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Abstract: To apply CuInSe2 (CIS)-based printable solar batteries; an aqueous phase synthesis method
of Cu-In (CI) alloy nanoparticles is studied. Metal complexes in the original solution are restricted
to homogenized species by utilizing calculations. For example; [(Cu2+)(ASP2−)2] [ASP: the “body
(C4H5O4N)” of aspartic acid (C4H7O4N)] is predominant in the pH 6–13 region (CASP/CCu > 6);
while In complexes can be restricted to [(In3+)(OH−)(EDTA4−)] (pH 10–12; CEDTA/CIn = 2) and/or
[(In3+)(ASP2−)2] (pH 7–9; CASP/CIn = 5). These results indicate that the added amount of complex
reagents should be determined by calculations and not the stoichiometric ratio. The reduction
potential of homogenized metal complex is measured by cyclic voltammetry (CV) measurements and
evaluated by Nernst’s equation using the overall stability constants. CuIn alloy nanoparticles with a
small amount of byproduct (In nanoparticles) are successfully synthesized. The CI precursor films
are spin-coated onto the substrate using a 2-propanol dispersion. Then the films are converted into
CIS solar cells; which show a maximum conversion efficiency of 2.30%. The relationship between the
open circuit potential; short circuit current density; and fill factor indicate that smoothing of the CIS
films and improving the crystallinity and thickness increase the solar cell conversion efficiency.

Keywords: metal complex; control; aqueous phase synthesis

1. Introduction

Actualization of environmental problems has increased research that utilizes natural energy [1–3].
Recently, Si-based solar batteries have been widely used in effective natural energy conversion devices.
However, the minimum energy payback time is ca. 1.5 years because the reduction of SiO2 to Si has
an extremely large energy consumption (−856.7 J/mol) [4,5]. However, increasing the conversion
efficiency will decrease the energy payback time, but drastically changing a Si-based solar battery’s
efficiency is challenging as its actual efficiency has already reached 25% and the theoretical value is ca.
28% [6,7]. Therefore, various types of solar batteries have been vigorously researched.

Thin film-based solar batteries [8] have been intensively studied due to their attractive
characteristics, such as a relatively high efficiency [7], resource conservation [9,10], simple synthesis,
etc. [11,12]. Since CuInSe2 (CIS)-based solar batteries are attractive solar cell materials [13] with a
maximum efficiency up to 20.9% and long lifetimes in large scale modules, commercialization of
CIS-based solar batteries is stimulated [14].
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A CIS-based solar battery is mainly synthesized utilizing the gas phase deposition method [15,16].
This synthesis consumes a large amount of natural resources and has a high energy loss because
the vapors of individual elements are widely spread and accumulate on the substrate in various
concentrations [16–18]. Furthermore, the solar cell’s shape and size are limited by the reaction
apparatus’ dimensions. Thus, many studies have tried to synthesize CIS materials by the chemical
reduction method, which is an ecological and economical technique. For example, Ye et al.,
synthesized Cu-In alloy particles via chemical reduction in an organic solvent in which the Cu-In
alloy precursor films were transformed into CuInSe2 films by a selenide procedure [19]. The resulting
cells demonstrated a maximum energy conversion efficiency of 3.92% [19]. However, the total cost of
this method is not low since this procedure requires an organic solvent, such as tetraethylene glycol
(C8H18O5, TEG). Therefore, Shih-Hsien et al. synthesized Cu-In alloy nanoparticles in an aqueous
phase using metal salts and triethylamine as a stabilizing reagent; selenide materials showed an
energy conversion efficiency of 1.47% [20]. Unfortunately, the synthetic mechanism in the aqueous
solution remains unclear, and their process cannot be widely applied to prepare other compositions
or materials.

Although metallic nanoparticles are easily synthesized in the liquid phase by the reduction of
metal ions and/or complexes, core-shell materials and/or amorphous-like materials are sometimes
formed. The former appears when the reduction rate of each metal ion and/or complex differs,
while the latter is synthesized when a strong reducing agent is used. Therefore, to synthesize uniform
and well-crystallized alloy nanoparticles, Takahashi et al. controlled the homogenization of the metallic
complexes in an aqueous solution at room temperature by using calculations, EXAFS (extended X-ray
absorption fine structure), and ESI-TOF-MS (electrospray ionization time of flight mass spectroscopy)
analyses [21,22]. Consequently, uniform and well-crystallized alloy nanoparticles, such as Pd20Te7 and
Bi2Te3, were successfully synthesized [22,23].

