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Abstract: Using a microwave-assisted ball-milling approach, Fe-based metal-organic frameworks
(Fe-MOFs) were prepared from FeSO4·7H2O and trimesic acid. Scanning electron microscopy,
Fourier-transform infrared spectrometry, X-ray, and thermogravimetric analysis were utilized to
characterize the thermal stability and structure of the prepared Fe-MOFs. These Fe-MOFs were used
to remove organic dyes from aqueous solutions. Specifically, they removed 96.97% of 23.3592 mg/L
of Congo red in a 200 mL solution within 300 min of treatment with natural light at 15 ◦C. Likewise,
88.21 and 70.90% of 22.7527 mg/L of Orange II and 17.8326 mg/L of Rhodamine B, respectively, were
removed from 200 mL solutions within 300 min of treatment at 15 ◦C. At 35 ◦C, 99.57, 95.98, and
99.38% of 23.3855 mg/L of Congo Red, 22.7365 mg/L of Orange II, and 17.9973 mg/L of Rhodamine
B, respectively, were removed from 200 mL solutions within 300 min of treatment. The adsorption
kinetics were investigated and the pseudo-first-order kinetic model was found to be superior to the
pseudo-second-order kinetic model. Overall, using metal-organic frameworks to treat dye wastewater
was found to be inexpensive, feasible, and efficient. Therefore, this material has future prospects in
research and applications in the purification of wastewater.

Keywords: wastewater treatment; metal-organic frameworks; dye removal; microwave-assisted
ball milling

1. Introduction

Clean water is a critical societal provision. The environment is currently significantly threatened by
pollution, which is increasing daily as a result of continuing economic development, rapid urbanization,
and a steadily increasing world population [1]. There is also a continuously increasing wasting of water
resources made worse by water contamination with various pollutants, including inorganic and organic
chemicals. Hexavalent chromium [2], dyes [3], herbicides/pesticides [4], and aromatics/organics [5,6]
are typical chemicals that must be removed from wastewater. Of the dyes, many are toxic and even
carcinogenic [7,8]. Rhodamine B (RhB), Orange II, and Congo red (CR) are common examples of
organic dyes found in wastewater and industrial effluents. These dyes are widely used in rubbers,
carpets, textiles, cosmetics, paper, plastics, and food. Due to their toxicity, these dyes directly destroy
microbes or at least inhibit microbial catalytic performance.

In order to remove dyes from wastewater, a number of biological, chemical, catalysis [9–15],
and physical methods have been investigated [7]. Common adsorbent materials include activated
carbon, activated alumina, molecular sieves, metal hydroxides, silica gel, and metal-organic
frameworks (MOFs). MOFs, which consist of metal-oxo clusters or metal ions and organic linkers,
have fascinating crystalline structures, tailorable chemistry, large specific surface areas, and good
porosity [16]. MOFs have attracted much attention due to their uses in adsorption and catalysis
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and potential to be designed with a specific pore shape and size from multifunctional ligands and
metal ions or metal ion clusters. The performances of MOFs can be controlled, to some extent, by
cautiously tuning their structures and functionalities to allow for distant targets to be reached or to
improve adsorbent properties. Another attractive characteristic of MOFs is the tunability of their
physiochemical performance after the involved crystalline materials have already been formed [17–20].

Since the 1990s, MOFs have garnered significant research interest, not only due to their unique
chemical structures and characteristics, but also their potential applications in a variety of research
fields, including polymerization [21], drug delivery/biomedicine [22], catalysis [23], luminescence [24],
adsorption/storage in the gas phase [25–27], chemical separation [16,28,29], magnetism [30], and
liquid phases [31]. Recently, MOFs have also been recognized as prospective materials for the
liquid-phase adsorption of various hazardous compounds [32], including sulfur- [33,34] and nitrogen-
containing compounds [35], in both aqueous and non-aqueous media. MOFs can be prepared
using microwave [36], chemical mechanical polishing [37], hydrothermal [38], ultrasonic [39], and
mechanochemical methods [40] among others.

