey = 0.9 V/nm). For the sine-shaped substrate, the dynamic wetting of the
nano-droplet is given in Figure 8 (Ey = 1.0 V/nm). In addition, the evolution of the dynamic contact
angles over time for both rough solid substrates is plotted in Figure 9.
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The movements of the water molecule become more complex and turbulent after applying external
electric field and are determined by the competition between molecular interaction and electric field force.
The electric field tries to rotate water dipoles while molecules around it could restrict them, so molecules
on the liquid-vapor interface could move easily because of smaller internal restriction. It could be seen
clearly that more water molecules on the top of the water droplet are distributed with hydrogen atoms
pointing in the electric field direction and oxygen atoms the opposite way. When the electric field strength
is smaller than 0.8 V/nm, the molecule on the solid surface cannot move freely because of the strong
attraction from solid substrate. Meanwhile, for the case where Ey > 0.8 V/nm, the movements of water
dipoles are dominated by electric field and the water molecules on liquid–vapor interface tend to move
upwards. Then, a point is formed on the top of the droplet and the droplet changes to be cone-shaped.
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As a result, the contact angle decreases. It is apparent in the case of droplet wetting on the sine-shaped
surface, as shown in Figure 8f.

In addition, the roughness of the solid substrate, determining the interaction energy between
the droplet and the solid surface plays an important role in the dynamic wetting process of the water
nano-droplet. As seen in Figure 5f, the droplet on the ramp-shaped surface is completely stretched
to become column-shaped under electric field Ecr = 0.9 V/nm (Ecr is defined as critical electric field).
Meanwhile, for the sine-shaped surface, the droplet is completely stretched under the electric field
1.1 V/nm (as seen in Figure S2). This is all related to the real contact surface area; water molecules
contact the sine-shaped surface smoothly and the restriction force to the deformation of the droplet is
much larger than others. Therefore, it needs a stronger electric field to be completely stretched.

3.4. Distribution of Water Molecular Parameters

3.4.1. Hydrogen Bonds

As discussed above, water molecules realign under the competing force between electric field and
intermolecular force. During the rearrangements, hydrogen bonds break up or reform, which could
affect the wetting behaviors of a droplet on a rough surface. In MD simulation, there is a criterion of
geometrical definition to determine whether a hydrogen bond has formed or not between different
water molecules. Firstly, the distance between oxygen atoms is less than 0.35 nm; secondly, the angle
between the oxygen-hydrogen bond and oxygen-oxygen direction is less than 30 degrees [37,38].
If these two conditions are satisfied, one hydrogen bond is considered to be formed between them.

Theoretically, the maximum number of hydrogen bonds per water molecule is 4.0. At nanoscale,
since the specific surface area increases, the number of hydrogen bonds per molecule will decrease and
generally is less than 4.0. Figure 10 depicts the average number of hydrogen bonds per water molecule
under different electric fields. It could be seen that the average number of hydrogen bonds for the droplet
on a specified surface almost stays the same with the increase of the electric field strength before the kick
point. This is consistent with the result in the literature [15], in which the number of hydrogen bonds shows
a distinct oscillation under different electric fields. As mentioned above, the direction of the dipole tends to
follow the direction of the electric field. They are distributed randomly and disorderly when the electric
field is smaller than 0.8 V/nm and thus the number of hydrogen bonds is almost unchanged. However,
when the electric field exceeds a threshold value, the average number of hydrogen bonds decreases sharply.
This is because the electric field strength is strong enough that the disordered dipole distribution becomes
ordered and the hydrogen bond nets are destroyed. As a result, the average number of hydrogen bonds
decreases rapidly. The average number of hydrogen bonds is largest when a droplet wets a flat silicon
surface and smallest on a ramp-shaped surface. This confirms that the shape of the roughness could affect
the distribution and arrangement of water molecules and thus has influence on the number of hydrogen
bonds per molecule. So, both the electric field and surface roughness have an effect on the distribution of
water molecules and the formation of hydrogen bonds.
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3.4.2. Water Molecular Dipole Moment

Water molecules have a tendency to self-arrange under the influence of an external electric field.
Near the solid-liquid interface, the movement of water molecules is determined by the competition
between the external electric field force, solid-liquid intermolecular forces and liquid-liquid intermolecular
forces. In particular, the roughness of the solid surface makes the competition mechanism more complex.
From the simulation data, the average polarization of water molecules along the direction perpendicular
to the surface is calculated and the results are shown in Figure 11, where θ is the angle between the
dipole moment vector of water molecules and the y-axis (y+). It was found that water molecules are in
a disordered structure with water orientation distributions symmetric and broad at weak electric field
E < Ec. Here, Ec is the characteristic electric field and it is about 0.8 V/nm, being consistent with the
literature [15]. When the electric field strength increases up to 0.9 V/nm, half the water dipoles in the
case of the ramp-shaped surface exhibit an angle smaller than 30 degrees, while in the other cases, water
dipoles were still distributed randomly, indicating that the restriction from ramp-shaped surface is smaller
than others. When the applied electric field strength increases to Ey = 1.0 V/nm, external electric field
force is greater than the other intermolecular forces. Electric field force plays a more decisive role in the
rearrangement of water molecules, with 50% or more water dipoles exhibiting a preferential orientation
parallel to the direction of the electric field, which contributes to the formation of an ordered water
structure. Accordingly, the electro-wetting behavior of a water droplet on a solid substrate is controlled
by a coupling effect among water, solid intermolecular forces and the electric field.
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4. Conclusions

Molecular dynamic simulation was carried out to investigate the wetting behaviors of a water
nano-droplet on a rough silicon solid surface under perpendicular electric fields. Six types of roughness
were constructed to explore the complex wetting phenomenon of the nano-droplet. The contact angle,
obtained from fitting the density counter using an ellipsoidal equation, characterized the wetting
properties. In the absence of an electric field, the static contact angles of a nano-droplet on different
rough solid surfaces were analyzed and it was found that contact angle showed a slight decrease
and a small difference with the increase of roughness factor. Meanwhile for the ramp-shaped surface,
it tends to increase a little because the appearing bottom space reduces the interaction between water
droplet and solid substrate. After an electric field was applied, water molecules realign themselves
under the coupling effect of electric field force and intermolecular forces, accompanied by the increase
of contact angles as the electric field strength increases. With the further increase of electric field
strength, the nano-droplet was stretched to become column-shaped at a threshold value of the electric
field. The threshold value is 0.9 V/nm for a ramp-shaped surface, while it is 1.1 V/nm for a sine-shaped
surface. Thus, the wetting behaviors of a droplet on a rough solid surface is a result of the competition
among the electric field force, the interaction force between the solid surface and the water molecule,
and the interaction force between the water molecules.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/5/340/s1,
Figure S1: Equilibrium snapshot of water nano-droplet on silicon substrate (jagged-shaped surface) under electric
field (Ey = 0.1, 0.2, 0.5, 0.75, 0.8, 0.9 V/nm); Figure S2: Equilibrium Snapshot of water nano-droplet on silicon
substrate (sine-shaped surface) under electric field Ey = 1.1 V/nm.
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