Co-deposition of Cu and In ions is relatively difficult since the reduction potentials of these ions
differ greatly (0.342 V for Cu and −0.338 V for In) [24,25]. However, the reduction potential of the
metal complex is not the same as that of the ion. This means that the difference in the reduction
potential of each metal can be freely controlled using metal complex species (i.e., critical stability
constants) and that of the ratio in aqueous solution should realize uniform and well-crystallized CuIn
alloy nanoparticles.

In this study, the synthesis and its mechanism to form Cu-In alloy nanoparticles are elucidated.
Moreover, the synthesized materials are applied to form CIS-based printable solar batteries.

2. Experimental

2.1. Calculations

Copper nitrate (Wako Chemicals, Japan, Cu(NO3)2•3H2O) and indium nitrate (Wako Chemicals,
InNO3•3H2O) were used as the Cu and In precursor salts, respectively. Citric acid (Wako
Chemicals, C6H8O7), maleic acid (Wako Chemicals, C4H4O4), glycine (Wako Chemicals, C2H5O2N),
ethylenediamine (Wako Chemicals, C2H8N2, called as “EDA”), nitrilotriacetic acid (Wako Chemicals,
C6H9O6N), ethylenediaminetetraacetic acid (Wako Chemicals, C10H16O8N2, “EDTA”), oxalic acid
(Wako Chemicals, C2H2O4), and aspartic acid (Wako Chemicals, C4H7O4N) were used as complex
reagents. The concentrations of Cu and/or In complexes at various pH values of the aqueous solution
were calculated using the critical stability constants. The calculation method is described in the
literature [21].

For example, briefly, calculation methods for Cu ion-aspartic acid-OH−-NO3
− system were

performed as follows: Aspartic acid (C4H7O4N, H2L) is denoted as H2 (C4H5O4N). Thus, the “L” of
aspartic acid is C4H5O4N, which is denoted as ASP. As such, various complex species in the solution
are described as follows, where Kx are the critical stability constants:
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[H(ASP)] = K1[H][ASP] LogK1 = 9.65
[(H)2(ASP)] = K2[H(ASP)][H] LogK2 = 3.70
[(H)3(ASP)] = K3[(H)2ASP][H] LogK3 = 1.90
[Cu(ASP)] = K4[Cu][ ASP] LogK4 = 8.88
[Cu(ASP)2] = K5[Cu][ ASP]2 LogK5 = 15.6
[Cu(H)(ASP)] = K6[Cu(ASP)][H] LogK6 = 3.70
[Cu(H)(ASP)2] = K7[Cu(ASP)2][H] LogK7 = 4.00
[(Cu)2(ASP)] = K8[Cu(ASP)][Cu] LogK8 = 1.51
[(Cu)2(ASP)2] = K9[Cu(ASP)2] [Cu] LogK9 = 3.60
[Cu(OH)] = K10[Cu][OH] LogK10 = 6.50
[Cu(OH)2] = K11[Cu][OH]2 LogK11 = 11.8
[Cu(OH)3] = K12[Cu][OH]3 LogK12 = 14.5
[Cu(OH)4] = K13[Cu][OH]4 LogK13 = 16.4
[(Cu)2(OH)] = K14[Cu]2[OH] LogK14 = 8.20
[(Cu)2(OH)2] = K15[Cu]2[OH]2 LogK15 = 17.7
[(Cu)3(OH)4] = K16[Cu]3[OH]4 LogK16 = 35.2
[Cu(NO3)] = K17[Cu][NO3] LogK17 = −0.13
[Cu(NO3)2] = K18[Cu][NO3]2 LogK18 = −0.60

Here, CCu is the sum of the Cu complexes and ions. Therefore:

CCu = [Cu] + K4[Cu][ASP] + K5[Cu][ ASP]2 + K6[Cu(ASP)][H] + K7[Cu(ASP)2][H] + 2K8[Cu(ASP)][Cu]
+ 2 K9[Cu(ASP)2] [Cu] + K10[Cu][OH] + K11[Cu][OH]2 + K12[Cu][OH]3 + K13[Cu][OH]4 +
2K14[Cu]2[OH] + 2K15[Cu]2[OH]2 + 3K16[Cu]3[OH]4 + K17[Cu][NO3] + K18[Cu][NO3]2