Microwave-assisted ball milling was first described by our laboratory and is based on a
solid-liquid ball-milling (MSBM) approach that involves using a ball-milling machine in a microwave
oven [41–46]. The coupling of mechanical milling with microwaves enables certain nanocrystal
materials, such as magnetic and metal oxidation ferrite, to be generated at room temperature [47–49].
In the present study, MOF-based adsorptive removal of hazardous compounds, including RhB, Orange
II, and CR, from aqueous media was investigated.

2. Experimental

2.1. Synthesis and Characterization of Experimental Materials

Fe-MOFs were synthesized by microwave-assisted ball milling on the basis of a previously
reported way [48]. H3BTC (98%) and FeSO4·7H2O were purchased from Shanghai Aladdin Biological
Technology Co., Ltd. (Shanghai, China), while potassium dichromate (≥99.8%) was purchased from
Tianjin Zhiyuan Chemical Reagent Co., Ltd. (Tianjin, China). FeSO4·7H2O (0.0537 mol, 14.9297 g),
trimesic acid (0.0358 mol, 7.5187 g), stainless steel balls (1350 g), and 800 mL deionized water were
combined in a tetrafluoroethylene milling pot. Stir milling at 200 rpm and the microwave oven were
started concurrently. After 40 min, the solution converted from a colorless liquid into a white solid
and was stable in this form. This solid white compound was filtered, washed with water, added to
a beaker containing ethanol, and then stirred with a magnetic stirrer for 3 h. This mixture was then
filtered by suction and dried, and then the final product was collected, characterized, and used in
experimental reactions.

Structure and morphology were characterized using X-ray diffraction (D-5000, Siemens, Chicago,
IL, USA, Cu-Kα radiation), Fourier-transform infrared spectroscopy (IRTracer-100, SHIMADZU,
Shanghai, China), and field emission scanning electron microscopy (JSM-6700F, Tokyo, Japan).
The particle thermogravimetric curves were obtained in an argon atmosphere at temperatures
from 35 to 700 ◦C increasing at a rate of 5 ◦C/min using a NETZSCH STA 449C thermal analyzer
(Selb, Germany).

2.2. Removal of Organic Dyes

Organic dyes were removed at approximately 15 ◦C and 35 ◦C in a 500 mL beaker. Sample
(200 mg) was mixed with 200 mL of an approximately 20 mg/L organic dye aqueous solution while
exposed to natural light and magnetic stirring. Every 30 min, a 10-mL sample of the dye solution was
assessed at 220 V by ultraviolet spectrometry using a UV-2550 from Shimadzu Instruments Co., Ltd.
(Suzhou, China). The rate of dye removal was determined using C = (C0 − Ct)/C0 × 100%, where C0

represents the initial concentration of dye and Ct represents the concentration of dye after t minutes.
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RhB, CR, and Orange II concentrations were measured using the UV-Vis spectrophotometer
(UV-2550) at wavelengths of 554, 495.5, and 484.5 nm. The amount of adsorbed organic dye was
calculated using the following equation [50].

qe =
C0 − Ce

m
v (1)

where C0 and Ce are the initial and equilibrium concentrations of Cr(VI) in solution (ppm), respectively,
V is the solution volume (L), and m is the adsorbent mass (g).

3. Results and Discussion

3.1. Synthesis and Characterization of Fe-MOFs

In the present study, the H3BTC and FeSO4·7H2O reacted over the course of a few minutes
during MSBM. After 40 min, the color of the reaction remained unchanged, indicating that Fe-MOFs
production was complete. Notably, MSBM incurred faster reaction rates than observed in conventional
synthesis approaches of generating Fe-MOFs [48,51], such as the solvothermal approach, where the
rate was similar to other microwave-assisted approaches [52].

