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Supplementary Figures 

 
Figure S1. TEM images of ZIF-67. 

 
Figure S2. XRD patterns of ZIF-67 simulated, ZIF-67 and ZIF-NS. 



 
Figure S3. Elements in CoP-NS/C. The energy-dispersive X-ray spectroscopy (EDS) spectrum of CoP-
NS/C. EDS spectrum demonstrates the presence of Co and P in as-prepared CoP-NS/C. The signal of 
Cu results from the copper substrate, the carbon element may come from the carbon tape and sample. 

 
Figure S4. High-resolution XPS patterns for C 1s of CoP-NS/C. 

 
Figure S5. Characterization of CoP/C. (a) XRD patterns and (b) TEM image of CoP/C. The XRD 
pattern of the CoP in Figure S4a shows the CoP/C has the same crystal structure with CoP (PDF no.29-
0497). The TEM image (Figure S5b) shows that CoP/C had a size of about 100 nm and did not keep 
the morphology of ZIF-67 precursor. 



 
Figure S6. N2 adsorption/desorption isotherms of CoP/C (inset: BJH pore-size distribution curves). 
Pore size distributions were calculated using the Barrett-Joyner-Halenda method from the desorption 
branch. Pore size distribution analysis (Figure S5 inset) reveals a narrow peak of pore diameter 
distribution ranging from 0.9 to 10 nm. The Brunauer–Emmett–Teller (BET) surface area (SBET) and 
pore volume of the CoP/C were calculated to be 25.8 m2/g and 0.08 cm 3/g, respectively. 

  
Figure S7. XPS spectra of CoP/C: (a) survey spectrum; (b) Co 2p; (c) P 2p and (d) C 1s. 



 
Figure S8. (a) XRD patterns and (b) SEM image and (c) XPS survey spectrum of CoP. The XRD pattern 
of CoP in (a) shows that the as-prepared CoP has the same crystal structure with CoP (PDF no.29-
0497) and no other peak were observed. XPS survey spectrum of CoP confirmed no existence of 
carbon in CoP. 

Table S1. Comparison of HER performance in 0.5M H2SO4 for CoP-NS/C with other transition metal 
phosphide catalysts. 

Catalyst for HER 
Catalyst Size 

(nm) 

Overpotential 
for 10 mA/cm2 

(mV) 

Tafe slope 
(mV/dec) 

Catalyst 
loading 

(mg/cm2) 
Refs. 

CoP Hollow 
Polyhedron 

700 206 39 0.102 [1] 

CoP nanosheet 1.1 (thickness) 56 44 0.28 [2] 
Co phosphide/Co 

phosphate 80 160 53 - [3] 

urchin-like CoP 4000 100 46 0.28 [4] 
Ni5P4-Ni2P-NS array - 120 79.1 68.2 [5] 

CoP@C    20–50 170 61 0.353 [6] 
CoP/RGO   4.1 250 104.8 0.29 [7] 

Co2P nanorods 

110.0 ± 11.8 
(length) 
9.8 ± 1.3 

(diameter) 

134 71 1 [8] 

Ni12P5/Ti    14.3 ± 2.0 137 63 1 [9] 
Ni2P nanosheets/CC - 99 51 4.3 [10] 

Cu3P NW/CF     

Several 
micrometers 

(length) 300–400 
(diameter) 

143 67 15.2 [11] 

MoP@PC - 153  66 0.41 [12] 
FeP nanosheets - 220 67 0.28 [13] 

CoP-NS/C 
1.52 ± 0.23 
(thickness) 

140 59 0.14 
This 
work 

Table S2. Comparison of OER performance in 1M KOH for CoP-NS/C with other transition metal 
phosphide catalysts. 

Catalyst for OER Catalyst Size (nm) 
Overpotential 
for 10 mA/cm2 

(mV) 

Tafe 
slope 
(mV/
dec) 

Catalyst 
loading 

(mg/cm2) 
Refs. 

Co-P film 1000–3000 345 47 - [14] 
Co phosphide/Co 

phosphate 80 310 65 - [3] 

Cu0.3Co2.7P/NC 500 190 44 0.4 [15] 
Ni0.69Co0.31–P less than 10 266 81 3.5 [16] 

NiCoP nanosheet 
arrays 

6000–8000 308(50) - 5 [17] 



(Ni0.5Fe0.5)2P/Ni foam - 203 57 - [18] 
Fe10Co40Ni40P/Ni foam - 250 44 3.1 [19] 

CoP nanorod - 320 71 0.71 [20] 
Co-P/NC 600 319 52 0.283 [21] 

NiCoP/C nanoboxes 750 330 96 - [22] 
CoP/RGO 200 340 70 0.29 [23] 

CoP Hollow 
Polyhedron 

700 400 57 0.102 [1] 

CuP microsheets 510 290 63 - [24] 
Ni2P nanosheets - 347 63 0.285 [25] 

FeP @CNT - 300 53 0.204 [26] 

CoP-NS/C 
1.52 ± 0.239 
(thickness) 

292 64 0.14 
This 
work 
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