In the same manner, CASP (total amount of ASP species) and CNO−3
(total amount of NO−3 species)

can describes as follows:

CASP = [ASP] + K1[H][ASP] + K2[H(ASP)][H] + K3[(H)2(ASP)][H] + K4[Cu][ASP] + 2K5[Cu][ ASP]2 +
K6[Cu(ASP)][H] + 2K7[Cu(ASP)2][H] + K8[Cu(ASP)][Cu] + 2 K9[Cu(ASP)2] [Cu]

CNO−3
= [NO3] + K17[Cu][NO3] + K18[Cu][NO3]2

From the simultaneous equations of CCu and CASP and CNO3 , the ratio of each complex can
be calculated.

2.2. Reduction Potential Measurements of Homogenized Cu Complexes

The reduction potentials of homogenized Cu complexes were measured via the cyclic voltammetry
method (GAMRY, Reference 600, Potentiostat/Galvanostat/ZRA, called as CV). Platinum wire,
Au plate, and Ag/AgCl electrodes were used as the counter electrode, working electrode, and reference
electrode, respectively.

2.3. Preparation and Selenization Method of Cu-In Alloy Nanoparticles

Cu-In alloy nanoparticles were prepared as follows. Aqueous solutions of 8–10 mmol/L
Cu(Cl)2•2H2O (Wako Chemical, >99%), 10 mmol/L In(Cl)3•4H2O (Wako Chemical, >97%), 0.5 mol/L
aspartic acid (Wako Chemical, >97%), were introduced into a glass vessel and mixed well. As necessary,
polyvinylpyrrolidone (Wako Chemical, PVP (K25) and/or PVP(K16–18)) was added. The pH was
adjusted to 9 with a NaOH aqueous solution, and the final volume was adjusted to 40 mL. Then
10 mmol of a NaBH4 solution (10 mL, 30 ◦C) whose pH was similar to the metal complex solution was
introduced into the glass vessel, and mixed at 30 ◦C for 1 h. The synthesized materials were collected,
washed with EtOH, and dried.

The synthesized Cu-In nanoparticles (1.5 g) were well dispersed into 7.5-mL 2-PrOH by ultrasonic
wave irradiation for 60 min. The synthesized Cu-In alloy nanoparticle dispersion was spin-coated
onto a Mo/glass substrate and dried at 200 ◦C. Selenization of the Cu-In nanoparticle film on a
Mo/glass substrate was performed under a 9.6× 10−2 Pa H2Se gas atmosphere (total pressure: 0.6 atm).
The treatment temperature was changed from 300 ◦C to 575 ◦C at a constant treatment time of 1 h.
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2.4. Evaluation of the Synthesized Materials

The synthesized materials were evaluated by XRD (Rigaku Co., Ltd., Japan. MULTI FLEX, 40 kV,
20 mA), SEM (Hitachi Co., Ltd., Japan. SU8000), Raman spectroscopy (HORIBA JOBIN YVON, T64000).
I-V measurements and quantum effectivity measurements were performed using cells formed by a
CIS film (p-type semiconductor) and a CdS film (n-type semiconductor).

3. Results and Discussion

Figure 1 shows the calculation results for the Cu-aspartic acid-OH system (CCu = 0.01 mol/L,
CNO3 = 0.02 mol/L and Caspartic acid = 0.06 mol/L), which reveal the relationship between the ratio of
Cu complexes (vertical axis) and pH (horizontal axis). As already mentioned, aspartic acid (C4H7O4N,
H2L) is denoted as H2 (C4H5O4N). Thus, the “L” of aspartic acid is C4H5O4N, which is denoted as
ASP2−. Various Cu-aspartic acid complexes such as [(Cu2+)(H+)(ASP−)] and Cu ions form in acidic
conditions, However, [(Cu2+)(ASP2−)2] is predominant in the pH region of 6–13. These results suggest
that the Cu complex can be homogenized if the solution is adjusted to the above conditions. It should
be noted that homogenization is successfully achieved in the case of CASP/CCu > 6 (=0.06/0.01),
which is not obtained by the addition of stoichiometric amounts.