The reaction mechanism was simple. Due to the coupling of ball milling and microwaves,
the H3BTC anions formed quickly through ionization in aqueous solutions and then attacked the metal
cations from the salt, thus forming a coordination compound [53], primarily due to the carboxylate
forming extended conjugate bonds that render the two oxygen atoms equivalent. However, the density
of the electron cloud should have a symmetrical distribution. Because the three carboxyls groups
are connected to the benzene ring when protonated, the resulting extended-bonds could more easily
coordinate with metal ions and form coordination polymers.

The X-ray diffraction Fe-MOF spectrum presented in Figure 1 contains twelve strong absorption
peaks. The three strong peaks present in the post-reaction spectrum did not overlap with those in the
pre-reaction spectrum, confirming the formation of new materials. The morphology of the Fe-MOFs
was assessed by scanning electron microscopy and is shown in Figure 2. At 1000×, randomly packed
blade-shaped particles were observed. At 10,000×, the morphologies of the individual particles could
be visualized.

Figure 1. XRD of Fe-based metal-organic frameworks (Fe-MOFs).
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Figure 2. SEM images of Fe-MOFs.

Thermogravimetric analysis was carried out using a quartz pan. As shown in Figure 3, weight
loss occurring in the argon atmosphere could be divided into two separate stages. The first stage,
which occurred before 167 ◦C, was due to the loss of residual solvent molecules from the framework
material from the solution-based synthesis [54,55]. The second stage, which started at 392 ◦C, occurred
when the chemical bonds began to break and the carboxyl and benzene ring were lost. At 492 ◦C,
the frame structure had completely collapsed.
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Figure 3. Thermal analysis of Fe-MOFs.

The N2 adsorption–desorption isotherms are shown in Figure 4. The specific surface areas was
found to be 21.8900 m2/g, and the average pore diameter was 24.4233 nm. Moreover, it can be seen
from Figure 4 that there are clear hysteresis loops indicating a mesoporous material. It can be seen from
the figure that, before P/P0 = 0.7, N2 molecules were adsorbed on the inner surface of the mesoporous
materials by a single layer to multiple layers. In the case of P/P0 = 0.8, the adsorption process increases,
which reflects the size of the sample aperture and can also be used as the basis for the homogeneity of
the mesoporous materials.

Figure 4. N2 adsorption–desorption isotherms of Fe-MOFs.

The structure of the Fe-MOF was tested via IR spectroscopy (as shown Figure 5).
The corresponding peak of symmetric and anti-symmetric stretching vibrations to the carboxylate was
observed at 1398 and 1558 cm−1, respectively. However, the electron density should be distributed
symmetrically. When the three carboxyl groups in H3BTC are protonated because they take part in
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hydrogen bonding between inter- and intramolecular, the extended bonds of their corresponding
anions can more easily form coordination polymers and metal ions.

Figure 5. IR spectra of Fe-MOFs.

3.2. Removal of Organic Dyes

Figure 6 shows that the removal efficiencies of RhB, Orange II, and CR by the MOFs reached 70.9,
88.21, and 96.97% at 15 ◦C and 99.38, 95.98, and 99.57% at 35 ◦C, respectively. Among these values,
86.28% of CR was removed within only 30 min. There are two major factors that influenced Fe-MOF
adsorption of dyes. One factor is surface area, a factor that does not uniquely determine the adsorption
capability of adsorbents. A second factor involved in the high adsorption capacity of Orange II and
CR by Fe-MOFs was the π-electron donor/acceptor interactions with the MOF surfaces. Orange II and
CR have C=C double bonds and π electrons. These π electrons are capable of easily interacting with
the π electrons of the MOF-surface benzene rings through π-π electron coupling. These two dyes are
also both cationic and anionic and exist as charged ions in an aqueous solution. Therefore, electrostatic
attraction aids in the adsorption of dyes by Fe(II)-MOFs.