Figure 1. Results of the calculation in the cases of Cu-ASP-OH system as a function of pH,
(CCu = 0.01 mol/L, CNO3 = 0.02 mol/L, and CASP = 0.06 mol/L).

Table 1 summarizes the relationship between homogenized species and the solution condition
calculated in the case of each complex reagent. The “L” of oxalic acid (H2L), EDA (L), NTA (H3L),
EDTA(H4L), maleic acid (H2L), citric acid (H3L), and glycine (HL) are denoted as “oxa”, “EDA”, “NTA”,
“EDTA”, “mal”, “cit”, and “gly”, respectively. The Cu complexes are restricted to [(Cu2+)(oxa2−)2]
(pH 3–10), [(Cu2+)(gly−)2] (pH 6–12), [(Cu2+)(EDA)2] (pH 7–12) and [(Cu2+)(NTA3−)2] (pH 8–11).
[(Cu2+)(EDTA4−)] (pH 5–10), [(Cu2+)2(OH−)2(mal2−)2] (pH 9–12), and [(Cu2+)2(OH−)2(cit3−)2]
(pH 7–12) are predominant in the respective pH region. Similar to the case of aspartic acid,
homogenization of Cu complex requires the addition of 1.5 times (NTA), two times (EDTA and
EDA), three times (glycine), six times (maleic acid and citric acid), and 10 times (oxalic acid) of the
complex reagents relative to Cu. On the other hand, the calculations for the In-complex reagents system
demonstrate that In complexes can be restricted to [(In3+)(OH−)(EDTA4−)] (pH 10–12, CEDTA/CIn = 2)
and/or [(In3+)(ASP2−)2] (pH 7–9, CASP/CIn = 5), respectively.

Cyclic voltammetry measurements of these homogenized metal complexes show peaks at
−0.87 (V (vs. Ag/AgCl)) (oxa), −0.94 (V (vs. Ag/AgCl)) (gly), −1.08 (V (vs. Ag/AgCl)) (EDA),
−1.01 (V (vs. Ag/AgCl)) (ASP), −0.98 (V (vs. Ag/AgCl)) (NTA), −1.05 (V (vs. Ag/AgCl)) (EDTA),
−1.00 (V (vs. Ag/AgCl)) (mal), and −1.03 (V (vs. Ag/AgCl)) (cit).
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Table 1. Relationship between homogenized species and solution condition calculated, and reduction
potential in the case of oxalic acid, glycine, ethylenediamine (EDA), nitrilotriacetic acid (NTA),
etylenediaminetetraacetic acid (EDTA), malic acid, and citric acid.

Complex
Reagent

Concentration
of Cu (mol/L)

Concentration of
Complex Reagent

(mol/L)
Homogenized Species

Ratio of
Homogenized

Species (%)

Reduction Potential
[V(vs. Ag/AgCl)]

oxalic acid 0.01 0.1 [(Cu2+)(oxa2−)2] 100 −0.87
glycine 0.01 0.03 [(Cu2+)(gly−)2] 100 −0.94

EDA 0.01 0.02 [(Cu2+)(EDA)2] 100 −1.08
ASP 0.01 0.06 [(Cu2+)(ASP2−)2] 100 −1.01
NTA 0.01 0.03 [(Cu2+)(NTA3−)2] 100 −0.98

EDTA 0.01 0.02 [(Cu2+)(EDTA4−)] 96.2 −1.05
malic acid 0.01 0.03 [(Cu2+)2(OH−)2(mal2−)2] 92.8 −1.00
citric acid 0.01 0.06 [(Cu2+)2(OH−)2(cit3−)2] 93.8 −1.03

The XRD measurement results of the films electrodeposited at the corresponding voltage (1800 sec)
show apparent peaks of metallic Cu (PDF#04-0836) along with peaks of the Au substrate (PDF#04-0784).
Thus, these voltages indicate the reduction potential of homogenized metal complexes (Table 1).

Here, the reduction potential of Cu metal from its oxide is clearly defined by the pH
(i.e., potential-pH diagram). For example, that of Cu is −0.2 (V vs. SHE) [26]. On the other hand,
that of Cu metal reduced from its complex shows another potential, which depends on the ligand
species since the disconnection between Cu and the ligand is indispensable to reduce the Cu complex
species (Table 1). The reduction potential shown in Table 1 can be recognized as that of Cu metal
from its homogenized Cu complex, and it depends on the critical stability constants between Cu ion
and ligands.

Among the consecutive stability constants and overall stability constants, the latter is relevant
to the reduction of the Cu complex since the complex needs a perfect disconnection of the bonding
between metal and ligands. The overall stability constants (K) can be described as follows:

K = k1·k2······kn =
[ML n][

M(H2O)n][L]
2

(1)

Figure 2 shows the relationship between LogK/n and the reduction potential of the homogenized
Cu complexes. “n” means the valence of the metal in the complex. For example, n = 2 for
[(Cu2+)(Ligand)] and n = 4 for [(Cu2+)2(Ligand)]. This relationship has a linear tendency.

Figure 2. Relationship between LogK/n and reduction potential of homogenized Cu complexes.
Reduction potential of Cu and In complexes calculated from Equations (8) and (9) were also inset in
the figure (dotted line).
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The reduction formula of [(Mn+)(Ligand)] can be expressed as:[
(M n+

)
L] + ne− → M + L (2)

By utilizing Nernst’s equation, the reduction potential of Equation (2) can be expressed as:

E = E0
c −

RT
nF
· ln L[

(M n+
)

L
] (3)

On the other hand, when the metal ion (Mn+) and ligand (L) form a complex with the stability
constants K, K is expressed as:

Mn+ + L→
[
(M n+

)
L
]

(4)

K =

[
(M n+

)
L
]

[
Mn+][L] (5)

Thus, the standard electrode potential of metal complex can be summarized as:

E = E0
c +

RT
nF
·lnK +

RT
nF
→ ln

[
Mn+] (6)

E0
c= E0 −

RT
nF
·lnK (7)

Here, the temperature (T) is 298 (K), gas constant (R) is 8.31 (J K−1 mol−1), the Faraday constant (F)
is 96,500 (C mol−1), and the reduction potential of “bare” Cu ion (E0) is −0.525 (V vs. Ag/AgCl) [27].
Therefore, the reduction potential of Cu metal complex can be expressed as:

E0
c = −0.525− 0.059· logK

n
(8)

In the same manner, considering the reduction potential of “bare” In ion (E0 = −0.700 (V vs.
Ag/AgCl) [28]), the reduction potential of the In metal complex can be expressed as:

E0
c = −0.700− 0.059· logK

n
(9)

The relationship between the reduction potential and the stability constants of Cu and In
complexes calculated from Equations (8) and (9) (dotted line in Figure 2) are consistent with the
measured values. Therefore, the reduction potential of the homogenized metal complex can be
determined from these equations and the overall stability constants. In this study, alloy nanoparticles
are synthesized using reducing agents with a specific potential. Thus, the low potential deference of
both metal complexes, ∆(Cu-In), is significant in the synthesis of alloy nanoparticles. Taking these facts
into consideration, it is expected that aspartic acid is a suitable ligand for Cu and In since ∆(Cu-In) is
low (0.04). Actually, the XRD peaks (Figure 3) according with CuIn alloy (PDF#35-1150), Cu2In alloy
(PDF#42-1475), and In (PDF#05-0642) are detected from the film electrodeposited by using 0.01 M
Cu(NO3)2-0.01 M In(NO3)3-0.50 M aspartic acid aqueous solution (pH 9) at −1.06 V (V (vs. Ag/AgCl)).
These results indicate that Cu-In alloy nanoparticles can be synthesized under this condition.

Thus, chemical reduction was performed by using 0.01 M Cu(NO3)2-0.01 M In(NO3)3-0.50 M
aspartic acid aqueous solution (pH 9) and 0.1 M NaBH4 solution as a reducing reagent. Due to the
coordination of water molecules to In in the presence of NO−3 ion [27], the synthesized precipitate
was re-dissolved into solution during filtration and the drying process. Therefore, metal salts were
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changed from nitrates to chlorides. Cu-chloride or In-chloride complexes are not formed in this
solution condition.

Figure 3. XRD profile of the material synthesized from the 0.01 M CuCl2-0.01 M InCl3-0.50 M ASP
aqueous solution (pH 9, 30 ◦C, reaction time was 1 h).