Figure 6. Removal rates of Rhodamine B (RhB), Orange II, and Congo red (CR) by Fe-MOFs.
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The adsorption of RhB, Orange II, and CR by the Fe-MOFs was studied. Figure 7 presents the
plots of the pseudo-first-order model, ln (C/C0) = kt, of the RhB, Orange II, and CR adsorptions
by the Fe-MOFs at initial dye concentrations (C0) of 20 ppm. Table 1 presents the kinetic constants
(k1) and correlation coefficients (R2) calculated. Pseudo-first-order kinetic constants (k1) for Orange
II adsorption by Fe-MOFs were larger than those for the other dyes at 15 and 35 ◦C. However, the
kinetic constant for RhB was smaller than that for the other dyes despite having a faster adsorption.
The kinetic constants for Fe-MOFs indicate that rapid adsorption occurred in the presence of high
concentrations of the dyes; a similar phenomenon has been reported in previous publications [56–59].

Figure 7. Pseudo-first-order plots of dye adsorption over Fe-MOFs.

Table 1. Kinetic constants (k) with correlation coefficients (R2).

Dyes k1 k2
R2

Pseudo-First-Order Kinetic Pseudo-Second-Order Kinetic

15 ◦C
RhB 0.00247 0.07488 0.99251 0.99248

Orange II 0.00575 0.04568 0.97634 0.99899
CR 0.00483 0.04368 0.98598 0.99979

35 ◦C
RhB 0.00653 0.05576 0.99513 0.99832

Orange II 0.00698 0.04424 0.99231 0.99746
CR 0.0119 0.04272 0.99242 0.99908

Figure 8 presents the quantities (qt) of RhB, Orange II, and CR adsorbed by the Fe-MOFs over
time (t), which were calculated using the following equations [50,60]:

qt =
C0 − Ct

m
v (2)

t
qt

=
t

qe
+

1
k2q2

e
(3)

where qt and qe represent the amounts (mg/g) of dye adsorbed by the adsorbents at time t and
equilibrium, respectively. C0, Ct, and Ce represent the concentrations of liquid-phase dye (mg/L)
initially, at time t, and at equilibrium, respectively. Meanwhile, m (g) and V (L) are the quality of the
adsorbents and the volume (L) of the dye solution, respectively.
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Figure 8. Pseudo-second-order plots of dye adsorption over Fe-MOFs.

As shown in Figures 7 and 8, the adsorption capacity of the MOFs for the dye initially quickly
increased, then gradually decelerated, and then reached adsorption equilibrium after prolonged
contact. The kinetic constants (k2) and correlation coefficients (R2) calculated are presented in Table 1.
There is the possibility that the original dye concentrations were high enough to serve as a driving
force and surpass the resistance of the mass transfer between the liquidoid and solidoid [61].

The kinetics of adsorption is one of the most important parameters when describing an adsorbent.
The results of this study indicate that adsorption of RhB, Orange II, and CR by Fe-MOFs is described
well by the pseudo-first-order kinetic model and that the Fe-MOFs assessed are excellent at removing
organic dyes. Dyes exist as charged ions in aqueous solutions and have benzene rings. Adsorption of
dyes by Fe-MOFs may be a result of not only simple physical and chemical adsorption, but also the
conjugation of dyes and MOFs. Dye contains C=C double bonds and π electrons and these π electrons
can interact easily with the π electrons of Fe-MOF benzene rings through π-π electron coupling. Dye
adsorption on the surface of the Fe-MOFs could occur with a face-to-face orientation through π-π
conjugation until the equilibrium between adsorption and desorption has been reached. Therefore,
electrostatic attraction also aids in dye adsorption by Fe-MOFs [62].

4. Conclusions

In summary, the microwave-assisted ball-milling approach proved to be an effective strategy
and reliable for the synthesis of Fe-MOFs. The results show that the microwave-assisted ball milling
process is an effective method for the simple and fast preparation of Fe-MOFs. The synthesised MOFs
were measured for their capacity to remove organic dye solution from wastewater using natural light
and the adsorption of dyes was analyzed with a pseudo-first-order model and a pseudo-second order
model. By contrast, heating has good effect on the adsorption of dyes.
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