From the XRD profile of the material synthesized from the 0.01 M CuCl2-0.01 M InCl3-0.50 M
aspartic acid aqueous solution (pH 9, 30 ◦C, reaction time of 1 h) and 0.1 M NaBH4 solution, many
peaks corresponding to CuIn (PDF#35-1150) and small peaks of In (PDF#05-0642) are clearly observed.
The recovery rate is >98%. It is well known that In can co-exist in the η phase (Cu2In) below 157 ◦C,
as shown in the Cu-In binary phase diagram [28,29]. It is also true that the CuIn alloy phase is
also obtained frequently in thermodynamically slow syntheses, leading to a nonequivalent state.
This experiment used thermodynamically slow conditions (e.g., 30 ◦C) [30–34]. For example, a mixture
of CuIn/In/Cu2In has been synthesized in other reports [21,35].

From the above results, it is clear that Cu-In alloy nanoparticles can be synthesized in the aqueous
phase at room temperature. However, their particle size varies widely (20–600 nm), which is not
suitable for CIS-based printable solar batteries. Therefore, we tried to control the particle diameter
(PD) and standard deviation (SD) of the synthesized alloy nanoparticles.

Figure 4 shows the SEM micrographs of Cu-In alloy nanoparticles synthesized with (a) 2.5 mM
CTAB, (b) 2.5 mM SDS, (c) 2.5 mg/50mL PVP(K25), and (d) 2.5 mg/50 mL PVP(K16–18), respectively.
The PD/SD calculated from 200 particles drastically changes (i.e., 88 nm/41 (CTAB 2.5 mM), 76 nm/31
(SDS, 2.5 mM), 31 nm/12 (PVP(K16–18), 2.5 mg/50 mL), 47 nm/19 (PVP(K25), and 2.5 mg/50 mL)).
Here, the basic structures of PVP(K16–18) and PVP(K25) are almost the same, but the polymerization
degree of the vinyl groups differ. The length of the former is ca. 79 nm, while that of latter is ca. 350 nm.
On the other hand, the synthesized particle size is ca. 50 nm.

Taking the previously report, which mentioned the relationship between the length of the vinyl
groups in PVP and the secondary particle size, into consideration [36], the particle size control
mechanism is as follows: In the case of PVP(K16–18), Cu-In nanoparticles do not aggregate since the
diameter and the length of PVP are almost the same. On the other hand, many Cu-In nanoparticles
form secondary particles when PVP(K25) is used as the size-control reagent due to the intertwining of
long functional groups around the particles.

Cu-In precursor films with relatively flat surfaces are successfully spin-coated onto the substrate
via a 2-propanol dispersion of Cu-In alloy nanoparticles synthesized with PVP(K16–18). Figure 5 shows
the XRD profiles of the Cu-In precursor films after selenization at 300, 400, 500, and 575 ◦C. The peaks
of the CuIn alloy phase (PDF#35-1150) disappear, while those the CuInSe2 phase (PDF#40-1487) and



Nanomaterials 2018, 8, 221 8 of 14

the Cu3Se2 phase (PDF#47-1745) appear when Cu-In precursor films are selenized at 300 ◦C. As the
treatment temperature increases to 400 ◦C, only the peaks of the CuInSe2 phase (PDF#40-1487) are
detected. However, at a treatment temperature of 575 ◦C, the peaks of the (103) and (211) planes
of the CuInSe2 phase, which indicate the existence of the chalcopyrite structure [37], are detected.
Since the chalcopyrite structure of CuInSe2 phase is essential to construct effective solar cells [38],
the selenide temperature used in this experiment was 575 ◦C. Here, the Cu2Se phase is sometimes
co-synthesized with the CuInSe2 phase as a byproduct [39]. However, we cannot identify the CuInSe2

and Cu2Se from the XRD profile because both have the same primitive lattice and almost the same
lattice constants [40–43].

Figure 4. SEM micrographs of Cu-In alloy nanoparticles synthesized with (a) 2.5 mM CTAB; (b) 2.5 mM
SDS; (c) 2.5 mg/50 mL PVP(K25); and (d) 2.5 mg /50 mL PVP(K16–18), respectively.

Figure 5. XRD profiles of Cu-In precursor films selenized at 300, 400, 500, and 575 ◦C.

The existence of Cu2Se was evaluated by the Raman scattering measurement method. Figure 6
shows CIS films selenized at 300, 400, 500, and 575 ◦C. The peaks of CulnSe2 are detected at 174 cm−1

(A1 vibrational mode), 206 cm−1 (E mode), 215 cm−1 (B2,E mode) and 231 cm−1 (B2,E mode) [44],
while a weak peak of Cu2Se is also detected at 262 cm−1 [45]. Thus, the main phase of the CIS films
synthesized in this study is CulnSe2. Nevertheless, a very small amount of Cu2Se phase is involved.
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Taking the pseudo-binary phase diagram of Cu2Se-In2Se3 into consideration [46], it expected that
Cu2Se will separate under the conditions of In2Se3 < 50 mo1% and T < 500 ◦C since CulnSe2 (α phase)
does not have a solid solution region. To restrict the synthesis of byproducts, the ratio of Cu against In
should be less than 1.

Figure 6. Results of Raman scattering measurements of the CIS films selenized at 300, 400, 500, and
575 ◦C.

Figure 7 shows the J-V measurement results of the CIS films, which were prepared using Cu-In
nanoparticles synthesized at (a) PVP(K16–18) and Cu/In = 0.91; (b) PVP(K25) and Cu/In = 0.91;
and (c) PVP(K25) and Cu/In = 0.81. The measurements were performed under irradiation of AM 1.5-G
illumination and under dark conditions. Table 2 summarizes the open circuit potential (VOC [mV]),
short circuit current density (JSC [mA/cm2]), fill factor (FF), and conversion efficiency (η[%]) of each
CIS solar cell.

Figure 7. J-V measurement results of CIS films which constituted by using Cu-In nanoparticles
synthesized at (a) PVP(K16–18) and Cu/In = 0.91; (b) PVP(K25) and Cu/In = 0.91; and (c) PVP(K25)
and Cu/In = 0.81, under AM 1.5G illumination and in the dark.
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Table 2. PV parameters evaluated from the J-V curves for the CIS solar cells.

Sample VOC (mV) JSC (mA/cm2) FF η (%)

PVP(K16–18), Cu/In = 0.91 330 12.0 0.28 1.12

PVP(K25) Cu/In = 0.91 420 5.53 0.26 0.60

PVP(K25) Cu/In = 0.81 430 20.5 0.26 2.30

The CIS films synthesized from Cu-In alloy nanoparticles formed in an aqueous solution at room
temperature act as solar cells. The maximum conversion efficiency (η) is 2.30%. These results indicate
that the aqueous phase synthesized Cu-In alloy nanoparticles can applied to CIS-based printable solar
batteries, although the efficiency of the CIS solar cell synthesized in this experiment is lower than that
of the CIS solar cell synthesized under the gas phase condition (for example, η = 20.9% [14]).

There are three reasons why the efficiency of the solar battery synthesized in this experiment is
lower than that synthesized in the gas phase: (1) recombination loss, (2) parasitic loss; and (3) optical
loss. These losses induce the loss of (1) Voc, (2) FF, Jsc, Voc, and (3) Jsc [17]. The series resistance (Rse),
parallel conductance (Gsh), ideality factor (n), saturation current density (J0) of the solar battery’s
equivalent circuit can be calculated as follows: The J-V properties of the solar battery’s equivalent
circuit under darkness condition is expressed as [47]:

J = J0 exp
[ q

nkT
(V− RseJ)

]
+ GshV (10)

Here, J0 is the saturation current density (mA/cm2), q is the quantum of electricity
(1.602 × 10−19 (C)), and n is ideality factor of the diode. k is Boltzmann’s factor (1.380 × 10−23 (J/K)),
and T is temperature (K). Rse is the series resistance (Ω cm2) and Gsh is the parallel conductance
(mS/cm2). If Equation (10) is differentiated with respect to V, Equation (11) is obtained:

dJ
dV

= J0

[ q
nkT

(V− RseJ)
]

exp
[ q

nkT
V
]
+ Gsh (11)

In the region V < 0, J0
[ q

nkT (V− RseJ)
]

exp
[ q

nkT V
]

approaches to 0 from the plot of V against to
dJ/dV. Thus, the value where dJ/dV becomes constant is equivalent to Gsh in the region V < 0.

On the other hand, if Equation (10) is differentiated with respect to J, it expressed as:

dV
dJ

= Rse +
nkT

q
J−1 (12)

Thus, the y-intercept and gradient of the plot of J−1 against to dV/dJ are equal to Rse and nkT/q,
respectively. From these, the value of Gsh, Rse, and n become clear. Transformation of Equation (10)
yields, Equation (13):

ln(J−GshV) =
q

nkT
(V− RseJ)+lnJ0 (13)

Thus, the y-intercept of the plot of V − RseJ against to ln(J − GshV) is equal to lnJ0. From the
relationship of these equations, Rse, Gsh, n, and J0 can be calculated.

Figure 8 shows the (a) dJ/dV vs. V curves to evaluate Gsh; (b) dV/dJ vs. 1/J plot to determine
Rse and n; and (c) semi-logarithmic plot of (j-GshV/A) vs. V-RJ to determine J0. Table 3 summarizes
the Gsh, Rse, n, and J0, of the CIS devices synthesized in this study, as well as those for the gas phase
condition. n and J0 of the CIS devices synthesized in this experiment are higher than those of the gas
phase synthesized CIS devices. These results mean that the CIS devices synthesized in this experiment
involve many recombination losses, which lowers the open circuit potential.
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Figure 8. (a) dJ/dV vs. V curves for Gsh evaluation; (b) dV/dJ vs. 1/J plot for the determination of
Rse and n; and (c) semilogarithmic plot of (j-GshV/A) vs. V-RJ for determination of J0.

Table 3. Shunt conductance (Gsh), series resistance (Rse), ideality factor (n), and saturation current
density (J0) of CIS devices synthesized in this study and also gas phase condition.

Sample Gsh (mS/cm2) Rse (Ω cm2) n J0 (mA/cm2)

PVP(K16–18) 0.40 10.8 7.06 0.86
PVP(K25) 0.08 68.4 4.00 0.15

PVP(K25)/Cu0.8 0.20 14.3 4.71 0.23
CIGS(gas phase) (η = 15.5%) 0.05 0.20 1.50 2 × 10−6

Figure 9 shows the SEM images (surface morphology and cross-section) of the CIS solar cells based
on Cu-In nanoparticles using (a,d) PVP(K16–18) and Cu/In = 0.91, (b,e) PVP(K25) and Cu/In = 0.9,
and (c,f) PVP(K25) and Cu/In = 0.81. In each case, it is apparent that the cell has a rough surface,
which induces the lack of p-n junctions [19]. Moreover, crystal growth is limited to the surface area of
the CIS films (<1 µm). The crystallinity inside the CIS films is low, and the thickness of the CIS solar
cell is 4–6 µm, which is two or three times thicker than that of the effective CIS solar battery [48]. These
characteristics increase the series resistance, leading to recombination loss that eventually results in
the loss of FF, Jsc, and Voc. These results mean that the smoothing of the CIS films and improving the
crystallinity and thickness induce the solar cells properties.

Figure 9. SEM images (surface morphology and cross-section) of the CIS solar cell based on Cu-In
nanoparticles using (a,d) PVP(K16-18) and Cu/In = 0.91, (b,e) PVP(K25) and Cu/In = 0.9, (c,f) PVP(K25)
and Cu/In = 0.81.



Nanomaterials 2018, 8, 221 12 of 14

4. Conclusions

The calculations and CV measurements of homogenized complex species indicate that aspartic
acid is a suitable ligand for Cu and In because ∆(Cu-In) is low (0.04). Under the appropriate conditions
(0.01 M CuCl2-0.01 M InCl3-0.50 M aspartic acid aqueous solution (pH 9, 30 ◦C, reaction time was 1 h)
and a 0.1 M NaBH4 solution), CuIn alloy nanoparticles with In small peaks are successfully synthesized
with a recovery rate of >98%. CIS films synthesized from Cu-In alloy nanoparticles act as solar cells
with the maximum conversion efficiency of 2.30%. The results indicate that aqueous phase synthesized
Cu-In alloy nanoparticles can be applied to CIS-based printable solar battery. This method should be
applicable to various alloy synthesis systems.
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